
CS Research on MOOCs
and Online Education
•  Amy Bruckman (organizer)

–  Professor of Interactive Computing, Georgia Tech

•  Marti Hearst
–  Professor of Computer Science, School of Information, UC Berkeley

•  Rob Miller
–  Professor of Computer Science and Engineering, Massachusetts

Institute of Technology

•  Scott Klemmer
–  Associate Professor, Cognitive Science and Computer Science &

Engineering

Computer Science
Research on Higher Education?
•  Future of online education is not just about

trying things out
– Research needed
–  Interdisciplinary

•  Industry
•  Schools of education
•  Schools of computer science

•  How do we support this new interdisciplinary
practice?

Intriguing Research Challenges

•  Three strong examples of CS research
on online education

•  Discussion of the challenges
•  Discuss both MOOCs and distance ed

– Make clear which issues refer to which

•  Thanks to Andy, Greg, and Brent

Designing a World
that Teaches Itself

Scott Klemmer
Cognitive Science + Computer Science & Engineering +

 CHALLENGE & OPPORTUNITY  

Design at Large

small-group discussions

machine+peer learningricher feedback

Predict
Identify

Verify

Results

RESEARCH EXAMPLES

peer assessment

Peer and Self Assessment in Massive Online Classes, Kulkarni et al., TOCHI 2013

Peer assessment
AT LARGE…

1) Practice 2) Assess 5 Peers 3) Self-Assess

✓

staff-graded

92%

6%

2%

Yes! Certificate

Wrongly denied :(

Got it; didn’t deserve it

Peer assessment in 100+ classes

Teaching
character

Management

Constitutional law
Arguments

Introduction to
Philosophy

Essays

Social
Psychology

Essays

Programming
in Python

Code

Human-computer
Interaction

Design

Child
Nutrition
Recipes

World Music
!

Music

AT LARGE…

Peer and Self Assessment in Massive Online Classes, Kulkarni et al., TOCHI 2013

Qualitative, personalized feedback
• Peers can recognize errors from a list of

patterns, even if they can’t articulate them
• Most errors are variations on a theme

+ “...because

_____________________”

FORTUNE COOKIES

Peer and Self Assessment in Massive Online Classes, Kulkarni et al., TOCHI 2013

Alone Together?

Small groups in massive classes
“It was like a mini-UN.
We had an Australian
currently residing in
Dubai, an Afghan, a
Romanian, an Indian &
myself (a Pakistani).”

LEVERAGING DIVERSE EXPERIENCES

Making Distance Matter with Small Groups in Massive Classes, Kulkarni et al., in submission

• richer semantics increase quality

Creating Micro-Experts

• ——!
• ——!
• ——

 ——!
 ——!
 ——

IDENTIFY-VERIFY

Scaling Short-answer Grading by Combining Peer Assessment with Algorithmic Scoring,
Kulkarni, Socher, Bernstein, & Klemmer, Learning at Scale, 2014

from scores to labels

Machines modulate peer grading

Identify

Valid

Predict Invalid? ResultsVerify

IDENTIFY-VERIFY

Scaling Short-answer Grading by Combining Peer Assessment with Algorithmic Scoring,
Kulkarni, Socher, Bernstein, & Klemmer, Learning at Scale, 2014

• Build practical theory with
real-world experiments

• Bake pedagogy into
software that transforms
learning

CS RESEARCH OPPORTUNITY

http://d.ucsd.edu/peer

“Nothing is as practical
as a good theory”

“The best way to
understand something
is to try and change it”

–Kurt Lewin

• Build practical theory with
real-world experiments

• Bake that theory into
software that transforms
<X>

DESIGN AT LARGE

• Build practical theory with
real-world experiments

• Bake that theory into
software that transforms
<X>

Real
!

are
critical

http://cs303.stanford.edu

We Need to Do These 3 Things
• Insure that learners understand their role in

experiments they opt in to 
Good design is key, and nuanced

• Insuring broad research access to conducting
experiments, evaluating data, & open science 
Chairs: you have an important role here

• Few current CS curricula don’t teach
experimental design. More should. 
Especially in data/HCI/learning tracks

http://d.ucsd.edu/peer

We Have Resources for You
• Open-source platforms with analytics,

course materials, instructor resources, &
graduating students :)

The Big Research Opportunity
• Tomorrow’s online class won’t look like

today’s (I hope)

scale personalized mastery-
learning experiences?

