

Revitalizing Computer Architecture Research

Third in a Series of CRA Conferences on Grand Research Challenges in

Computer Science and Engineering
December 4-7, 2005

Prepared by
Conference Co-Chairs

Mary Jane Irwin, Pennsylvania State University

John Paul Shen, Nokia Research Center – Palo Alto

Computing Research Association 1100 17th Street, NW, Suite 507 Washington, DC 20036-4632

URL: http://www.cra.org E-mail: info@cra.org Tel: 202-234-2111 Fax: 202-667-1066

 2

 Organizing Committee Members

Mary Jane Irwin, Penn State University (Co-Chair)
John Paul Shen, Nokia Research Center – Palo Alto (Co-Chair)

Todd Austin, University of Michigan
Luiz Andre Barroso, Google
Susan Eggers, University of Washington
Elmootazbellah Elnozahy, IBM
Mark Horowitz, Stanford University
Mike Johnson, Texas Instruments
Chuck Moore, AMD
Ravi Nair, IBM
Dave Patterson, University of California, Berkeley
Justin Rattner, Intel
Anand Sivasubramaniam, Penn State University

Acknowledgments: Funding for this conference was provided
by National Science Foundation Grant No. CCF-0537399.

Copyright 2007 by the Computing Research Association. Permission is
granted to reproduce the contents provided that such reproduction is

 not for profit and credit is given to the source.

 3

Contents

Chapter Page

1. Introduction 4

Technology Outlook 4
Technology Challenges 4
Unprecedented Opportunity 5

2. Conference Summary 6

Conference Logistics 6
Industry Perspectives 7

3. Computer Architecture Research Challenges for 2020 9

A Featherweight Supercomputer 10
Popular Parallel Programming 12
Systems You Can Count On 13
New Models of Computation 16

4. Follow-Up Action Items 18

Report Out 18
Research Infrastructure 18
Funding Strategy 18

 Appendix A. Conference Participants 19

 Appendix B. PowerPoint Slides 21

 4

1. Introduction

Technology Outlook

Truly innovative research with the potential of making a profound impact
should aim at a horizon of 10+ years. By 2015 the process technology
available to computer architects will likely be the 16 nm or the 11 nm
technology node with about 100-billion-transistor integration capacity per
die. A synopsis of the ITRS roadmap presented by Intel’s Shekbar Borkar at
the conference is shown in Table 1 that highlights technology direction
through 2018. By then, 3D stacking of multiple dies will be widely available
which will facilitate extreme integration of building-block dies in diverse
technologies. These building-block dies can include: CPU, GPU, *PU, SRAM,
DRAM, Flash, MEMS, interconnect fabric, and so on. Unlike several decades
ago when computer architects used to push the limits of technology,
computer architects are now being pulled by the relentless advance of
technology, and frequently do not know how best to exploit the available
transistors and advanced integration possibilities.

Table 1. ITRS Roadmap Synopsis
 2006 2008 2010 2012 2014 2016 2018
Technology Node (nm) 65 45 32 22 16 11 8
Integration Capacity (BT) 4 8 16 32 64 128 256
Delay (CV/I scaling) ~0.7 >0.7 Delay scaling will slow down
Energy/Logic Op (scaling) >0.5 >0.5 Energy scaling will slow down
Alternate, 3D etc. Low probability High Probability
Variability Medium High Very High

Technology Challenges

Scaling beyond the 45 nm technology node introduces significant new
challenges. In addition to the well-known power and thermal problems, new
problems will arise. Both delay scaling and energy scaling will slow down,
and device variability will significantly increase due to random dopant
fluctuations, sub-wavelength lithography, and temperature variation and hot
spots. Extreme variations will result in devices that exhibit unpredictable
behaviors and that can degrade over time. Gradual errors due to variations,
time-dependent errors due to degradation, and transient errors due to
environmental factors all will conspire to make the design of reliable
computing systems extremely difficult. Future lithography will require
extreme regularity in the physical design in order to mitigate the negative
effects of variation and reliability. One-time factory testing and the
traditional burn-in process will no longer suffice. Continual self-testing and

 5

self-monitoring with the ability to dynamically reconfigure and adapt will be
essential features in future architectures.

