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1. Introduction 
_____________________________________________   

 
Technology Outlook 
 
Truly innovative research with the potential of making a profound impact 
should aim at a horizon of 10+ years. By 2015 the process technology 
available to computer architects will likely be the 16 nm or the 11 nm 
technology node with about 100-billion-transistor integration capacity per 
die. A synopsis of the ITRS roadmap presented by Intel’s Shekbar Borkar at 
the conference is shown in Table 1 that highlights technology direction 
through 2018. By then, 3D stacking of multiple dies will be widely available 
which will facilitate extreme integration of building-block dies in diverse 
technologies. These building-block dies can include: CPU, GPU, *PU, SRAM, 
DRAM, Flash, MEMS, interconnect fabric, and so on. Unlike several decades 
ago when computer architects used to push the limits of technology, 
computer architects are now being pulled by the relentless advance of 
technology, and frequently do not know how best to exploit the available 
transistors and advanced integration possibilities. 
 
 

Table 1. ITRS Roadmap Synopsis 
 2006 2008 2010 2012 2014 2016 2018 
Technology Node (nm) 65 45 32 22 16 11 8 
Integration Capacity (BT) 4 8 16 32 64 128 256 
Delay (CV/I scaling) ~0.7 >0.7 Delay scaling will slow down 
Energy/Logic Op (scaling) >0.5 >0.5 Energy scaling will slow down 
Alternate, 3D etc. Low probability                                              High Probability 
Variability    Medium                           High                            Very High 

 
  
Technology Challenges 
 
Scaling beyond the 45 nm technology node introduces significant new 
challenges. In addition to the well-known power and thermal problems, new 
problems will arise. Both delay scaling and energy scaling will slow down, 
and device variability will significantly increase due to random dopant 
fluctuations, sub-wavelength lithography, and temperature variation and hot 
spots. Extreme variations will result in devices that exhibit unpredictable 
behaviors and that can degrade over time. Gradual errors due to variations, 
time-dependent errors due to degradation, and transient errors due to 
environmental factors all will conspire to make the design of reliable 
computing systems extremely difficult. Future lithography will require 
extreme regularity in the physical design in order to mitigate the negative 
effects of variation and reliability. One-time factory testing and the 
traditional burn-in process will no longer suffice. Continual self-testing and 
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self-monitoring with the ability to dynamically reconfigure and adapt will be 
essential features in future architectures. 
 
Unprecedented Opportunity 
 
Driven by the promising outlook and serious challenges of the process 
technology, computer architects have an unprecedented opportunity to be 
innovative. The purpose of this CRA Grand Research Challenges conference 
was to bring together 50 to 60 of the most visionary computer architecture 
researchers in academia and industry to brainstorm and identify the new 
challenging research problems for the architecture research community to 
address in the next 10 years. The intent was to think outside of traditional 
“boxes” and beyond current trendy topics. Separating computing and 
communication is no longer useful; differentiating between embedded and 
mainstream computing is no longer meaningful. Extreme mobility and highly 
compact form factors will likely dominate. A distributed peer-to-peer 
paradigm may replace the client-server model. New applications for 
recognition, mining, synthesis, and entertainment could be the dominant 
workloads. It was an opportune time for the computer architecture research 
community to spend a few days together to ponder these possibilities and to 
formulate a grand new research agenda. 
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2. CONFERENCE SUMMARY 
_____________________________________________________________ 
 
Conference Logistics 
 
The organizing committee received a total of 107 position statements from 
both industry and academia; based on these submissions, 33 invitations 
were extended to participate in this working conference. Including organizing 
committee members, invited industry keynote speakers and panelists, and 
other invited guests, there were a total of 55 participants (15 from industry, 
33 from academia, and 7 from CRA and NSF) at the conference.  
 
In addition to the plenary discussion sessions and the topic-specific breakout 
groups, there were two keynote presentations and an industry panel session. 
The keynote addresses were given by Shekhar Borkar of Intel speaking on 
“Microarchitecture Challenges for 2015,” and Jim Larus of Microsoft Research 
addressing “Software Challenges in Nanoscale Technologies.” The industry 
panel discussion was moderated by John Paul Shen, and included Bob 
Colwell (consultant), Chuck Moore (AMD), Ravi Nair (IBM), Justin Rattner 
(Intel), and Steve Scott (Cray) as distinguished panelists. 
 
