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Computer Science  
Research on Higher Education? 
•  Future of online education is not just about 

trying things out 
– Research needed 
–  Interdisciplinary 

•  Industry 
•  Schools of education 
•  Schools of computer science 

•  How do we support this new interdisciplinary 
practice? 

 

  



Intriguing Research Challenges 

•  Three strong examples of CS research 
on online education 

•  Discussion of the challenges 
•  Discuss both MOOCs and distance ed 

– Make clear which issues refer to which 

•  Thanks to Andy, Greg, and Brent 
 

  



Designing a World 
that Teaches Itself

Scott Klemmer
Cognitive Science + Computer Science & Engineering +



 CHALLENGE & OPPORTUNITY  

Design at Large





small-group discussions

machine+peer learningricher feedback

Predict
Identify

Verify

Results

RESEARCH EXAMPLES

peer assessment



Peer and Self Assessment in Massive Online Classes, Kulkarni et al., TOCHI 2013

Peer assessment
AT LARGE…

1) Practice 2) Assess 5 Peers 3) Self-Assess

✓

staff-graded

92%

6%

2%

Yes! Certificate

Wrongly denied :(

Got it; didn’t deserve it



Peer assessment in 100+ classes

Teaching 
character 

Management 

Constitutional law 
Arguments

Introduction to 
Philosophy 

Essays

Social  
Psychology 

Essays

Programming  
in Python 

Code

Human-computer 
Interaction 

Design

Child 
Nutrition 
Recipes

World Music 
!

Music

AT LARGE…

Peer and Self Assessment in Massive Online Classes, Kulkarni et al., TOCHI 2013



Qualitative, personalized feedback
• Peers can recognize errors from a list of 

patterns, even if they can’t articulate them 
• Most errors are variations on a theme

+ “...because 

_____________________”

FORTUNE COOKIES

Peer and Self Assessment in Massive Online Classes, Kulkarni et al., TOCHI 2013



Alone Together?



Small groups in massive classes
“It was like a mini-UN. 
We had an Australian 
currently residing in 
Dubai, an Afghan, a 
Romanian, an Indian & 
myself (a Pakistani).”

LEVERAGING DIVERSE EXPERIENCES

Making Distance Matter with Small Groups in Massive Classes, Kulkarni et al., in submission



• richer semantics increase quality

Creating Micro-Experts

• ——!
• ——!
• ——

 ——!
 ——!
 ——

IDENTIFY-VERIFY

Scaling Short-answer Grading by Combining Peer Assessment with Algorithmic Scoring, 
Kulkarni, Socher, Bernstein, & Klemmer, Learning at Scale, 2014

from scores to labels



Machines modulate peer grading 

Identify

Valid

Predict Invalid? ResultsVerify

IDENTIFY-VERIFY

Scaling Short-answer Grading by Combining Peer Assessment with Algorithmic Scoring, 
Kulkarni, Socher, Bernstein, & Klemmer, Learning at Scale, 2014



• Build practical theory with 
real-world experiments 

• Bake pedagogy into 
software that transforms 
learning

CS RESEARCH OPPORTUNITY

http://d.ucsd.edu/peer



“Nothing is as practical 
as a good theory” 

“The best way to 
understand something 
is to try and change it” 

–Kurt Lewin



• Build practical theory with 
real-world experiments 

• Bake that theory into 
software that transforms 
<X> 

DESIGN AT LARGE



• Build practical theory with 
real-world experiments 

• Bake that theory into 
software that transforms 
<X> 

Real 
!

are 
critical



http://cs303.stanford.edu

We Need to Do These 3 Things
• Insure that learners understand their role in 

experiments they opt in to 
Good design is key, and nuanced 

• Insuring broad research access to conducting 
experiments, evaluating data, & open science 
Chairs: you have an important role here 

• Few current CS curricula don’t teach 
experimental design. More should. 
Especially in data/HCI/learning tracks



http://d.ucsd.edu/peer

We Have Resources for You
• Open-source platforms with analytics, 

course materials, instructor resources, & 
graduating students :)



The Big Research Opportunity
• Tomorrow’s online class won’t look like 

today’s (I hope)

scale personalized mastery-
learning experiences?