Unprecedented Opportunity

Driven by the promising outlook and serious challenges of the process
technology, computer architects have an unprecedented opportunity to be
innovative. The purpose of this CRA Grand Research Challenges conference
was to bring together 50 to 60 of the most visionary computer architecture
researchers in academia and industry to brainstorm and identify the new
challenging research problems for the architecture research community to
address in the next 10 years. The intent was to think outside of traditional
“boxes” and beyond current trendy topics. Separating computing and
communication is no longer useful; differentiating between embedded and
mainstream computing is no longer meaningful. Extreme mobility and highly
compact form factors will likely dominate. A distributed peer-to-peer
paradigm may replace the client-server model. New applications for
recognition, mining, synthesis, and entertainment could be the dominant
workloads. It was an opportune time for the computer architecture research
community to spend a few days together to ponder these possibilities and to
formulate a grand new research agenda.

 6

2. CONFERENCE SUMMARY

Conference Logistics

The organizing committee received a total of 107 position statements from
both industry and academia; based on these submissions, 33 invitations
were extended to participate in this working conference. Including organizing
committee members, invited industry keynote speakers and panelists, and
other invited guests, there were a total of 55 participants (15 from industry,
33 from academia, and 7 from CRA and NSF) at the conference.

In addition to the plenary discussion sessions and the topic-specific breakout
groups, there were two keynote presentations and an industry panel session.
The keynote addresses were given by Shekhar Borkar of Intel speaking on
“Microarchitecture Challenges for 2015,” and Jim Larus of Microsoft Research
addressing “Software Challenges in Nanoscale Technologies.” The industry
panel discussion was moderated by John Paul Shen, and included Bob
Colwell (consultant), Chuck Moore (AMD), Ravi Nair (IBM), Justin Rattner
(Intel), and Steve Scott (Cray) as distinguished panelists.

The first full day of the conference (Monday, December 5, 2005) began with
the two industry keynote addresses, followed by the charge for the day’s
breakout sessions provided by Mary Jane Irwin. There were five breakout
groups based on the following five topics: 1) Brain and Nano Computing;
2) Tolerating Extreme Scaling; 3) CMP and Beyond; 4) Self-Healing
Systems; and 5) Software-Hardware Interface. At the end of the day all five
groups convened in a plenary session where each reported out. The
organizing committee then met to review the progress made that day and to
plan the agenda for the next day.

The second day of the conference (Tuesday, December 6, 2005) began with
the distinguished industry panel, followed by an open-mike session. The
charge for the day was given by John Paul Shen prior to the breakout
sessions. The breakout groups were organized based on the following
potential grand challenge topics: 1) Ultra Energy Efficient Computing;
2) Usage of Abundance of Transistors; 3) Brain Architecture; and 4) Popular
Parallel Programming. Again, a plenary report-out session was held at the
end of the day, during which attempts were made to formulate specific
grand research challenges. After the plenary session the organizing
committee met again to review the day’s efforts and plan for the final day.

The third and final day (Wednesday, December 7, 2005) began with the
continuation of the breakout groups, followed by the final plenary session
during which the list of grand research challenges was presented and

 7

debated. The participants agreed on a handful of grand research challenges
(summarized in chapter 3). All the slides produced during the conference
were collected, and certain assignments were given to a few for follow-up
work after the conference. A summary set of slides for the conference were
produced from the slides developed by the attendees; these are provided in
Appendix B.

Industry Perspectives

In the first keynote address, Shekhar Borkar of Intel focused on trends in
technology scaling and the resultant impacts on computer architecture.
While transistor count per die will continue to increase following Moore’s Law,
power and power density limitations will severely hamper the ability to
continue to scale performance. The parallelism trend towards using more
and more cores to achieve performance is inevitable. Furthermore, these
cores must become more energy efficient by at least an order of magnitude.
Device variation will be another severe problem. Extreme variations are
expected starting with the 32 nm technology node and will continue to get
worse. This has significant impacts on reliability, test methodology, and
design style. Built-in system resiliency leveraging the available parallelism is
absolutely essential.