How might we…

http://d.ucsd.edu/peer

Fred Brooks, The Computer Scientist as Toolsmith

Why CS?
• The scientific opportunities are tremendous
• Concrete problems are a great forge for

fundamental insights
• A proud history of lifelong learning
• The CS legacy: don’t just understand the

world, make it a better place

follow student work at #hci5

http://d.ucsd.edu/srk
 @DesignAtLarge

with Chinmay Kulkarni 
+ many collaborators

Online Education with
Learnersourcing

Rob Miller
User Interface Design Group

MIT CSAIL

Joint work with Juho Kim, Sarah Weir,
Elena Glassman, Philip Guo, Carrie Cai,

Max Goldman, Phu Nguyen, Rishabh Singh, Jeremy Scott

MOOCs: a New Scale for Learning

•  Big problem
–  we’re very far from 1-on-1 mastery learning
–  little human feedback, mass production instead of personalization,

high attrition rates

•  Huge opportunity
–  much faster controlled experimentation & iterative improvement
–  big online crowds can do amazing things by themselves

classroom 1:10 lecture 1:100 stadium 1:10,000

Crowdsourcing vs. Learnersourcing
•  Crowdsourcing

–  asking a crowd to do micro-work for problems we can’t solve
with software

–  what does the crowd get in return? money, fun, social

•  Learnersourcing
–  asking students to do micro-work for an online course
–  what do students get in return? learning (hopefully)

•  Types of learnersourcing
–  active: asking people to do something
–  passive: watching what people do and inferring something

•  Discussion forums are active learnersourcing
–  and without them, our current MOOCs would utterly fail

A Few Examples from My Group
•  Lecture video analytics

–  find bugs and key parts in lecture videos
–  passive learnersourcing

•  Peer code review
–  students give feedback to each other
–  active learnersourcing

•  Solution analytics
–  understand the range of solutions to a

coding assignment
–  passive learnersourcing

LECTURE VIDEOS

MOOC lecture videos

Challenge for instructors/editors
•  Don’t know how students use lecture videos

–  Confusion
–  “Aha” moments
–  Bored
–  Re-watching important parts

•  We analyzed video interaction data from the lectures
in 4 edX courses
–  Clickstream (play, pause, scrub)

7

Interaction Peaks

8

Example: Beginning of new material

9

Example: Backing up

10

LectureScape: Enhancing lecture videos!

SOLUTION ANALYTICS

A Typical Programming Assignment
Time

Deadline

Write an iterative function that
computes ab

What did
our

students
do?

Oops, the
autograder

should have
caught that.

Oh no!
Never do

that!

Clever--I
didn't know
you could
do it that

way. 13

OverCode

•  Overcode allows teaching staff to see the similarity and
variation among thousands of solutions.

14

Solution Cleaning & Clustering

•  OverCode makes solutions easier to read and cluster
–  Reformat code for consistency
–  Rename variables with identical behavior
–  Ignore statement order when clustering solutions

15

iterPower ~3800

hangman ~1100

computeDeriv ~1400

16

~40%

~9%

~1%

~10%

~9%

~0.5%

Total Solutions Largest Stack 2nd Largest

Performance

OverCode preprocessing pipeline is linear with number of
solutions and runs on a laptop

Other clustering approaches are quadratic in number of
solutions and need a computer cluster.

