APCS Principles

www.csprinciples.org

A new first course in computer science

A new first course in computer science

Alternative to CS1, not replacement

A new first course in computer science

Designed to be an AP course: credit/placement

Alternative to CS1, not replacement

A new first course in computer science

Designed to be an AP course: credit/placement Collaborative: CollegeBoard, NSF, Academia (6-12/University)

Alternative to CS1, not replacement

Process and Content

- How are we designing and building this course?
 - Who is behind the development
 - What is the process used
- What will be in this course?
 - Content
 - Skills
 - Pedagogy

Toward another first course

- Harvard CS50, CS1
- Stanford CS 106A, CS 105
- Princeton COS 126, 116/109
- Berkeley CS61A, CS10
- Texas, CS 305J, CS 302
- Wisconsin, CS 302, CS 250/202
- Colorado CSCI 1300, 1220/1000

Toward another first course

- Tufts, Comp 11, Comp 9,7
- Clemson CPSC 101, CPSC 120
- USC, CS 101L, Nothing
- Virginia Tech, CS 1054, CS 1614
- U. Kansas, EECS 168, EECS 128
- Brown, CSCI 150, CSCI 20
- U. Mass, CMPSCI 121, CMPSCI 120

Who?

- Don Allen
- Christine Alvarado
- Owen Astrachan
- Stacey Armstrong
- Tiffany Barnes
- Amy Briggs
- Charmaine Bentley
- Mark Guzdial
- Rich Kick
- Jody Paul
- Chris Stephenson
- Duane Bailey

- Dan Garcia
- Joanna Goode
- Susanne Hambrusch
- Michelle Hutton
- Deepak Kumar
- Jim Kurose
- Andrea Lawrence
- Richard Pattis
- Katie Siek
- Beth Simon
- Larry Snyder
- Lynn Stein
- Fran Trees
- Lien Diaz
- Cameron Wilson
- Jan Cuny
- Kathy Haynie

Foundation of Course/Exam

- Commission convened to use College Board framework and methodology to build course/exam
 - Evidence-centered design
 - Claim: student has knowledge or skill
 - Evidence: behavior/performance that the skill/knowledge has been achieved
- Drafted Seven Big Ideas

Commission and Advisory Board

 Commission has task of delivering framework for course/exam using evidence centered design

 Advisory board provides feedback, guidelines, advice to commission
 Advisory board actually advises

Timeline

• 2009-2010

– Big Ideas, Practices, Claims/Evidence

- 2010-11
 - Pilot I: Five colleges
 - Draft College Survey
 - Test item prototype
- 2011-12

- Pilot II: 10+ colleges, 10+ high schools

Possible Next Timeline

- Necessary and sufficient conditions to continue
 - How do we ensure "substantial" buy-in?
- 2012-2013
 - Curricular framework finalized?
 - Exam format identified
- Deploy exam and course -201?

From Process to Product

- What will be in this course?
 - Pilot courses are exemplars
 - Seven big ideas
 - Six computational thinking practices
 - 200 claims and evidence statements
- From bits to NP to modeling to ...

Where's the Programming?

 To that end [solving computational problems and exploring creative endeavors], the course highlights programming as one of the seven big ideas of computer science, because programming is among the creative processes that help transform ideas into reality.

Big Ideas

- 1. Computing is a creative human activity that engenders innovation and promotes exploration.
- 2. Abstraction reduces information and detail to focus on concepts relevant to understanding and solving problems.

Big Ideas Continued

3. Data and information facilitate the creation of knowledge.

4. Algorithms are tools for developing and expressing solutions to computational problems.

Big Ideas Continued

5. Programming is a creative process that produces computational artifacts.

6. Digital devices, systems, and the networks that interconnect them enable and foster computational approaches to solving problems.

Big Ideas

7. Computing enables innovation in other fields including science, social science, humanities, arts, medicine, engineering, and business.

Computational Thinking Practices(Draft)

- 1. Analyzing problems, artifacts, and effects of computation
- 2. Creating and using computational artifacts, computational models
- 3. Communicating processes and results
- 4. Connecting computation with mathematics, science, engineering
- 5. Work effectively in teams

What will students do? What problems will they solve?

Stories motivate computational examples

Undecidable, P/NP, heuristics

JULY 1, 2010, 5:26 P.M. ET

UPDATE: Google To Acquire ITA Software For \$700 Million >GOOG

Article

We're Hiring Hackers

SIAM/Journal for Society for Industrial and Applied Mathematics July/August 2000

Computer Scientists Find Unexpected Depths In Airfare Search Problem

<u>17 U.S.C. § 512</u> DMCA

- Limitations on liability for service providers

 YouTube /Google v
 Viacom, June 23, 2010
- 24 hours video/minute
 Youtube: 3/17/2010
 - How many Gbytes?
- How does Youtube analyze audio tracks?

Thinking about TinEye and Testing

Best Match

Most Changed Biggest Image

Share Results

On Twitter 🛛

On Facebook 💀

Via Email

More

Compare | Link JPEG Image

250x110, 5.9 KB

Compare | Link JPEG Image 300x132, 12.7 KB

250px-Tower of Hanoi.jpeg http://satoshi.blogs.com/life/2009/11/google-ap..

http://www.academickids.com/encyclopedia/index..

www.academickids.com

300px-Hanoiklein.jpg

en.wikipedia.org 300px-Tower of Hanoi.jpeg http://en.wikipedia.org/wiki/Tower_of_Hanoi

Compare | Link es.wikipedia.org JPEG Image 300x132, 7.9 KB

300px-Tower of Hanoi.jpeg http://es.wikipedia.org/wiki/Torres de Han%C3%B3i

ur.wikipedia.org 300px-Tower of Hanoi.jpeg http://ur.wikipedia.org/wiki/%D8%A8%D8%B1%D8%AC...

Different images – Size and format

Clip image search - Search? Success!

Hide image search? Steganography

Steganography with 2 bits/ pixel

Extract image from Hanoi: 2

PNG, 400x300, 177.9 KB

Searched over 1.5728 billion images in 4.960 second for file: http://www.cs.duke.edu/~ola/images/hanoi-hidden.png

These results expire in 72 hours. Why?

Post a success story!

Extracting image: 2-bits

def extractImage(im):
 newImage = im.convert("RGB")
 data = newImage.getdata()
 pic = Image.new(im.mode,im.size,None)

ndata =
$$[(r%4*64, g%4*64, b%4*64)]$$

for (r,g,b) in data]

pic.putdata(ndata) return pic

Future work

- Oversee pilot courses, analyze the outcomes of the pilots, prepare for next, larger pilot
- Gain consensus on claims and evidence (from 500+ to ~128)
- Develop prototype exam questions
- Gather support for next phase of project