The second keynote speaker, James Larus of Microsoft Research, focused on
major software challenges associated with the emerging nanoscale
technologies. The greatest challenge he identified is “taming concurrency.”
The imminent trend towards multiple and many cores on a die necessitates
the availability and abundance of parallel software to take advantage of the
widely available parallel machine resources. However, parallel programming
has been an unsolved challenge for multiple decades. Concurrency is
extremely difficult for a number of reasons: humans do not think
concurrently; there is not a common parallel programming model; current
concurrency primitives are inadequate; and parallel programs are very hard
to analyze and to prove correct. A grand research challenge is to make
concurrency usable by the masses, and encourage other uses for
concurrency (e.g., reliability, responsiveness, security, safety, and user
interactions).

During the industry panel on Tuesday morning, a number of different
perspectives were presented by the distinguished participants. Bob Colwell
challenged the computer architecture researchers to focus on addressing the
needs and desires of diverse end-users of the technologies we develop.
Chuck Moore (AMD) suggested the need to formalize abstraction layers for
computer architecture, for example, “the 7-layer ISO model for computing.”
Ravi Nair (IBM) spoke of the need for full system modeling and rapid design
and deployment of high-quality systems. Justin Rattner (Intel) highlighted

 8

the difficulties of new platforms that challenge the existing ecosystem—new
architectures tend to run far ahead of new software, and new implementa-
tions tend to run far ahead of necessary validation techniques. Steve Scott
(Cray) emphasized that “one size does not fit all” and the need to exploit
heterogeneity and provide ease of use.

A number of common themes were mentioned by most of the panelists.
Parallel programming must be made easier and must become the
mainstream programming method. Architects must design reliable systems
even if the underlying components may not operate reliably. Achieving
power/performance efficiency will require the use of heterogeneity and
specialized building blocks. Having a global mindset with a focus on the end-
users is crucial for successful product development; computer architecture
researchers need to go beyond technology development to also address and
explore compelling usage models.

 9

3. Computer Architecture Research Challenges
 for 2020

Research challenges must be motivated by a long-term vision of the
anticipated applications and usage models. We set our target at the year
2020, by which time we assumed that there will be ubiquitous Internet
connectivity with heavy dependence on a variety of wireless connectivity. We
also assumed that advancing technology will provide extreme forms of
integration and powerful devices in extremely small form factors. With these
assumptions, we divided our application vision into two domains: human-
centric usage models and infrastructure-centric usage models.

Human-centric usage models will involve intelligent spaces, personal agents,
and the interaction of spaces and agents. We envision intelligent spaces for
work, education and leisure/entertainment. These spaces can incorporate
active displays and other sensory devices to provide the immersive
experience. The agents are essentially personal gadgets or devices that are
quite feature rich and potentially provide significant stand-alone functions.
These agents are also quite mobile and can roam seamlessly from space to
space. The spaces can track the movement of the roaming agents and can
proactively provide useful real-time information.

Infrastructure-centric usage models can include traditional server farms and
data centers, as well as the fabric for supporting human-centric usage
models. Very large scale information fusion, storage, and analysis are
foundational. Providing communication and synchronization between
intelligent spaces, and proactively pushing real-time and customized
information to an extremely large number of roaming agents, are all part of
the infrastructure-centric usage models. In addition to a large number of
mobile agents, there could also be an enormous number of distributed and
embedded sensors that are part of the overall fabric.

Given this “System 2020 Vision,” what can computer architecture
researchers contribute to it? This vision clearly involves architecting of
computing and communication systems at an extremely large scale. There
are massive information storage, migration, caching and consistency issues.
The traditional tradeoffs and balancing between computation and bandwidth
are simply magnified by many orders of magnitude. Whether the roaming
agents should be very thin clients tightly supported by servers at massive
data centers or rich-featured clients occasionally backed up by servers is an
interesting question. There are also massive programming issues. This is
beyond the already difficult problem of parallel programming for individual
multicore chips; this involves the programming of many multicore chips that

 10

are networked with other systems near and far, large and small. How do we
manage such huge amounts of parallelism, with mixed programming
capabilities, huge variations of latencies of the underlying systems, and
massive reliability issues? These are certainly grand research questions and
challenges. The four specific challenges that emerged from the conference—
a featherweight supercomputer, popular parallel programming, systems you
can count on, and new models of computation—are detailed below.