The first full day of the conference (Monday, December 5, 2005) began with 
the two industry keynote addresses, followed by the charge for the day’s 
breakout sessions provided by Mary Jane Irwin. There were five breakout 
groups based on the following five topics: 1) Brain and Nano Computing;  
2) Tolerating Extreme Scaling; 3) CMP and Beyond; 4) Self-Healing 
Systems; and 5) Software-Hardware Interface. At the end of the day all five 
groups convened in a plenary session where each reported out. The 
organizing committee then met to review the progress made that day and to 
plan the agenda for the next day. 
 
The second day of the conference (Tuesday, December 6, 2005) began with 
the distinguished industry panel, followed by an open-mike session. The 
charge for the day was given by John Paul Shen prior to the breakout 
sessions. The breakout groups were organized based on the following 
potential grand challenge topics: 1) Ultra Energy Efficient Computing;  
2) Usage of Abundance of Transistors; 3) Brain Architecture; and 4) Popular 
Parallel Programming. Again, a plenary report-out session was held at the 
end of the day, during which attempts were made to formulate specific 
grand research challenges. After the plenary session the organizing 
committee met again to review the day’s efforts and plan for the final day.  
 
The third and final day (Wednesday, December 7, 2005) began with the 
continuation of the breakout groups, followed by the final plenary session 
during which the list of grand research challenges was presented and 
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debated. The participants agreed on a handful of grand research challenges 
(summarized in chapter 3). All the slides produced during the conference 
were collected, and certain assignments were given to a few for follow-up 
work after the conference. A summary set of slides for the conference were 
produced from the slides developed by the attendees; these are provided in 
Appendix B. 
 
Industry Perspectives 
 
In the first keynote address, Shekhar Borkar of Intel focused on trends in 
technology scaling and the resultant impacts on computer architecture. 
While transistor count per die will continue to increase following Moore’s Law, 
power and power density limitations will severely hamper the ability to 
continue to scale performance. The parallelism trend towards using more 
and more cores to achieve performance is inevitable. Furthermore, these 
cores must become more energy efficient by at least an order of magnitude. 
Device variation will be another severe problem. Extreme variations are 
expected starting with the 32 nm technology node and will continue to get 
worse. This has significant impacts on reliability, test methodology, and 
design style. Built-in system resiliency leveraging the available parallelism is 
absolutely essential.  
 
The second keynote speaker, James Larus of Microsoft Research, focused on 
major software challenges associated with the emerging nanoscale 
technologies. The greatest challenge he identified is “taming concurrency.” 
The imminent trend towards multiple and many cores on a die necessitates 
the availability and abundance of parallel software to take advantage of the 
widely available parallel machine resources. However, parallel programming 
has been an unsolved challenge for multiple decades. Concurrency is 
extremely difficult for a number of reasons: humans do not think 
concurrently; there is not a common parallel programming model; current 
concurrency primitives are inadequate; and parallel programs are very hard 
to analyze and to prove correct. A grand research challenge is to make 
concurrency usable by the masses, and encourage other uses for 
concurrency (e.g., reliability, responsiveness, security, safety, and user 
interactions). 
 
During the industry panel on Tuesday morning, a number of different 
perspectives were presented by the distinguished participants. Bob Colwell 
challenged the computer architecture researchers to focus on addressing the 
needs and desires of diverse end-users of the technologies we develop. 
Chuck Moore (AMD) suggested the need to formalize abstraction layers for 
computer architecture, for example, “the 7-layer ISO model for computing.” 
Ravi Nair (IBM) spoke of the need for full system modeling and rapid design 
and deployment of high-quality systems. Justin Rattner (Intel) highlighted 



 8 

the difficulties of new platforms that challenge the existing ecosystem—new 
architectures tend to run far ahead of new software, and new implementa-
tions tend to run far ahead of necessary validation techniques. Steve Scott 
(Cray) emphasized that “one size does not fit all” and the need to exploit 
heterogeneity and provide ease of use. 
 
