Modernizing HealthCare Applications with Micro Services

Edison Ting
Pivotal Solutions Architect
Health Electronic Medical Record tool OpenEMR provides a lot of functionality in one Monolithic Application

Monolithic architecture makes it difficult to manage, update and add new functionality
Micro services architecture can help with manage-ability of distinct applications and services, and facilitate analytics driven model.

Cloud enabled runtime can help with software lifecycle and application deployment and movement between infrastructures.
An patient portal application can be built separately that can service many users, such as allow patient themselves to schedule visits.

Such applications can be managed and scaled independently across different instances, all sharing one central database.
Shared patient information can then be analyzed globally to derive actionable insights.

Live patient information can be correlated with historical data or public information to discover useful relationships between similar patients.
COURSE OVERVIEW

The Data Science and Big Data Analytics course educates students to a foundation level on big data and the state of the practice of analytics. The course provides an introduction to big data and a Data Analytics Lifecycle to address business challenges that leverage big data. It provides grounding in basic and advanced analytic methods and an introduction to big data analytics technology and tools, including MapReduce and Hadoop. The course has extensive labs throughout to provide practical opportunities to apply these methods and tools and includes a final lab in which students address a big data analytics challenge by applying the concepts taught in the course in the context of the Data Analytics Lifecycle. Upon completing the course, students will have the knowledge and practical experience to immediately participate effectively in big data and other analytics projects.

THE DATA SCIENCE AND BIG DATA ANALYTICS COURSE CONSISTS OF 7 MODULES:

Module 1: Introduction to Big Data Analytics
This module focuses on definition of and an overview of big data, the state of practice of analytics, the Data Scientist role, and big data analytics in industry verticals.

Module 2: Overview of Data Analytics Lifecycle
This module focuses on the explaining the various phases of a typical analytics lifecycle – discovery, data preparation, model planning, model building, communicating results and findings, and operationalizing. This module also details the critical activities that occur in each phase of the lifecycle.

Module 3: Using R for Initial Analysis of the Data
This module focuses on an introduction to R programming, initial exploration and analysis of the data using R, and basic visualization using R. This module includes hands-on labs to familiarize students with the concepts taught.

Module 4: Advanced Analytics and Statistical Modeling for Big Data – Theory and Methods
This module focuses on the core methods used by a Data Scientist, including candidate selection using the Naïve Bayesian Classifier, categorization using K-means clustering and association rules, predictive modeling using decision trees, linear and logistic regression, and time-series analysis, and text analysis. This module includes hands-on labs to familiarize students with the concepts taught.

Module 5: Advanced Analytics and Statistical Modeling for Big Data – Technology and Tools
This module focuses on analytic tools for unstructured data, including MapReduce and the Hadoop ecosystem. It also details in-database analytics with SQL extensions and other advanced SQL techniques and MADlib functions for in-database analytics. This module includes hands-on labs to familiarize students with the concepts taught.
Module 6: Concluding and Operationalizing an Analytics Project
This module focuses on identifying the core deliverables and creating them for key stakeholders and others. This module also details how to emphasize key points using visualization methods.

Module 7: Big Data Analytics Lifecycle Lab
This module focuses on the student’s practical application of their learning to a big data analytics challenge in the context of the data analytics lifecycle.

Faculty profile for success
Faculty who have been teaching courses on following topics will have added advantage in successfully teaching this course:
1. Computer Science
2. Mathematics, Statistics and Statistical Modeling

Student profile for success
Students who have completed courses on following topics will have added advantage in comprehending the learnings of CIS course:
1. Computer Science
2. Information Technology
3. Engineering
4. Statistics and Statistical Modeling
5. Mathematics
6. Database Administration and Data Warehousing
7. Computer Programming
8. Econometrics
9. Biostatistics
10. Physics
The knowledge you gain through the Data Science and Big Data Analytics ‘open’ course can be applied to impact business decisions in a variety of ways