A Featherweight Supercomputer

Most technologists believe that the technology trend characterized by
Moore’s Law will continue for at least another decade. At the heart of this
trend is the ability to continue to integrate more and more devices and,
hence, functionality on one chip. In addition to integration on a single die,
integration involving multiple dies will become prevalent. We have had
multi-die integration on a single substrate in the form of SOC (system on
chip), as well as stacking of multiple dies via wire bonding in the form of
MCP (multi-chip package). The next step is the direct 3D stacking of multiple
dies using TSV (through-silicon vias). By 2020 we can expect such
aggressive forms of integration to produce extremely powerful systems in
very small form factors.

An admirable goal for 2020 could be to produce a supercomputer capable of
one teraops of computation throughput in a single package that consumes
only one watt—that is, 1 teraops/watt. One teraops/watt translates into an
energy efficiency of 0.001 nanojoules/op. The current generation of high-end
microprocessors (deeply pipelined out-of-order designs) consume about 30
to 40 nj/op running SPECint. The more recent designs that attempt to
achieve much better performance/watt are getting close to 10 nj/op on
SPECint. To get to 0.001 nj/op requires another four orders of magnitude
improvement on energy/op (EPO). Fortunately we have examples of current
embedded processors and DSPs that have EPOs of less than 1 nj/op and
special-purpose engines with even lower EPO. Technology scaling will
improve EPO and more parallel workloads can also reduce EPO; however,
these will not be enough to achieve the multiple orders of magnitude
improvements required. EPO optimization for achieving ultra-energy-efficient
processors constitutes one major research challenge for computer architects
and processor designers in the coming decade.

The potential application and impact of the 1 teraops/watt compute building
block (“featherweight supercomputer”) can be huge. We envision at least
four major areas of impact: 1) personal all-purpose device; 2) pervasive
intelligent sensors; 3) embedded supercomputing appliances; and
4) energy-efficient data centers.

 11

The personal all-purpose device can be the size of our current cell phones,
but contains all the functionalities that we currently have in our laptop
computer, cell phone, MP3 and video player, PDA, portable game machine,
garage-door opener, car keys, credit cards and TV remote controls. This
device can roam seamlessly across all wireless domains, including 3G, Wi-Fi,
Wi-MAX, Bluetooth, and UWB. Whenever it comes within proximity of other
devices, automatic recognition and authentication can occur, possibly
followed by automatic synchronization and file transfers. Messages, media
contents, data files, and software can be transparently pushed to these
devices from the server. Location- and circumstance-aware information
filtering can be automatically performed. If desired, each device can even
function as a mobile web server by making its own content accessible on the
Internet.

One example for pervasive intelligent sensors is video surveillance in public
spaces. Instead of piping all the video streams from distributed cameras to a
centralized processing center, local processing of the real-time video can be
performed at the camera for quick detection of intrusion and suspicious
activities. Similar systems can be deployed for monitoring children and the
elderly for emergency events. Sophisticated video analytics are needed for
processing the real-time video streams and for activating immediate
response.

Embedded supercomputing appliances can be employed in numerous
application domains. One example is in medical applications where they can
be used for real-time mobile/wearable diagnostics and monitoring.

Large data centers are becoming the norm, not the exception. Witness the
new server farm installation being constructed by Google that is rumored to
be able to accommodate thousands of large servers. Such large data centers
are becoming a major source of power consumption. One now famous quote
by Eric Schmidt, CEO of Google, is that: “What matters most to the
computer designers at Google is not speed, but power—low power, because
data centers can consume as much electricity as a city.” The featherweight
supercomputer can be used as the building block for constructing highly
energy-efficient data centers.

In addition to significant reduction of EPO, there are other research
challenges for achieving the one teraops/watt featherweight supercomputer.
The power consumption of one watt is also a proxy for other design
constraints—battery life and system cost, for example. The EPO requirement
of 0.001 nj/op also implies very efficient microarchitecture design executing
very-well-behaved software. The microarchitecture will likely incorporate
heterogeneous cores and programmable accelerators. Highly efficient
mapping of application software to the underlying hardware resources would

 12

be essential. The software stack must accommodate diverse forms of
concurrency, real-time responsiveness, fault- and error-tolerance, and the
ability to dynamically adapt computation and communication based on
connectivity and available network resources.

