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Preface	  

Chris	  Dede,	  Harvard	  University	  

We’ve	  all	  attended	  workshops	  where	  all	  the	  right	  people	  were	  in	  the	  room	  to	  have	  really	  interesting	  and	  
important	  discussions,	  but	  the	  meeting	  was	  disappointing	  because	  presentations	  used	  up	  almost	  the	  
time	  for	  dialogue.	  This	  workshop	  is	  designed	  to	  avoid	  this	  problem,	  in	  part	  through	  this	  briefing	  book.	  

All	  participants	  are	  asked	  to	  read	  these	  think-‐pieces	  in	  advance.	  This	  provides	  each	  presenter	  with	  the	  
opportunity	  to	  get	  their	  ideas	  on	  the	  table	  without	  using	  time	  at	  the	  workshop	  to	  do	  that.	  The	  collective	  
think-‐pieces	  also	  provide	  a	  way	  to	  sketch	  the	  multiple	  dimensions	  of	  data-‐intensive	  research	  in	  
education.	  “Big	  data”	  reminds	  me	  of	  the	  fable	  about	  the	  blind	  men	  and	  the	  elephant.	  Each	  of	  us	  has	  part	  
of	  the	  beast:	  the	  trunk,	  an	  ear,	  a	  leg.	  At	  the	  workshop,	  we’ll	  put	  the	  puzzle	  together,	  and	  the	  briefing	  
book	  is	  the	  first	  step	  in	  the	  process	  of	  “seeing	  the	  elephant.”	  

Presenters	  have	  been	  asked	  to	  “start	  in	  the	  middle,”	  to	  assume	  that	  participants	  have	  read	  their	  
thought-‐piece	  so	  they	  can	  build	  on	  those	  ideas.	  In	  this	  way,	  we	  can	  get	  deeper	  in	  our	  dialogues.	  Plus,	  
even	  before	  their	  session	  you	  can	  approach	  presenters	  to	  discuss	  the	  ideas	  in	  their	  think-‐piece.	  	  

So,	  please	  read	  these	  in	  advance.	  Enjoy…	  



	  

	  

Advancing	  Data-‐Intensive	  Research	  in	  Education	  

Waterview	  Conference	  Center	  
1919	  North	  Lynn	  St.	  	  
Arlington,	  VA,	  22209	  

http://www.executiveboard.com/exbd/waterview/local-‐area/directions/index.page	  
	  

Sunday,	  May	  31,	  2015	  

5:30-‐7:00	  	   Opening	  reception	  at	  Le	  Meridian	  Hotel,	  Arlington	  

Monday,	  June	  1,	  2015	  

7:30-‐8:30	   Breakfast	  

8:30-‐8:50	  	  	   Welcome	  from	  Joan	  Ferrini-‐Mundy,	  Assistant	  Director,	  Directorate	  for	  Education	  and	  
Human	  Resources	  (EHR)	  	  

8:50-‐9:00	   Purposes	  and	  Processes	  of	  the	  Workshop	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
Susan	  Singer,	  Division	  Director,	  Division	  of	  Undergraduate	  Education	  (EHR/DUE)	  	  
Chris	  Dede,	  Timothy	  E.	  Wirth	  Professor	  in	  Learning	  Technologies,	  Harvard	  University	  

9:00-‐10:00	  	  	  	  	   NSF’s	  Role	  in	  Advancing	  Data	  Science	  
Susan	  Singer	  (DUE);	  Taylor	  Martin,	  Program	  Officer,	  Division	  of	  Research	  on	  Learning	  
(EHR/DRL);	  Gül	  Kremer,	  Program	  Officer,	  Division	  of	  Undergraduate	  Education	  
(EHR/DUE);	  Elizabeth	  Burrows,	  NSF	  AAAS	  Fellow,	  Division	  of	  Mathematical	  Sciences	  
(MPS/DMS)	  

10:00-‐10:15	   Break	  

10:15-‐11:15	   Predictive	  Models	  based	  on	  Behavioral	  Patterns	  in	  Higher	  Education	  	  
Ellen	  Wagner	  (PAR	  Framework);	  David	  Yaskin	  (Hobsons)	  
Chair:	  Chris	  Dede,	  Harvard	  

11:15-‐12:30	   Dialogue	  on	  Privacy,	  Security,	  and	  Ethics	  
Elizabeth	  Buchanan	  (U.W.	  Stout);	  Ari	  Gesher	  (Palantir);	  Patricia	  Hammer	  (PK	  Legal);	  Una	  
May	  O’Reilly	  (MIT)	  
Chair:	  Anthony	  E.	  Kelly	  (Office	  of	  the	  Assistant	  Director,	  EHR/OAD)	  

12:30-‐1:30	   Working	  Lunch	  	  
(“birds	  of	  a	  feather”	  groups	  to	  discuss	  analytics,	  infrastructure,	  data	  sharing,	  data	  
standards/interoperability,	  privacy/security/ethics,	  producer/consumer	  relationships,	  
building	  human	  capacity,	  visualization…)	  