<table>
<thead>
<tr>
<th>Key activities</th>
<th>Business Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Define big data and the business drivers for advanced, big data analytics.</td>
<td>A solid understanding of big data and the business opportunities that advanced analytics applied to big data represent is essential for stakeholders to identify and drive big data analytics opportunities within their own organizations.</td>
</tr>
<tr>
<td>2. Describe why and how Data Science is different to traditional Business Intelligence.</td>
<td>Data Scientists must understand the Business Intelligence world just as Business Intelligence analysts need to understand the Data Science world so they can work together in cohesive teams to ensure the business is gaining optimum value from leveraging big data and data in traditional data warehouses.</td>
</tr>
<tr>
<td>3. Describe the roles and skills required in a big data analytics team.</td>
<td>Business and IT stakeholders need to recruit suitably skilled individuals and grow the skills of others to create competent and effective big data analytics teams.</td>
</tr>
<tr>
<td>4. Explain the phases and activities of the data analytics lifecycle and identify the main activities and deliverables.</td>
<td>Provides a framework for executing data analytics projects in a repeatable way that will consistently lead to valuable and actionable insights for the business.</td>
</tr>
<tr>
<td>5. Explore and make an initial analysis of the data, using R.</td>
<td>Develop a quick overall understanding of the nature and characteristics of the data, using simple R programming. This drives creation of initial hypotheses regarding potential relationships within the data that can then be explored using more advanced analytic methods.</td>
</tr>
<tr>
<td>6. Select and execute appropriate advanced analytic methods for candidate selection, categorization, and predictive modeling.</td>
<td>Detailed analysis of the data requires selection of the advanced analytic methods that are most appropriate for the business challenge being addressed and the data being analyzed.</td>
</tr>
<tr>
<td>7. Describe the challenges and tools for analyzing text and other unstructured data.</td>
<td>Less than 20% of all data is structured. Text and other unstructured data are key data sources for big data analytics. Data Scientists must understand the challenges of analyzing this data and the different approaches (e.g. MapReduce) and tools (e.g. Hadoop) used to analyze it.</td>
</tr>
<tr>
<td>8. Describe the importance and benefits of advanced techniques such as in-database analytics and how extensions and other advanced functions add value.</td>
<td>Encourages interest in newer technology developments that can bring potential analytic benefits to the rapidly developing field of Data Science.</td>
</tr>
<tr>
<td>9. Plan the creation of effective final deliverables for a data analytics project that will meet the needs of stakeholders and others.</td>
<td>Business stakeholders and others must be convinced by the analysis, conclusions, and recommendations emerging from a data analytics project. Creating the final project report is a key opportunity to ensure commitment to action and to communicate the tasks necessary to operationalize those recommendations.</td>
</tr>
<tr>
<td>10. Apply all the phases of a data analytics lifecycle to a big data analytics challenge.</td>
<td>Demonstrates the ability to be successful in taking a big data business challenge through all phases of the data analytics lifecycle as a Data Scientist practitioner and deliver actionable insights.</td>
</tr>
</tbody>
</table>
Ecosystem Challenges Around Data Use

Leonid Zhukov

ancestry.com
Ancestry.com

- World’s largest online family history resource
- Started as a publishing company in 1983, online from 1996
- 2.7 million worldwide subscribers
Data at Ancestry

- Historical records – company acquired content collections
- User created content:
 - Ancestor profiles and family trees
 - Uploaded photographs and stories
- User behavior data on Ancestry.com
- Customer DNA data
- 10 PB of structured and unstructured data
Historical records

- Historical Content
 - 14 billion historical records going back to 17th century
 - Digitized and searchable
Historical records

- More than 30,000 content collections

<table>
<thead>
<tr>
<th>Birth, Marriage & Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth, Baptism & Christening</td>
</tr>
<tr>
<td>Marriage & Divorce</td>
</tr>
<tr>
<td>Death, Burial, Cemetery & Obituaries</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Census & Voter Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Federal Census Collection</td>
</tr>
<tr>
<td>UK Census Collection</td>
</tr>
<tr>
<td>Canadian Census Collection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Immigration & Travel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger Lists</td>
</tr>
<tr>
<td>Citizenship & Naturalization Records</td>
</tr>
<tr>
<td>Border Crossings & Passports</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Military</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draft, Enlistment and Service</td>
</tr>
<tr>
<td>Casualties</td>
</tr>
<tr>
<td>Soldier, Veteran & Prisoner Rolls & Lists</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schools, Directories & Church Histories</th>
</tr>
</thead>
<tbody>
<tr>
<td>City & Area Directories</td>
</tr>
<tr>
<td>Professional & Organizational Directories</td>
</tr>
<tr>
<td>Church Histories & Records</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tax, Criminal, Land & Wills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Records</td>
</tr>
<tr>
<td>Tax Lists</td>
</tr>
<tr>
<td>Court, Governmental & Criminal Records</td>
</tr>
</tbody>
</table>
User family trees

- Family trees:
 - 60 million family trees
 - 6 billion profiles
Family trees

Power law distribution of tree sizes

500 nodes
700 edges
55 generations
User contributed content

– 200 million uploaded family photos and stories

Life Sketch of Ira Stearns Hatch, Pioneer of 1849

Life Sketch of Ira Stearns Hatch, Pioneer of 1849

When the News of the successful venture of the Pilgrim Fathers' reached the homeland, other honest, sincere people were seized with a desire to also seek a haven of religious freedom in the new land. The Hatch family were mostly middle class, neither rich nor poor, mostly small landowners and farmers, pious industrious people, in fact good citizens. One of the descendants of the above mentioned Hatch family was Ira Hatch, the son of Jeremiah and Mary Stearns Hatch, who was born at
Person and record search

- Search query

![Search interface and search results](image-url)
Record linkage

- Record linkage – finding and matching records in multiple data sets with *non-unique* identifiers (data matching, entity disambiguation, duplicate detection etc)

- Goal: bring together information about the same person

- Some *non-unique* identifiers:
 - Names: first name, last name (John Smith – 300,000 records)
 - Dates: date of birth, date of death
 - Places: place of birth, residence, place of death
 - Extra: family members, life events

- Records often *incomplete* and contain *mistakes*

- Other industries: banking, insurance, government etc
User behavior data

- 75 mln searches daily
- 10 mln profiles added daily
- 3.5 mln records attached daily
DNA Data

- Direct to consumer DNA test
- 700,000 SNPs per sample
- 400,000 DNA samples
- No medical studies
Ancestry DNA

• Genetic ethnicity
 – Reference panel
 – 26 ethnic regions, 3000 samples
Ancestry DNA

- Genetic inheritance
 - Identity-by-descent
 - Cousin matching
DNA data: privacy and research

Challenges

- **Engineering**
 - Scalability
 - Availability
 - Security

- **Research**
 - Information retrieval
 - DNA genomic research

- **Privacy**