Popular Parallel Programming

Parallel programming is not a new research problem; there has been an
entire research community devoted to it for at least three decades. So why
is this old problem a major research challenge for the computer architecture
community in the coming decade? There are several ways to answer this
question. First, solving this problem has become an absolute necessity. We
are at a dead end on the single chip performance curve without integrating
multiple cores on one chip. The alternative is to continue to aggressively
scale the clock rate of single processor chips, but this has serious power
consumption implications. Given the technology trends and the necessity for
multicore chips in order to stay on the performance curve, parallel
programming is now a must.

Second, the pervasive availability of multicore chips today and many-core
chips in the not-too-distant future provides the necessary economic impetus
for the development of parallel software. For the last several decades, highly
parallel machines have only been available to a very small sector of
computer users. Now, we can have a parallel computer on every desktop
and in every laptop. Sure, one can say that just because you build it doesn’t
mean that they will come. An obvious, but far from ideal, solution is to run
all the software on one of the chip’s core and put the other cores into sleep
mode. This will keep the chip within the power budget, but certainly won’t
provide the performance growth that users have come to demand from next-
generation parts.

The grand challenge is to make parallelism pervasive and parallel
programming mainstream in order to enable software to make effective use
of the widely available parallel hardware and continue the performance
improvement trend of the past several decades. Parallel software is the key
to unleashing the performance potential of parallel machines. The goal is to
reach the point where, when we say ‘computers’ we naturally mean parallel
computers, and when we say ‘programming’ we naturally mean parallel
programming. The goal is to make parallel programming accessible to the
average programmer. The development of parallel software should be a core
component of the undergraduate computer science and engineering
curriculum.

Pervasive parallel programming will need languages for expressing
parallelism, parallel programming models, parallel algorithms and

 13

development environments, runtime environments, and associated
architecture and microarchitecture support. Programmability, composability,
and correctness are essential. Current new approaches that are promising
include transactions and streams. The entire infrastructure should support
multi-modal parallelism, including: 1) fine-grain data-parallelism,
2) embarrassing parallelism with completely independent tasks, and
3) irregular parallelism with medium-sized tasks with dependencies. This
third type of parallelism is the most challenging, and will require new
innovative solutions that can facilitate scaling to dozens of cores and
hundreds of concurrent threads. Microarchitecture and hardware support for
parallel program debugging, lightweight thread communication, performance
tuning, and dynamic adaptation and optimization are crucial contributions
that the computer architecture research community can definitely provide.

In addition to improving performance, parallelism can and should be
exploited for other benefits. Given the anticipated extreme variations in
device behavior and the increasing susceptibility of the underlying
technology to soft and transient errors, the ability for a system to detect and
tolerate these undesirable effects will be absolutely essential. Parallelism can
be leveraged to achieve such reliability and robustness goals. Core sparing,
thread migration, redundant threads, and threads whose job is to monitor
the health and/or temperature of the die are just the basic starting points for
this new path of research. We may need to consider architecting attribute-
based resources, where the attributes can include reliability and robustness
status bits that the runtime system can use for dynamic resource adaptation
and reconfiguration.

Systems You Can Count On

Device unreliability is projected to be a key barrier to meeting the promise of
Moore’s Law over the next decade. As technology scales further, hardware
will face numerous sources of errors including process variations, high-
energy particle strikes, aging, insufficient burn-in, thermally induced timing
errors, and design bugs. At the same time, software is becoming
increasingly complex and its robustness continues to be challenging.
According to a 2002 report from NIST, software defects cost the U.S.
economy an estimated $59.5 billion annually or 0.6% of the GDP. This cost
will worsen as average developers write parallel programs to exploit
multicore chips. Further, as computing devices are increasingly networked,
they are vulnerable to malicious attackers who can steal information in (or
accessible from) a device, corrupt it, and access and compromise services of
the entity they are impersonating.