How might we…

http://d.ucsd.edu/peer



Fred Brooks, The Computer Scientist as Toolsmith

Why CS?
• The scientific opportunities are tremendous 
• Concrete problems are a great forge for 

fundamental insights 
• A proud history of lifelong learning 
• The CS legacy: don’t just understand the 

world, make it a better place



follow student work at #hci5

http://d.ucsd.edu/srk 
     @DesignAtLarge

with Chinmay Kulkarni 
+ many collaborators



Online Education with 
Learnersourcing 

Rob Miller 
User Interface Design Group 

MIT CSAIL 
 

Joint work with Juho Kim, Sarah Weir,  
Elena Glassman, Philip Guo, Carrie Cai,  

Max Goldman, Phu Nguyen, Rishabh Singh, Jeremy Scott 
 



MOOCs: a New Scale for Learning 

•  Big problem 
–  we’re very far from 1-on-1 mastery learning 
–  little human feedback, mass production instead of personalization, 

high attrition rates 

•  Huge opportunity 
–  much faster controlled experimentation & iterative improvement 
–  big online crowds can do amazing things by themselves 

classroom 1:10 lecture 1:100 stadium  1:10,000 



Crowdsourcing vs. Learnersourcing 
•  Crowdsourcing 

–  asking a crowd to do micro-work for problems we can’t solve 
with software 

–  what does the crowd get in return? money, fun, social 

•  Learnersourcing 
–  asking students to do micro-work for an online course 
–  what do students get in return? learning (hopefully) 

•  Types of learnersourcing 
–  active: asking people to do something 
–  passive: watching what people do and inferring something 

•  Discussion forums are active learnersourcing 
–  and without them, our current MOOCs would utterly fail 



A Few Examples from My Group 
•  Lecture video analytics 

–  find bugs and key parts in lecture videos 
–  passive learnersourcing 

•  Peer code review 
–  students give feedback to each other 
–  active learnersourcing 

•  Solution analytics 
–  understand the range of solutions to a  

coding assignment 
–  passive learnersourcing 



LECTURE VIDEOS 



MOOC lecture videos 



Challenge for instructors/editors 
•  Don’t know how students use lecture videos 

–  Confusion 
–  “Aha” moments 
–  Bored 
–  Re-watching important parts 

•  We analyzed video interaction data from the lectures 
in 4 edX courses 
–  Clickstream (play, pause, scrub) 

7 



Interaction Peaks 

8 



Example: Beginning of new material 

9 



Example: Backing up 

10 



LectureScape: Enhancing lecture videos!



SOLUTION ANALYTICS 



A Typical Programming Assignment 
Time 

Deadline 

Write an iterative function that 
computes ab 

What did 
our 

students 
do? 

Oops, the 
autograder 

should have 
caught that. 

Oh no! 
Never do 

that! 

Clever--I 
didn't know 
you could 
do it that 

way. 13 



OverCode 

•  Overcode allows teaching staff to see the similarity and 
variation among thousands of solutions. 

14 



Solution Cleaning & Clustering 

•  OverCode makes solutions easier to read and cluster 
–  Reformat code for consistency 
–  Rename variables with identical behavior 
–  Ignore statement order when clustering solutions 

 

15 



iterPower  ~3800 

hangman  ~1100 

computeDeriv  ~1400 

16 

~40% 

~9% 

~1% 

~10% 

~9% 

~0.5% 

Total Solutions Largest Stack 2nd Largest 



Performance 

 
OverCode preprocessing pipeline is linear with number of 
solutions and runs on a laptop 
 
 
 
 
 
 
 
Other clustering approaches are quadratic in number of 
solutions and need a computer cluster. 
 

