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MOOCs: a New Scale for Learning 

•  Big problem 
–  we’re very far from 1-on-1 mastery learning 
–  little human feedback, mass production instead of personalization, 

high attrition rates 

•  Huge opportunity 
–  much faster controlled experimentation & iterative improvement 
–  big online crowds can do amazing things by themselves 

classroom 1:10 lecture 1:100 stadium  1:10,000 



Crowdsourcing vs. Learnersourcing 
•  Crowdsourcing 

–  asking a crowd to do micro-work for problems we can’t solve 
with software 

–  what does the crowd get in return? money, fun, social 

•  Learnersourcing 
–  asking students to do micro-work for an online course 
–  what do students get in return? learning (hopefully) 

•  Types of learnersourcing 
–  active: asking people to do something 
–  passive: watching what people do and inferring something 

•  Discussion forums are active learnersourcing 
–  and without them, our current MOOCs would utterly fail 



A Few Examples from My Group 
•  Lecture video analytics 

–  find bugs and key parts in lecture videos 
–  passive learnersourcing 

•  Peer code review 
–  students give feedback to each other 
–  active learnersourcing 

•  Solution analytics 
–  understand the range of solutions to a  

coding assignment 
–  passive learnersourcing 



LECTURE VIDEOS 



MOOC lecture videos 



Challenge for instructors/editors 
•  Don’t know how students use lecture videos 

–  Confusion 
–  “Aha” moments 
–  Bored 
–  Re-watching important parts 

•  We analyzed video interaction data from the lectures 
in 4 edX courses 
–  Clickstream (play, pause, scrub) 
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Interaction Peaks 
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Example: Beginning of new material 
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Example: Backing up 
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LectureScape: Enhancing lecture videos	




SOLUTION ANALYTICS 



A Typical Programming Assignment 
Time 

Deadline 

Write an iterative function that 
computes ab 

What did 
our 

students 
do? 

Oops, the 
autograder 

should have 
caught that. 

Oh no! 
Never do 

that! 

Clever--I 
didn't know 
you could 
do it that 

way. 13 



OverCode 

•  Overcode allows teaching staff to see the similarity and 
variation among thousands of solutions. 
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Solution Cleaning & Clustering 

•  OverCode makes solutions easier to read and cluster 
–  Reformat code for consistency 
–  Rename variables with identical behavior 
–  Ignore statement order when clustering solutions 
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iterPower  ~3800 

hangman  ~1100 

computeDeriv  ~1400 
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~40% 

~9% 

~1% 

~10% 

~9% 

~0.5% 

Total Solutions Largest Stack 2nd Largest 



Performance 

 
OverCode preprocessing pipeline is linear with number of 
solutions and runs on a laptop 
 
 
 
 
 
 
 
Other clustering approaches are quadratic in number of 
solutions and need a computer cluster. 
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Feedback Coverage 

iterPower hangman compDeriv
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% solutions covered  
by the teacher’s post 

users: 12 teaching assistants 
control: all solutions concatenated in a page 
task: write a discussion forum post 



Teacher Perceptions 
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PEER CODE REVIEW 



Problem: Feedback about Coding Style 

•  MIT 6.005 Software Construction 
–  foundation-level programming course (replaced 6.001/6.170) 
–  400 students per year, mostly sophomores 

•  Students write lots of code 
–  roughly 10kloc in problem sets and projects 

•  Automatic grading is necessary but not sufficient 
 
 

–  we need human readers, and we want line-by-line feedback  
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correct and 
understandable 

correct but 
confusing 



Approach: Crowd-Driven Code Review 

•  Chop up student programs into chunks 
•  Review the chunks by a mixed crowd: students, staff, alums 
 

 

 
•  Anticipated benefits 

–  faster, cheaper, more diverse comments 
–  give practice with code reviewing (a widespread industry practice) 
–  expose to good and bad solutions 
–  reduce workload on teaching staff 
–  incorporate alumni back into the course 

•  Not using for grading... yet 
 22 

staff 

alumni 

students 



Caesar: Divide & Conquer 
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programs chopped into chunks 

each chunk assigned 
to multiple reviewers 



Social Reviewing 
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replies & 
discussion 

upvotes & 
downvotes 

automatic 
style checker 
comments 

reviewer 
comments 

reviewers can see 
whole program 
(not just chunk) if 
needed 

reviewers have a 
reputation (#upvotes, 
+ 100 if they’re alums 
or staff of the course) 



Experience 

25 

Fall  
2011 

Spring  
2012 

180 students 
  54 alums 
  15 staff 

215 students 
    0 alums 
  17 staff 

PS0 PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS0 PS1 PS2 PS3 PS4 

13 problem sets, 2200 submissions 
 
21,500 comments 

  5% alums   16.2% upvoted 
  8% staff     0.7% downvoted 
87% students  

 
9.6 comments per submission  

PS0 PS1 PS2 PS3 PS4 PS5 PS6 PS7 

average time students 
spent reviewing 

60m 

50m 

40m 

30m 

20m 

10m 



Kinds of Comments 
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Bug 
Clarity 

Style 

Performance 
Simplicity 

Learning 
Positive 

•  Does the message already include 
"\n"? If so, this is fine. If not, it should 
be added here.  

•  I don't really understand what you're 
trying to test for here - why the 20? 
Small comments would help tell what 
you're doing. 

•  This could be implemented within the 
next for loop for a faster algorithm  •  You don't necessarily need this 

variable. 
•  I think this code could have been 

more simpler without using so many if 
statements. For example, you could 
have divided the case in which the 
first operand is not a scalar or not. It 
is hard to read. 

•  You should put this comment above the 
line, otherwise it runs off the page. 

•  This is nice and concise. (I didn't 
know you could iterate through an 
array like this in a for loop) 

•  This is interesting. Why do you 
store all the messages you send/
receive in a log? 

Code author: For debugging. 
The log adds time stamps, 
which help a lot for debugging 
concurrency problems. 



A LOOK AHEAD 



MOOCs Have to Run Themselves 
•  Launching a MOOC is like authoring a textbook 

–  But keeping it running currently requires sustained expert 
involvement 

–  In the long run, we can teach the world for free only if we 
don’t have to staff the MOOCs 

•  Implications 
–  Intelligent tutor systems 
–  Peer help, feedback, assessment 
–  Alumni or external staff help 

staff 

alumni 

students 



MOOCs Have to Improve Themselves 
•  edX and Coursera will be littered with stale MOOCs 

–  Because faculty have no time or incentive to revise them 
–  In the long run, MOOCs have to revise and improve 

themselves, automatically 

•  Implications 
–  Crowdsourced content: exercises,  

quizzes, textbook, videos 
–  FrankenMOOCs that combine 

the best stuff out there 
–  Video content that can be 

edited like Wikipedia 



MOOCs Are Big Data for Education 
•  Google and Bing drive information retrieval research 

–  because they own the data & control the interface 

•  Facebook and Twitter increasingly drive social 
network research 
–  again: data + interface 

•  Universities could be driving learning science in CS 
–  if we step up and take ownership of the data + the interface 



Summary 

Lecturescape 
(lecture videos) OverCode 

(programming solutions) 

Caesar 
(peer code review) 

Thanks to support from NSF, Quanta Computer, Google, edX 

future 
•  self-running MOOCs 
•  self-improving MOOCs 
• MOOCs are our big data  