As computers become an integral part of our personal environment and
societal infrastructure, their dependability (including reliability and security)

 14

should no longer be an afterthought or a luxury afforded only by high-end
niche systems. Instead, dependability must be a first-class design constraint
for all systems and across the system stack. Unfortunately, designing
dependable systems is harder than ever. It is inevitable that shipped
hardware and software will have or develop defects. No matter how secure
we design our hardware and systems, vulnerabilities will be discovered by
clever and determined attackers. Future systems must detect these defects
and vulnerabilities and work around them dynamically, at low cost.

Thus, a third grand challenge is to design hardware and software systems
that users can count on by providing self-healing, trustworthy hardware and
software systems. What role can architects play in addressing this grand
challenge? As we develop new solutions for hardware reliability, we have the
opportunity to address the fragility of the entire system from the ground up
in an integrated and holistic way, together with the software communities
working on software dependability. Sitting at the hardware-software
interface, architects have the opportunity to define how commodity systems
can be architected for dependability. Our grand challenge, therefore, is not
about incremental or piecemeal hardware solutions to reliability problems,
but a rethinking of the entire system stack to make system reliability and
security a first-class design objective and judiciously sharing this
responsibility between the hardware and the software. Traditional solutions
will not suffice; architects must be involved in developing new approaches
for several reasons.

First, reliability and security concerns now pervade everyday systems
(embedded, desktops, and servers) that are already dominated by other
constraints such as cost, area, performance, and power. Traditional
dependability solutions have not been concerned with power and cost,
performance, and area concerns have also been less stringent. This has led
to hardware reliability solutions that are overly conservative, and, hence, too
expensive (e.g., extensive redundancy). Software reliability practices are
often eschewed by developers due to their high performance overheads.
Similarly, low-level hardware reliability solutions from the circuits’
community tend to be conservative and influenced by worst-case scenarios
that rarely happen for real workloads.

In contrast, architectural approaches can be far more efficient. They can be
tailored for ant icipated problems and for real workloads, possibly at the cost
of lower, but acceptable, fault coverage. Workload-aware dynamic resource
management can reduce vulnerability to soft errors and slow aging. Tight
architectural integration has resulted in novel checker processors that are far
cheaper than traditional replication of the processor. Judicious use of
available redundancy (idle cycles, functional units, cores, storage) can boost
reliability in a cost-effective way.

 15

For software dependability, since hardware ”owns” the program state, it is
natural and more efficient to provide architectural support for monitoring
and logging this state. Software-controlled hardware monitoring of
executions can detect difficult software bugs for sequential and concurrent
programs (e.g., timing-related bugs) orders of magnitude faster than
software-only solutions. Coupled with hardware-assisted fast checkpoint/
recovery, hardware support can enable software bug detection and recovery
during production runs in ways not feasible before. Hardware support can
also provide or enable better programming abstractions and isolation to
reduce the probability of software defects, error propagation, or virus
contamination across different software. However, existing architectures
provide little to no support for software dependability.

Many of the above techniques can also be employed for efficient hardware
checking of possible security violations. Many security vulnerabilities are
essentially software bugs. Additionally, hardware support for trusted paths,
authentication credentials, secure attention key, and so on can be much
more efficient than software-only solutions. Hardware support for security is
a nascent but growing research area that has only scratched the surface of
possibilities.

There is another reason that architects must be key players in designing
systems we can count on. Because it will be impossible to ship fully tested
products, systems must test themselves in the field, detect or anticipate
failures, and reconfigure themselves with low overhead. There has been
much work in reconfigurable architectures for performance, energy, and
thermal management. It is similarly natural to consider architectural
reconfigurability for reliability and security. To provide effective
configurability for dependability will require unifying the control loops
already present for performance, energy, and temperature with reliability
and security adaptation.

A third reason is that different applications have different needs and notions
of dependability (e.g., media vs. text search vs. health monitoring), meaning
that different tradeoffs in performance, cost, and power must be made. To
effectively exploit the opportunities available through such tradeoffs requires
generic interfaces to express these application-level dependability needs.
Architects must be involved to develop the right hardware-software interface
to deliver the right reliability and security level at the right performance and
power. Further, architects need to design hardware to dynamically respond
to these needs. This is a significant shift from the past “all or nothing”
philosophy to a more quality of service (QoS)-like philosophy that provides a
spectrum of possible dependability driven QoS points.