17 



Feedback Coverage 

iterPower hangman compDeriv
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% solutions covered  
by the teacher’s post 

users: 12 teaching assistants 
control: all solutions concatenated in a page 
task: write a discussion forum post 



Teacher Perceptions 

19 



PEER CODE REVIEW 



Problem: Feedback about Coding Style 

•  MIT 6.005 Software Construction 
–  foundation-level programming course (replaced 6.001/6.170) 
–  400 students per year, mostly sophomores 

•  Students write lots of code 
–  roughly 10kloc in problem sets and projects 

•  Automatic grading is necessary but not sufficient 
 
 

–  we need human readers, and we want line-by-line feedback  

21 

correct and 
understandable 

correct but 
confusing 



Approach: Crowd-Driven Code Review 

•  Chop up student programs into chunks 
•  Review the chunks by a mixed crowd: students, staff, alums 
 

 

 
•  Anticipated benefits 

–  faster, cheaper, more diverse comments 
–  give practice with code reviewing (a widespread industry practice) 
–  expose to good and bad solutions 
–  reduce workload on teaching staff 
–  incorporate alumni back into the course 

•  Not using for grading... yet 
 22 

staff 

alumni 

students 



Caesar: Divide & Conquer 

23 

programs chopped into chunks 

each chunk assigned 
to multiple reviewers 



Social Reviewing 

24 

replies & 
discussion 

upvotes & 
downvotes 

automatic 
style checker 
comments 

reviewer 
comments 

reviewers can see 
whole program 
(not just chunk) if 
needed 

reviewers have a 
reputation (#upvotes, 
+ 100 if they’re alums 
or staff of the course) 



Experience 

25 

Fall  
2011 

Spring  
2012 

180 students 
  54 alums 
  15 staff 

215 students 
    0 alums 
  17 staff 

PS0 PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS0 PS1 PS2 PS3 PS4 

13 problem sets, 2200 submissions 
 
21,500 comments 

  5% alums   16.2% upvoted 
  8% staff     0.7% downvoted 
87% students  

 
9.6 comments per submission  

PS0 PS1 PS2 PS3 PS4 PS5 PS6 PS7 

average time students 
spent reviewing 

60m 

50m 

40m 

30m 

20m 

10m 



Kinds of Comments 

26 

Bug 
Clarity 

Style 

Performance 
Simplicity 

Learning 
Positive 

•  Does the message already include 
"\n"? If so, this is fine. If not, it should 
be added here.  

•  I don't really understand what you're 
trying to test for here - why the 20? 
Small comments would help tell what 
you're doing. 

•  This could be implemented within the 
next for loop for a faster algorithm  •  You don't necessarily need this 

variable. 
•  I think this code could have been 

more simpler without using so many if 
statements. For example, you could 
have divided the case in which the 
first operand is not a scalar or not. It 
is hard to read. 

•  You should put this comment above the 
line, otherwise it runs off the page. 

•  This is nice and concise. (I didn't 
know you could iterate through an 
array like this in a for loop) 

•  This is interesting. Why do you 
store all the messages you send/
receive in a log? 

Code author: For debugging. 
The log adds time stamps, 
which help a lot for debugging 
concurrency problems. 



A LOOK AHEAD 



MOOCs Have to Run Themselves 
•  Launching a MOOC is like authoring a textbook 

–  But keeping it running currently requires sustained expert 
involvement 

–  In the long run, we can teach the world for free only if we 
don’t have to staff the MOOCs 

•  Implications 
–  Intelligent tutor systems 
–  Peer help, feedback, assessment 
–  Alumni or external staff help 

staff 

alumni 

students 



MOOCs Have to Improve Themselves 
•  edX and Coursera will be littered with stale MOOCs 

–  Because faculty have no time or incentive to revise them 
–  In the long run, MOOCs have to revise and improve 

themselves, automatically 

•  Implications 
–  Crowdsourced content: exercises,  

quizzes, textbook, videos 
–  FrankenMOOCs that combine 

the best stuff out there 
–  Video content that can be 

edited like Wikipedia 



MOOCs Are Big Data for Education 
•  Google and Bing drive information retrieval research 

–  because they own the data & control the interface 

•  Facebook and Twitter increasingly drive social 
network research 
–  again: data + interface 

•  Universities could be driving learning science in CS 
–  if we step up and take ownership of the data + the interface 



Summary 

Lecturescape 
(lecture videos) OverCode 

(programming solutions) 

Caesar 
(peer code review) 

Thanks to support from NSF, Quanta Computer, Google, edX 

future 
•  self-running MOOCs 
•  self-improving MOOCs 
• MOOCs are our big data  