A number of common themes were mentioned by most of the panelists. 
Parallel programming must be made easier and must become the 
mainstream programming method. Architects must design reliable systems 
even if the underlying components may not operate reliably. Achieving 
power/performance efficiency will require the use of heterogeneity and 
specialized building blocks. Having a global mindset with a focus on the end-
users is crucial for successful product development; computer architecture 
researchers need to go beyond technology development to also address and 
explore compelling usage models. 
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3. Computer Architecture Research Challenges      
     for 2020 
_____________________________________________________________ 
 
Research challenges must be motivated by a long-term vision of the 
anticipated applications and usage models. We set our target at the year 
2020, by which time we assumed that there will be ubiquitous Internet 
connectivity with heavy dependence on a variety of wireless connectivity. We 
also assumed that advancing technology will provide extreme forms of 
integration and powerful devices in extremely small form factors. With these 
assumptions, we divided our application vision into two domains: human-
centric usage models and infrastructure-centric usage models. 
 
Human-centric usage models will involve intelligent spaces, personal agents, 
and the interaction of spaces and agents. We envision intelligent spaces for 
work, education and leisure/entertainment. These spaces can incorporate 
active displays and other sensory devices to provide the immersive 
experience. The agents are essentially personal gadgets or devices that are 
quite feature rich and potentially provide significant stand-alone functions. 
These agents are also quite mobile and can roam seamlessly from space to 
space. The spaces can track the movement of the roaming agents and can 
proactively provide useful real-time information.  
 
Infrastructure-centric usage models can include traditional server farms and 
data centers, as well as the fabric for supporting human-centric usage 
models. Very large scale information fusion, storage, and analysis are 
foundational. Providing communication and synchronization between 
intelligent spaces, and proactively pushing real-time and customized 
information to an extremely large number of roaming agents, are all part of 
the infrastructure-centric usage models. In addition to a large number of 
mobile agents, there could also be an enormous number of distributed and 
embedded sensors that are part of the overall fabric. 
 
Given this “System 2020 Vision,” what can computer architecture 
researchers contribute to it? This vision clearly involves architecting of 
computing and communication systems at an extremely large scale. There 
are massive information storage, migration, caching and consistency issues. 
The traditional tradeoffs and balancing between computation and bandwidth 
are simply magnified by many orders of magnitude. Whether the roaming 
agents should be very thin clients tightly supported by servers at massive 
data centers or rich-featured clients occasionally backed up by servers is an 
interesting question. There are also massive programming issues. This is 
beyond the already difficult problem of parallel programming for individual 
multicore chips; this involves the programming of many multicore chips that 



 10 

are networked with other systems near and far, large and small. How do we 
manage such huge amounts of parallelism, with mixed programming 
capabilities, huge variations of latencies of the underlying systems, and 
massive reliability issues? These are certainly grand research questions and 
challenges. The four specific challenges that emerged from the conference—
a featherweight supercomputer, popular parallel programming, systems you 
can count on, and new models of computation—are detailed below. 
 
A Featherweight Supercomputer 
 
Most technologists believe that the technology trend characterized by 
Moore’s Law will continue for at least another decade. At the heart of this 
trend is the ability to continue to integrate more and more devices and, 
hence, functionality on one chip. In addition to integration on a single die, 
integration involving multiple dies will become prevalent. We have had 
multi-die integration on a single substrate in the form of SOC (system on 
chip), as well as stacking of multiple dies via wire bonding in the form of 
MCP (multi-chip package). The next step is the direct 3D stacking of multiple 
dies using TSV (through-silicon vias). By 2020 we can expect such 
aggressive forms of integration to produce extremely powerful systems in 
very small form factors.  
 
An admirable goal for 2020 could be to produce a supercomputer capable of 
one teraops of computation throughput in a single package that consumes 
only one watt—that is, 1 teraops/watt. One teraops/watt translates into an 
energy efficiency of 0.001 nanojoules/op. The current generation of high-end 
microprocessors (deeply pipelined out-of-order designs) consume about 30 
to 40 nj/op running SPECint. The more recent designs that attempt to 
achieve much better performance/watt are getting close to 10 nj/op on 
SPECint. To get to 0.001 nj/op requires another four orders of magnitude 
improvement on energy/op (EPO). Fortunately we have examples of current 
embedded processors and DSPs that have EPOs of less than 1 nj/op and 
special-purpose engines with even lower EPO. Technology scaling will 
improve EPO and more parallel workloads can also reduce EPO; however, 
these will not be enough to achieve the multiple orders of magnitude 
improvements required. EPO optimization for achieving ultra-energy-efficient 
processors constitutes one major research challenge for computer architects 
and processor designers in the coming decade.  
 