 16

The software and hardware dependability problem cuts through multiple
system layers and so should the solution. This is an opportunity for
architects to work closely with other designers to truly affect the way
systems are built from the ground up, including: designing a dependability-
aware hardware-software interface; dependability-aware resource
management; cooperative failure avoidance, detection, and recovery
mechanisms that span circuits to applications; cooperative hardware/
software cross-layer policies to trade off performance, power, reliability, and
security; and workload-aware, rigorous dependability analysis tools.

New Models of Computation

Essentially all commercial processors built today are based on principles first
proposed by John von Neumann in 1945. Using the so-called “stored
program concept” processors fetch and then execute instruction from their
memory hierarchy. Many of the grand challenges facing the computer
architect in the ’70s, ’80s and ’90s had to do with trying to solve the
“memory wall” that grew ever taller due to the rapidly increasing
performance disparity of the main memory relative to the processor core.
Typical cycle comparisons for today’s machines are 1:100—that is, it takes
100 processor cycles to fetch an instruction or data item from main memory.
While work to solve the memory wall continues, the grand challenge
proposed here is to develop promising new models of computation that are
not von-Neumann-based and, thus, do not encounter the performance
limitations of having to fetch instructions from a memory prior to execution.

Several past architectures have been proposed, and some even implemented,
that are not von Neumann based. These include data flow machines and
artificial neural networks (ANNs). To quote wikipedia “dataflow architectures
do not have a program counter or (at least conceptually) main memory and
the executability and execution of instructions is determined based on
availability of input arguments to the instructions.” Artificial neural networks
model some of the properties of biological neural networks. They are
composed of (hundreds of) thousands of simple processors each of which
generates an output signal based on its weighted inputs and its “activation”
value. Neural processors are connected to each other in special ways with
each connection having an individual “weight”. Networks learn by changing
the weights of the connections. While interesting prototypes of both dataflow
and ANN processors have been built, neither of these has achieved
commercial success or wide usage.

It is probable that new technologies—nanotechnologies (e.g., carbon nano
tubes [CNTs], quantum cellular automata [QCAs], etc.)—will demand new
models of computation. These new technologies will certainly require
innovations across the entire computational stack, including

 17

microarchitectures, execution models, instruction sets, compilation
algorithms, languages, and programming models. As such, it will be
important to design full systems that can successfully integrate the
innovations crossing disciplinary boundaries. Because they are so different
from conventional CMOS devices, these nanotechnologies, which are
currently only on the distant horizon, will likely inspire novel architectures
that differ significantly from the traditional, von Neumann architectures.

The most powerful computing machine of all is the human brain. Is it
possible to design and implement an architecture that mimics the way the
human brain works? Artificial neural networks are only one small step in this
direction. Neuroscientists are just beginning to unravel the workings of the
human brain. It will be many years—perhaps many (many) decades—before
we understand the workings of the human brain well enough to design and
build hardware that mimics its functionings. Thus, there is great risk in this
last grand challenge if it is cast as “brain computing,” but even greater
return if it does turn out to be feasible.

Partial steps in this direction would be building systems that augment the
brain, as in prosthetics (hearing for the deaf, vision for the blind, mobility for
the quadriplegic), and in augmenting brain functions (enhancing the senses,
inserting images and memories into the brain, perhaps in brain-to-brain
communication). Here the risk is small; indeed there is progress already in
human augmentation while the return is large.

 18

4. Follow-Up Action Items
__

Report Out

This report, along with an accompanying set of slides (see Appendix B), will
be made available by CRA to the broad computer science and engineering
research community. A preliminary draft of the report was distributed to
computer architecture researchers and developers at the annual
International Symposium on Computer Architecture (ISCA) in June 2006.
Additionally, an evening panel session presented the vision 2020 and
resulting grand challenges to ISCA conference attendees. The goal for this
panel presentation was to expose and engage the entire computer
architecture research community on the research vision and challenges that
came out of the CRA conference. Feedback from ISCA attendees was
subsequently integrated into the report draft and the accompanying slides.