17

Feedback Coverage

iterPower hangman compDeriv

0

10

20

30

40

50

60

70

80

90

100

%
 r
a
w
 s
o
lu
ti
o
n
s
 c
o
v
e
re
d
 b
y
 f
e
e
d
b
a
c
k

Baseline

OverCode

iterPower

2

6

8

12

S
u
b
je
c
t
ID

iterPower -­ Baseline

iterPower hangman computeDeriv 18

% solutions covered
by the teacher’s post

users: 12 teaching assistants
control: all solutions concatenated in a page
task: write a discussion forum post

Teacher Perceptions

19

PEER CODE REVIEW

Problem: Feedback about Coding Style

•  MIT 6.005 Software Construction
–  foundation-level programming course (replaced 6.001/6.170)
–  400 students per year, mostly sophomores

•  Students write lots of code
–  roughly 10kloc in problem sets and projects

•  Automatic grading is necessary but not sufficient

–  we need human readers, and we want line-by-line feedback

21

correct and
understandable

correct but
confusing

Approach: Crowd-Driven Code Review

•  Chop up student programs into chunks
•  Review the chunks by a mixed crowd: students, staff, alums

•  Anticipated benefits

–  faster, cheaper, more diverse comments
–  give practice with code reviewing (a widespread industry practice)
–  expose to good and bad solutions
–  reduce workload on teaching staff
–  incorporate alumni back into the course

•  Not using for grading... yet
 22

staff

alumni

students

Caesar: Divide & Conquer

23

programs chopped into chunks

each chunk assigned
to multiple reviewers

Social Reviewing

24

replies &
discussion

upvotes &
downvotes

automatic
style checker
comments

reviewer
comments

reviewers can see
whole program
(not just chunk) if
needed

reviewers have a
reputation (#upvotes,
+ 100 if they’re alums
or staff of the course)

Experience

25

Fall
2011

Spring
2012

180 students
 54 alums
 15 staff

215 students
 0 alums
 17 staff

PS0 PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS0 PS1 PS2 PS3 PS4

13 problem sets, 2200 submissions

21,500 comments

 5% alums 16.2% upvoted
 8% staff 0.7% downvoted
87% students

9.6 comments per submission

PS0 PS1 PS2 PS3 PS4 PS5 PS6 PS7

average time students
spent reviewing

60m

50m

40m

30m

20m

10m

Kinds of Comments

26

Bug
Clarity

Style

Performance
Simplicity

Learning
Positive

•  Does the message already include
"\n"? If so, this is fine. If not, it should
be added here.

•  I don't really understand what you're
trying to test for here - why the 20?
Small comments would help tell what
you're doing.

•  This could be implemented within the
next for loop for a faster algorithm •  You don't necessarily need this

variable.
•  I think this code could have been

more simpler without using so many if
statements. For example, you could
have divided the case in which the
first operand is not a scalar or not. It
is hard to read.

•  You should put this comment above the
line, otherwise it runs off the page.

•  This is nice and concise. (I didn't
know you could iterate through an
array like this in a for loop)

•  This is interesting. Why do you
store all the messages you send/
receive in a log?

Code author: For debugging.
The log adds time stamps,
which help a lot for debugging
concurrency problems.

A LOOK AHEAD

MOOCs Have to Run Themselves
•  Launching a MOOC is like authoring a textbook

–  But keeping it running currently requires sustained expert
involvement

–  In the long run, we can teach the world for free only if we
don’t have to staff the MOOCs

•  Implications
–  Intelligent tutor systems
–  Peer help, feedback, assessment
–  Alumni or external staff help

staff

alumni

students

MOOCs Have to Improve Themselves
•  edX and Coursera will be littered with stale MOOCs

–  Because faculty have no time or incentive to revise them
–  In the long run, MOOCs have to revise and improve

themselves, automatically

•  Implications
–  Crowdsourced content: exercises,

quizzes, textbook, videos
–  FrankenMOOCs that combine

the best stuff out there
–  Video content that can be

edited like Wikipedia

MOOCs Are Big Data for Education
•  Google and Bing drive information retrieval research

–  because they own the data & control the interface

•  Facebook and Twitter increasingly drive social
network research
–  again: data + interface

•  Universities could be driving learning science in CS
–  if we step up and take ownership of the data + the interface

Summary

Lecturescape
(lecture videos) OverCode

(programming solutions)

Caesar
(peer code review)

Thanks to support from NSF, Quanta Computer, Google, edX

future
•  self-running MOOCs
•  self-improving MOOCs
• MOOCs are our big data