The potential application and impact of the 1 teraops/watt compute building 
block (“featherweight supercomputer”) can be huge. We envision at least 
four major areas of impact: 1) personal all-purpose device; 2) pervasive 
intelligent sensors; 3) embedded supercomputing appliances; and  
4) energy-efficient data centers.  
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The personal all-purpose device can be the size of our current cell phones, 
but contains all the functionalities that we currently have in our laptop 
computer, cell phone, MP3 and video player, PDA, portable game machine, 
garage-door opener, car keys, credit cards and TV remote controls. This 
device can roam seamlessly across all wireless domains, including 3G, Wi-Fi, 
Wi-MAX, Bluetooth, and UWB. Whenever it comes within proximity of other 
devices, automatic recognition and authentication can occur, possibly 
followed by automatic synchronization and file transfers. Messages, media 
contents, data files, and software can be transparently pushed to these 
devices from the server. Location- and circumstance-aware information 
filtering can be automatically performed. If desired, each device can even 
function as a mobile web server by making its own content accessible on the 
Internet. 
 
One example for pervasive intelligent sensors is video surveillance in public 
spaces. Instead of piping all the video streams from distributed cameras to a 
centralized processing center, local processing of the real-time video can be 
performed at the camera for quick detection of intrusion and suspicious 
activities. Similar systems can be deployed for monitoring children and the 
elderly for emergency events. Sophisticated video analytics are needed for 
processing the real-time video streams and for activating immediate 
response.  
 
Embedded supercomputing appliances can be employed in numerous 
application domains. One example is in medical applications where they can 
be used for real-time mobile/wearable diagnostics and monitoring.  
 
Large data centers are becoming the norm, not the exception. Witness the 
new server farm installation being constructed by Google that is rumored to 
be able to accommodate thousands of large servers. Such large data centers 
are becoming a major source of power consumption. One now famous quote 
by Eric Schmidt, CEO of Google, is that: “What matters most to the 
computer designers at Google is not speed, but power—low power, because 
data centers can consume as much electricity as a city.” The featherweight 
supercomputer can be used as the building block for constructing highly 
energy-efficient data centers. 
 
In addition to significant reduction of EPO, there are other research 
challenges for achieving the one teraops/watt featherweight supercomputer. 
The power consumption of one watt is also a proxy for other design 
constraints—battery life and system cost, for example. The EPO requirement 
of 0.001 nj/op also implies very efficient microarchitecture design executing 
very-well-behaved software. The microarchitecture will likely incorporate 
heterogeneous cores and programmable accelerators. Highly efficient 
mapping of application software to the underlying hardware resources would 
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be essential. The software stack must accommodate diverse forms of 
concurrency, real-time responsiveness, fault- and error-tolerance, and the 
ability to dynamically adapt computation and communication based on 
connectivity and available network resources. 
 
Popular Parallel Programming 
 
Parallel programming is not a new research problem; there has been an 
entire research community devoted to it for at least three decades. So why 
is this old problem a major research challenge for the computer architecture 
community in the coming decade? There are several ways to answer this 
question. First, solving this problem has become an absolute necessity. We 
are at a dead end on the single chip performance curve without integrating 
multiple cores on one chip. The alternative is to continue to aggressively 
scale the clock rate of single processor chips, but this has serious power 
consumption implications. Given the technology trends and the necessity for 
multicore chips in order to stay on the performance curve, parallel 
programming is now a must.  
 
Second, the pervasive availability of multicore chips today and many-core 
chips in the not-too-distant future provides the necessary economic impetus 
for the development of parallel software. For the last several decades, highly 
parallel machines have only been available to a very small sector of 
computer users. Now, we can have a parallel computer on every desktop 
and in every laptop. Sure, one can say that just because you build it doesn’t 
mean that they will come. An obvious, but far from ideal, solution is to run 
all the software on one of the chip’s core and put the other cores into sleep 
mode. This will keep the chip within the power budget, but certainly won’t 
provide the performance growth that users have come to demand from next-
generation parts.   
 
The grand challenge is to make parallelism pervasive and parallel 
programming mainstream in order to enable software to make effective use 
of the widely available parallel hardware and continue the performance 
improvement trend of the past several decades. Parallel software is the key 
to unleashing the performance potential of parallel machines. The goal is to 
reach the point where, when we say ‘computers’ we naturally mean parallel 
computers, and when we say ‘programming’ we naturally mean parallel 
programming. The goal is to make parallel programming accessible to the 
average programmer. The development of parallel software should be a core 
component of the undergraduate computer science and engineering 
curriculum. 
 