Research Infrastructure

One of the original objectives of the CRA GRC conference was to reignite a
sense of excitement for the entire computer architecture research
community. Vital support components for the research needed to fulfill the
grand challenges proposed in this report are the next-generation tools,
benchmark programs and data sets, and the implementation/emulation
platforms necessary for experimentation and evaluation. The days of
individual researchers designing and implementing prototypes including
custom hardware and hand-crafted software are over except for the rare
case. Thus, research infrastructures that can be used by many researchers—
in particular low-cost, reasonable performance emulation platforms—are one
very tangible way to bring the community together and to leverage new
experimental infrastructures to embark on new research directions and
generate new vitality for architecture systems research.

Funding Strategy

Another objective of the CRA GRC conference was to stimulate new and
increased funding for computer architecture research. Other than
distributing this report and the ISCA slides to the various funding agencies,
are there more effective means to engage the funding agencies? Other than
government funding agencies, how can we approach the industry to invest
more in funding computer architecture research in academia? New funding
models may have to emerge.

 19

Appendix A. Conference Participants
__

Sarita Adve
University of Illinois
Urbana-Champaign

Arvind
MIT

Todd Austin
University of Michigan

Luiz Andre Barroso
Google

Andy Bernat
Computing Research Association

Shekhar Borkar
Intel

Doug Burger
University of Texas at Austin
Austin

Bradley Calder
UC San Diego

Bill Carlson
IDA/CCS

Fred Chong
UC Davis

Almadena Chtchelkanova
National Science Foundation

Robert Colwell
Colwell, Inc.

Patrick Crowley
Washington University
St. Louis

Bill Dally
Stanford University

Susan Eggers
University of Washington

Elmootazbellah Elnozahy
IBM

Michael Foster
National Science Foundation

Antonio Gonzalez
Intel, Barcelona

Dirk Grunwald
University of Colorado
Boulder

Mark Horowitz
Stanford University

Mary Jane Irwin
Penn State University

Mike Johnson
Texas Instruments

Lukas Kencl
Intel Research, Cambridge UK

Peter Kogge
University of Notre Dame

Christos Kozyrakis
Stanford University

Jim Larus
Microsoft Research

Edward Lee
UC Berkeley

Steve Levitan
University of Pittsburgh

Margaret Martonosi
Princeton University

Chuck Moore
AMD

Todd Mowry
Intel Research
Pittsburgh & CMU

Ravi Nair
IBM

 20

Mark Oskin
University of Washington

Dave Patterson
UC Berkeley

Li-Shiuan Peh
Princeton University

Timothy Pinkston
University of Southern California

Justin Rattner
Intel

Steven Reinhardt
University of Michigan

Steve Scott
Cray Inc.

John Paul Shen
Nokia Research Center – Palo Alto

Anand Sivasubramaniam
Penn State University

Kevin Skadron
University of Virginia

Jim Smith
University of Wisconsin
Madison

Sean Smith
Dartmouth College

Gurinder Sohi
University of Wisconsin
Madison

Christof Teuscher
Los Alamos National Lab

Josep Torrellas
University of Illinois
Urbana Champaign

Peter Varman
National Science Foundation

T.N. Vijaykumar
Purdue University

Uri Weiser
Intel

David Wood
University of Wisconsin
Madison

Katherine Yelick
UC Berkeley

Yuanyuan Zhou
University of Illinois
Urbana-Champaign

 21

Appendix B. PowerPoint Slides
__

The PowerPoint slides are best viewed in slideshow mode and are available
online at
http://www.cra.org/Activities/grand.challenges/architecture/slides.pps

System 2020: Research Challenges in Computer Architecture

What is the next big thing?

What are the mega trends?

What are the anticipated usage models?

The computing paradigm ala Google

The computing paradigm ala Nokia

CRA System 2020 Workshop

What are the components of a Grand Challenge?

1W Featherweight Supercomputer

Featherweight Challenges

Popular Parallel Programming (P3)

P3 Challenges

Dependable Systems

Dependable Systems Challenges

New Computing Models

“Brain” Challenges

Check out previous Grand Challenges Conference Reports