	   	  



	  

	  

1:30-‐2:45	  	   Integrating	  Data	  Repositories	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
Ken	  Koedinger	  (LearnLab	  Datashop);	  Rick	  Gilmore	  (Databrary);	  Edith	  Gummer	  (Kauffman	  
Foundation)	  
Chair:	  Gül	  Kremer,	  Program	  Officer	  DUE	  

2:45-‐3:00	   Break	  

3:00-‐4:15	  	   MOOCs	  
Diana	  Oblinger	  (EDUCAUSE);	  Piotr	  Mitros	  (edX);	  Andrew	  Ho	  (Harvard)	  
Chair:	  John	  Cherniavsky,	  Senior	  Advisor,	  EHR	  
	  

4:15-‐5:15	   Plenary	  Discussion	  –	  Synthesis	  of	  the	  Day	  

Dinner	  on	  your	  own	  –	  please	  form	  groups	  around	  topics	  of	  interest	  

Tuesday,	  June	  2,	  2015	  

7:30-‐8:30	   Breakfast	  

8:30-‐8:45	   Summary	  of	  yesterday;	  framing	  of	  today	  

	   	   Susan	  Singer	  and	  Chris	  Dede	  	  

8:45-‐10:00	  	   Games	  and	  simulations	  for	  training,	  informal	  post-‐secondary	  learning	  
Matthew	  Berland	  (UW);	  Eric	  Klopfer	  (MIT);	  Valerie	  Shute	  (Florida	  State)	  
Chair:	  Dexter	  Fletcher	  (IDA)	  

10:00-‐10:15	  	   Break	  

10:30-‐12:00	   Breakout	  Groups	  

a. New	  forms	  of	  teaching	  and	  learning	  based	  on	  data-‐rich	  environments,	  visualization,	  
and	  analytics	  
Moderator:	  Susan	  Singer	  

b. Infrastructure	  
Moderator:	  Taylor	  Martin	  

c. Producer/consumer	  relationships	  and	  partnerships	  
Moderator:	  Chris	  Dede	  

d. Building	  human	  capacity	  
Moderators:	  Earnestine	  Easter,	  Program	  Officer,	  Division	  of	  Graduate	  Education	  
(EHR/DGE)	  and	  Michelle	  Dunn,	  Senior	  Advisor	  for	  Data	  Science	  Training,	  Diversity,	  
and	  Outreach	  (NIH)	  

12:00-‐1:00	  	   Working	  Lunch	  –	  Sharing	  insights	  from	  Breakouts	  



	  

	  

1:00-‐2:15	   The	  Way	  Forward:	  Integrating	  Insights	  	  
Vijay	  Kumar	  (MIT);	  Jere	  Confrey	  (NCSU);	  George	  Siemens	  (UT-‐Arlington)	  	  
Chair:	  Chris	  Dede	  

	  
2:15-‐2:30	   Funding	  Opportunities	  

	  
2:30-‐3:00	   Plenary	  Discussion:	  Closing	  Thoughts	  and	  Next	  Steps	  

Susan	  Singer	  and	  Chris	  Dede	  



How	  Big	  is	  “Big	  Data”	  Across	  Disciplines:	  A	  Preliminary	  Analysis	  of	  Workshop	  Presentations	  on	  Model	  
Projects	  Funded	  by	  Five	  NSF	  Directorates	  

Elizabeth	  H.	  Burrows1	  

1. AAAS	  S&T	  Policy	  Fellow,	  Big	  Data	  track,	  placed	  at	  National	  Science	  Foundation,	  Division	  of	  Mathematical	  
Sciences	  	  	  

Abstract	  

The	  increase	  in	  capacity	  of	  and	  cost	  reduction	  in	  computing	  technologies	  has	  enabled	  unprecedented	  
efficiencies	  in	  scientific	  discovery	  through	  curation,	  analyses	  and	  interpretation	  of	  massive	  datasets.	  
However,	  it	  is	  observed	  that	  the	  uptake	  level	  and	  concentration	  on	  “Big	  Data”	  opportunities	  for	  
scientific	  purposes	  are	  varied	  across	  disciplines.	  We	  assert	  that	  this	  variation	  is	  caused	  by	  the	  nature	  of	  
the	  data	  needed	  within	  disciplinary	  communities,	  and	  can	  be	  characterized	  using	  the	  Velocity-‐Variety-‐
Veracity-‐Volume	  typology.	  Using	  National	  Science	  Foundation	  sponsored	  exemplary	  projects	  from	  
geological,	  engineering,	  biological,	  computational,	  and	  atmospheric	  sciences,	  we	  plan	  to	  analyze	  data	  
characteristics	  within	  these	  projects	  and	  compile	  salient	  lessons	  learned	  to	  inform	  the	  scientific	  
community	  at	  large,	  with	  specific	  attention	  to	  education	  research.	  	  Presented	  within	  is	  an	  example	  
analysis	  from	  a	  project	  in	  Biology,	  the	  National	  Plant	  Genome	  Initiative	  (NPGI).	  