Pervasive parallel programming will need languages for expressing 
parallelism, parallel programming models, parallel algorithms and 
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development environments, runtime environments, and associated 
architecture and microarchitecture support. Programmability, composability, 
and correctness are essential. Current new approaches that are promising 
include transactions and streams. The entire infrastructure should support 
multi-modal parallelism, including: 1) fine-grain data-parallelism,  
2) embarrassing parallelism with completely independent tasks, and  
3) irregular parallelism with medium-sized tasks with dependencies. This 
third type of parallelism is the most challenging, and will require new 
innovative solutions that can facilitate scaling to dozens of cores and 
hundreds of concurrent threads. Microarchitecture and hardware support for 
parallel program debugging, lightweight thread communication, performance 
tuning, and dynamic adaptation and optimization are crucial contributions 
that the computer architecture research community can definitely provide. 
 
In addition to improving performance, parallelism can and should be 
exploited for other benefits. Given the anticipated extreme variations in 
device behavior and the increasing susceptibility of the underlying 
technology to soft and transient errors, the ability for a system to detect and 
tolerate these undesirable effects will be absolutely essential. Parallelism can 
be leveraged to achieve such reliability and robustness goals. Core sparing, 
thread migration, redundant threads, and threads whose job is to monitor 
the health and/or temperature of the die are just the basic starting points for 
this new path of research. We may need to consider architecting attribute-
based resources, where the attributes can include reliability and robustness 
status bits that the runtime system can use for dynamic resource adaptation 
and reconfiguration. 
 
Systems You Can Count On 
 
Device unreliability is projected to be a key barrier to meeting the promise of 
Moore’s Law over the next decade. As technology scales further, hardware 
will face numerous sources of errors including process variations, high-
energy particle strikes, aging, insufficient burn-in, thermally induced timing 
errors, and design bugs. At the same time, software is becoming 
increasingly complex and its robustness continues to be challenging. 
According to a 2002 report from NIST, software defects cost the U.S. 
economy an estimated $59.5 billion annually or 0.6% of the GDP. This cost 
will worsen as average developers write parallel programs to exploit 
multicore chips. Further, as computing devices are increasingly networked, 
they are vulnerable to malicious attackers who can steal information in (or 
accessible from) a device, corrupt it, and access and compromise services of 
the entity they are impersonating.  
 
As computers become an integral part of our personal environment and 
societal infrastructure, their dependability (including reliability and security) 
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should no longer be an afterthought or a luxury afforded only by high-end 
niche systems. Instead, dependability must be a first-class design constraint 
for all systems and across the system stack. Unfortunately, designing 
dependable systems is harder than ever. It is inevitable that shipped 
hardware and software will have or develop defects. No matter how secure 
we design our hardware and systems, vulnerabilities will be discovered by 
clever and determined attackers. Future systems must detect these defects 
and vulnerabilities and work around them dynamically, at low cost. 
 
Thus, a third grand challenge is to design hardware and software systems 
that users can count on by providing self-healing, trustworthy hardware and 
software systems. What role can architects play in addressing this grand 
challenge? As we develop new solutions for hardware reliability, we have the 
opportunity to address the fragility of the entire system from the ground up 
in an integrated and holistic way, together with the software communities 
working on software dependability. Sitting at the hardware-software 
interface, architects have the opportunity to define how commodity systems 
can be architected for dependability. Our grand challenge, therefore, is not 
about incremental or piecemeal hardware solutions to reliability problems, 
but a rethinking of the entire system stack to make system reliability and 
security a first-class design objective and judiciously sharing this 
responsibility between the hardware and the software. Traditional solutions 
will not suffice; architects must be involved in developing new approaches 
for several reasons. 
 
First, reliability and security concerns now pervade everyday systems 
(embedded, desktops, and servers) that are already dominated by other 
constraints such as cost, area, performance, and power. Traditional 
dependability solutions have not been concerned with power and cost, 
performance, and area concerns have also been less stringent. This has led 
to hardware reliability solutions that are overly conservative, and, hence, too 
expensive (e.g., extensive redundancy). Software reliability practices are 
often eschewed by developers due to their high performance overheads. 
Similarly, low-level hardware reliability solutions from the circuits’ 
community tend to be conservative and influenced by worst-case scenarios 
that rarely happen for real workloads.  
 
