New Technology-based Models for Postsecondary Learning

Chris Dede

Harvard University <u>Chris Dede@harvard.edu</u> <u>http://isites.harvard.edu/chris_dede</u>

Workshop January 9-11, 2013

- Funded by NSF, sponsored by CRA, hosted at MIT
- <u>Co-Conveners</u>: Chris Dede, Harvard; Eric Grimson, MIT
- <u>Participants</u>: Daniel E. Atkins,, U. Michigan Lori Breslow, MIT John Cherniavsky,, NSF
 J.D. Fletcher, Institute for Defense Analyses
 Diana Oblinger, EDUCAUSE Roy Pea, Stanford
 James Pellegrino, U. Illinois—Chicago
 Bror Saxburg, Kaplan
 James Shelton, US. Dept. Education
 Russell Schilling, DARPA
 Greg Tobin, Pearson Higher Education
 Ellen Wagner, Western Interstate Commission Higher Education

Rethinking Learning Outcomes

- Expertise as tacit rather than explicit
- Distributed understandings and performances rather than "in the head" knowledge and skills
- Situation resolution rather than solving routine problems
- Affective and social dimensions of competence given equal weight with cognitive

Rethinking Educational Processes

- Credentialing/certification based on competency rather than time
- Many sources of accredited learning, based on alternative business models and new marketplaces
- Continuous improvement via analytics applied to rich databases and embedded A/B experiments
- Generic tools and media repurposed for learning

<u>"Next Generation"</u> <u>Motivation and Learning</u>

- Virtual Peers in Complementary Study Group
- Synchronous Back-Channel with Archives
- Virtual Worlds
- Local Augmented Realities
- Virtual Performance Assessments

Interfaces for

"Immersive" Learning

- Multi-User Virtual Environments: Immersion in virtual contexts with digital artifacts and avatar-based identities
- Virtual Reality
 Full sensory immersion via head-mounted displays
 or CAVES
- Ubiquitous Computing: Wearable wireless devices coupled to smart objects for "augmented reality"

January 2009 issue of Science

EcoMUVE Module 1: Pond Ecosystem

Modeled after Black's Nook Pond in Cambridge, MA

http://ecomuve.gse.harvard.edu

Naturalist	Microscopic Specialist	Water Chemist	Private Investigator
Find out how the populations of pond organisms: largemouth bass, bluegill, minnows, and great blue herons change over time.	Find out how the populations of microscopic bacteria, bluegreen algae, and green algae change over time.	Use the atom tracker to find out what happens to the carbon atom on different days.	Gather clues from the landscaper, the golf course manager, the utility worker, the park ranger, the birdwatcher, other people near the pond.
Use the field guide to learn about the different fish species.	Measure the dissolved oxygen in the water on different days.	Measure the dissolved oxygen in the water on different days.	Observe the weather on different days; collect measurements of temperature, cloud cover, and wind speed.
Use the atom tracker to find out what happens to the carbon atom on different days.	Use the atom tracker to find out what happens to the oxygen atom on different days.	Use the atom tracker to find out what happens to the phosphorus atom on different days.	Measure chlorophyll a in the water on different days.
Measure the turbidity in the water (and use your eyes) to see changes over time.	Measure the temperature in the water on different days.	Measure the pH in the water on different days.	Measure the temperature in the water on different days.
Measure the dissolved oxygen in the water on different days.	Measure chlorophyll a in the water on different days.	Measure the nutrients (phosphates and nitrates) in the water on different days.	Measure the nutrients (phosphates and nitrates) in the water on different days.

EcoMOBILE:

Ecosystems Mobile Outdoor Blended Immersive Learning Environment

- **Taking on scientific roles**
- Individualized pathways
- Making connections
- Seeing the unseen

http://ecomobile.gse.harvard.edu

NSF DRK-12

Naturalist	Microscopic Specialist	Water Chemist	Private Investigator
Observe pond for similarities to EcoMUVE	Observe duckweed	Observe pond for similarities to EcoMUVE	Talk to virtual golfer
Observe virtual fish	View 3D model of duck	Measure dissolved oxygen	Observe storm water pipe overlay
Calculate fish population size	Video of starch decomposition by bacteria	Video of how oxygen dissolves in water	Find inlet and outlet of pond
Collect macroinvertebrates	Observe virtual bacteria	Measure water temperature	Talk to young girl about what a watershed is
ID macroinverts and calculate tolerance index	Measure pH	Measure phosphates	Measure turbidity
Work together to cre		izes the health of the p servations	ond based on whole

Unobtrusive Assessment

- Capturing exploratory paths
- Analyzing usage of guidance systems
- Interacting with animated pedagogical agents
- Attaining "powers" through accomplishments
- Documenting progress and transfer in similar settings

http://www.k12center.org/rsc/pdf/session4-dedepaper-tea2012.pdf

<section-header><section-header><section-header><section-header><figure>

Usage of Individualized Guidance

Documenting Progress and Transfer in Similar Settings

- Student takes on identity of a scientist
- Students complete quests
- 60 minutes
 - Four Phases:
 - 1. Orientation
 - 2. Problem Identification
 - 3. Experimentation
 - 4. Competing Explanations

http://vpa.gse.harvard.edu

<u>Attaining "Powers"</u> <u>Through Accomplishments</u>

Mysterious Mansion

Access to Special Experiences

<u>"Next Generation"</u> <u>Motivation and Learning</u>

- Virtual Peers in Complementary Study Group
- Synchronous Back-Channel with Archives
- Virtual Worlds
- Local Augmented Realities
- Virtual Performance Assessments

Dimensions of Advanced Knowledge and Skills

Cognitive	Intrapersonal	Interpersonal
Outcomes	Outcomes	Outcomes
Cognitive processes and strategies	Intellectual Openness	Teamwork and Collaboration
Knowledge	Work Ethic and Conscientiousness	Leadership
Creativity	Positive Core Self- Evaluation	Communication
Critical Thinking	Metacognition	Responsibility
Information Literacy	Flexibility	Conflict Resolution
Reasoning	Initiative	
Innovation	Appreciation of Diversity	

Desirable Characteristics of Postsecondary Learning

- Serves a wide range of learners
- Good return on investment by learners and by society
- Self-improving via research and continual feedback

Organizational Strategies for Adoption and Scale

- Develop authentic assessments based on outcome objectives
- Select initial innovations carefully so that strong models of learning are implemented
- Emphasize user-friendly interfaces
- Study design strategies for effective media that have scaled
- Accomplish tasks instructors/institutions want to relinquish
- Use organizational development strategies to change culture

Sources for

Illustrative Research Agenda

- NSF Cyberinfrastructure, 2003
- FAS Learning Federation Project, 2003
- CRA Cyberinfrastructure and Learning, 2005
- NSF Cyberlearning, 2008
- U.S. ED National Ed Tech Plan, 2010
- PCAST Designing a Digital Future, 2010, 2013
- NRC Learning Science via Games/Sims, 2011;
- REAL Commission Recommendations, 2012
- U.S. ED Expanding Evidence Approaches 2013

<u>Recommendations for Future</u> <u>Workshops and Meetings</u>

- Creating and validating encompassing learning maps (desired outcomes, evidence for their achievement)
- Exploring competency based models for alternative certification and credentialing
- Scenario-based planning on alternative futures for postsecondary learning

Link to a Pre-Release Version of the Report

http://cra.org/uploads/documents/resources/ rissues/Postseconday_Learning_NSF-<u>CRA_report.pdf</u>