In contrast, architectural approaches can be far more efficient. They can be 
tailored for ant icipated problems and for real workloads, possibly at the cost 
of lower, but acceptable, fault coverage. Workload-aware dynamic resource 
management can reduce vulnerability to soft errors and slow aging. Tight 
architectural integration has resulted in novel checker processors that are far 
cheaper than traditional replication of the processor. Judicious use of 
available redundancy (idle cycles, functional units, cores, storage) can boost 
reliability in a cost-effective way. 
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For software dependability, since hardware ”owns” the program state, it is 
natural and more efficient to provide architectural support for monitoring 
and logging this state. Software-controlled hardware monitoring of 
executions can detect difficult software bugs for sequential and concurrent 
programs (e.g., timing-related bugs) orders of magnitude faster than 
software-only solutions. Coupled with hardware-assisted fast checkpoint/ 
recovery, hardware support can enable software bug detection and recovery 
during production runs in ways not feasible before. Hardware support can 
also provide or enable better programming abstractions and isolation to 
reduce the probability of software defects, error propagation, or virus 
contamination across different software. However, existing architectures 
provide little to no support for software dependability.  
 
Many of the above techniques can also be employed for efficient hardware 
checking of possible security violations. Many security vulnerabilities are 
essentially software bugs. Additionally, hardware support for trusted paths, 
authentication credentials, secure attention key, and so on can be much 
more efficient than software-only solutions. Hardware support for security is 
a nascent but growing research area that has only scratched the surface of 
possibilities.  
 
There is another reason that architects must be key players in designing 
systems we can count on. Because it will be impossible to ship fully tested 
products, systems must test themselves in the field, detect or anticipate 
failures, and reconfigure themselves with low overhead. There has been 
much work in reconfigurable architectures for performance, energy, and 
thermal management. It is similarly natural to consider architectural 
reconfigurability for reliability and security. To provide effective 
configurability for dependability will require unifying the control loops 
already present for performance, energy, and temperature with reliability 
and security adaptation. 
 
A third reason is that different applications have different needs and notions 
of dependability (e.g., media vs. text search vs. health monitoring), meaning 
that different tradeoffs in performance, cost, and power must be made. To 
effectively exploit the opportunities available through such tradeoffs requires 
generic interfaces to express these application-level dependability needs. 
Architects must be involved to develop the right hardware-software interface 
to deliver the right reliability and security level at the right performance and 
power. Further, architects need to design hardware to dynamically respond 
to these needs. This is a significant shift from the past “all or nothing” 
philosophy to a more quality of service (QoS)-like philosophy that provides a 
spectrum of possible dependability driven QoS points. 
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The software and hardware dependability problem cuts through multiple 
system layers and so should the solution. This is an opportunity for 
architects to work closely with other designers to truly affect the way 
systems are built from the ground up, including: designing a dependability-
aware hardware-software interface; dependability-aware resource 
management; cooperative failure avoidance, detection, and recovery 
mechanisms that span circuits to applications; cooperative hardware/ 
software cross-layer policies to trade off performance, power, reliability, and 
security; and workload-aware, rigorous dependability analysis tools. 
 
New Models of Computation 
 
Essentially all commercial processors built today are based on principles first 
proposed by John von Neumann in 1945. Using the so-called “stored 
program concept” processors fetch and then execute instruction from their 
memory hierarchy. Many of the grand challenges facing the computer 
architect in the ’70s, ’80s and ’90s had to do with trying to solve the 
“memory wall” that grew ever taller due to the rapidly increasing 
performance disparity of the main memory relative to the processor core.  
Typical cycle comparisons for today’s machines are 1:100—that is, it takes 
100 processor cycles to fetch an instruction or data item from main memory.  
While work to solve the memory wall continues, the grand challenge 
proposed here is to develop promising new models of computation that are 
not von-Neumann-based and, thus, do not encounter the performance 
limitations of having to fetch instructions from a memory prior to execution. 
 
Several past architectures have been proposed, and some even implemented, 
that are not von Neumann based. These include data flow machines and 
artificial neural networks (ANNs). To quote wikipedia “dataflow architectures 
do not have a program counter or (at least conceptually) main memory and 
the executability and execution of instructions is determined based on 
availability of input arguments to the instructions.” Artificial neural networks 
model some of the properties of biological neural networks. They are 
composed of (hundreds of) thousands of simple processors each of which 
generates an output signal based on its weighted inputs and its “activation” 
value. Neural processors are connected to each other in special ways with 
each connection having an individual “weight”. Networks learn by changing 
the weights of the connections. While interesting prototypes of both dataflow 
and ANN processors have been built, neither of these has achieved 
commercial success or wide usage. 
 
It is probable that new technologies—nanotechnologies (e.g., carbon nano 
tubes [CNTs], quantum cellular automata [QCAs], etc.)—will demand new 
models of computation. These new technologies will certainly require 
innovations across the entire computational stack, including 
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microarchitectures, execution models, instruction sets, compilation 
algorithms, languages, and programming models. As such, it will be 
important to design full systems that can successfully integrate the 
innovations crossing disciplinary boundaries. Because they are so different 
from conventional CMOS devices, these nanotechnologies, which are 
currently only on the distant horizon, will likely inspire novel architectures 
that differ significantly from the traditional, von Neumann architectures. 
 
The most powerful computing machine of all is the human brain. Is it 
possible to design and implement an architecture that mimics the way the 
human brain works? Artificial neural networks are only one small step in this 
direction. Neuroscientists are just beginning to unravel the workings of the 
human brain. It will be many years—perhaps many (many) decades—before 
we understand the workings of the human brain well enough to design and 
build hardware that mimics its functionings. Thus, there is great risk in this 
last grand challenge if it is cast as “brain computing,” but even greater 
return if it does turn out to be feasible. 
 
Partial steps in this direction would be building systems that augment the 
brain, as in prosthetics (hearing for the deaf, vision for the blind, mobility for 
the quadriplegic), and in augmenting brain functions (enhancing the senses, 
inserting images and memories into the brain, perhaps in brain-to-brain 
communication). Here the risk is small; indeed there is progress already in 
human augmentation while the return is large. 
 
 



 18 

4. Follow-Up Action Items 
____________________________________________________________ 
 
Report Out 
 
This report, along with an accompanying set of slides (see Appendix B), will 
be made available by CRA to the broad computer science and engineering 
research community. A preliminary draft of the report was distributed to 
computer architecture researchers and developers at the annual 
International Symposium on Computer Architecture (ISCA) in June 2006.  
Additionally, an evening panel session presented the vision 2020 and 
resulting grand challenges to ISCA conference attendees. The goal for this 
panel presentation was to expose and engage the entire computer 
architecture research community on the research vision and challenges that 
came out of the CRA conference. Feedback from ISCA attendees was 
subsequently integrated into the report draft and the accompanying slides. 
 
 
Research Infrastructure  
 
One of the original objectives of the CRA GRC conference was to reignite a 
sense of excitement for the entire computer architecture research 
community. Vital support components for the research needed to fulfill the 
grand challenges proposed in this report are the next-generation tools, 
benchmark programs and data sets, and the implementation/emulation 
platforms necessary for experimentation and evaluation. The days of 
individual researchers designing and implementing prototypes including 
custom hardware and hand-crafted software are over except for the rare 
case. Thus, research infrastructures that can be used by many researchers— 
in particular low-cost, reasonable performance emulation platforms—are one 
very tangible way to bring the community together and to leverage new 
experimental infrastructures to embark on new research directions and 
generate new vitality for architecture systems research.  
 
 
Funding Strategy  
 
Another objective of the CRA GRC conference was to stimulate new and 
increased funding for computer architecture research. Other than 
distributing this report and the ISCA slides to the various funding agencies, 
are there more effective means to engage the funding agencies? Other than 
government funding agencies, how can we approach the industry to invest 
more in funding computer architecture research in academia? New funding 
models may have to emerge.  
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Appendix B. PowerPoint Slides  
__________________________________________________________ 
 
The PowerPoint slides are best viewed in slideshow mode and are available 
online at  
http://www.cra.org/Activities/grand.challenges/architecture/slides.pps 
 
System 2020: Research Challenges in Computer Architecture 
 
What is the next big thing? 
 
What are the mega trends? 
 
What are the anticipated usage models? 
 
The computing paradigm ala Google 
 
The computing paradigm ala Nokia 
 
CRA System 2020 Workshop 
 
What are the components of a Grand Challenge? 
 
1W Featherweight Supercomputer 
 
Featherweight Challenges 
 
Popular Parallel Programming (P3) 
 
P3 Challenges 
 
Dependable Systems 
 
Dependable Systems Challenges 
 
New Computing Models 
 
“Brain” Challenges 
 
Check out previous Grand Challenges Conference Reports
 