Introduction	  

In	  January	  2015,	  the	  first	  workshop	  in	  this	  series	  was	  held,	  titled,	  “Towards	  Big	  Steps	  Enabled	  by	  Big	  
Data	  Science”,	  and	  its	  focus	  was	  on	  case	  studies	  of	  effective	  partnerships	  outside	  of	  education	  between	  
big	  data	  producers	  and	  consumers.	  	  The	  agenda,	  presentations,	  and	  rationale	  for	  the	  connection	  
between	  the	  first	  workshop	  and	  the	  current	  one	  described	  in	  this	  briefing	  book,	  are	  available	  online	  at	  
http://cra.org/events/big-‐data-‐initiative.	  	  Prior	  to	  delving	  into	  the	  content	  of	  the	  second	  workshop,	  
focused	  on	  education,	  it	  is	  worthwhile	  to	  conduct	  a	  comparative	  analysis	  of	  the	  status	  of	  “Big	  Data”	  in	  
the	  projects	  presented	  in	  the	  first	  workshop.	  	  	  
	  
Although	  writing	  and	  talking	  about	  big	  data	  is	  popular,	  interdisciplinary	  discussions	  on	  this	  subject	  are	  
challenging.	  One	  of	  the	  reasons	  for	  this	  might	  be	  that	  our	  mental	  model	  on	  the	  meaning	  of	  “big”	  data	  is	  
informed	  by	  our	  disciplinary	  boundaries.	  In	  other	  words,	  the	  volume	  of	  data	  in	  one	  discipline	  may	  be	  the	  
defining	  factor	  that	  deems	  it	  “big”	  data,	  while	  the	  complexity	  of	  dealing	  with	  “big”	  data	  may	  not	  be	  as	  
fruitful	  or	  important	  compared	  to	  other	  disciplines.	  Attesting	  to	  this,	  in	  their	  survey	  of	  the	  definitions	  of	  
Big	  Data,	  Stuart	  and	  Barker	  (2013)	  indicated	  that	  the	  literature	  using	  the	  term	  Big	  Data	  came	  from	  many	  
disciplines,	  and	  yielded	  “multiple,	  ambiguous	  and	  often	  contradictory	  definitions.”	  (pg.	  1).	  They	  then	  
compiled	  definitions,	  ranging	  from	  more	  abstract	  in	  nature	  to	  the	  ones	  utilizing	  facets	  that	  induce	  
complexity	  in	  handling	  and	  analyzing	  data.	  These	  definitions	  included	  industry’s	  (e.g.,	  Microsoft,	  Intel,	  
Oracle)	  input	  as	  well	  as	  other	  organizations’,	  such	  as	  National	  Institute	  of	  Standards	  and	  Technology	  
(NIST).	  	  
	  
Stuart	  and	  Barker’s	  (2013)	  review	  of	  big	  data	  definitions	  converged	  on	  the	  criticality	  of	  the	  following:	  a)	  
Size:	  the	  volume	  of	  the	  datasets;	  b)	  Complexity:	  the	  structure,	  behavior	  and	  permutations	  of	  the	  
datasets;	  and	  c)	  Technologies:	  the	  tools	  and	  techniques	  that	  are	  used	  to	  process	  high	  volume	  and	  
complex	  datasets.	  Indeed,	  these	  critical	  factors	  are	  reflected	  in	  one	  of	  the	  most	  recent	  definitions	  put	  



forth	  by	  NIST’s	  Big	  Data	  Public	  Working	  Group	  (2015,	  pg.	  5):	  “Big	  Data	  consists	  of	  extensive	  datasets	  
primarily	  in	  the	  characteristics	  of	  volume,	  variety,	  velocity,	  and/or	  variability	  that	  require	  a	  scalable	  
architecture	  for	  efficient	  storage,	  manipulation,	  and	  analysis.”	  The	  volume,	  velocity	  and	  variety	  factors	  
are	  similar	  to	  those	  presented	  as	  early	  as	  in	  2001	  within	  the	  Gartner	  Report,	  where	  complexities	  due	  to	  
(1)	  the	  increasing	  size	  of	  data	  (volume),	  (2)	  the	  increasing	  rate	  at	  which	  it	  is	  produced	  (velocity),	  and	  (3)	  
its	  increasing	  range	  of	  formats	  and	  representations	  (variety).	  	  Veracity	  is	  added	  to	  the	  factors	  describing	  
complexities	  of	  big	  data,	  encompassing	  widely	  differing	  qualities	  of	  data	  sources,	  with	  significant	  
differences	  in	  the	  coverage,	  accuracy	  and	  timeliness	  of	  data	  (Dong	  and	  Srivasta,	  2013).	  
	  
We	  opine	  that	  a	  preliminary	  analysis	  of	  sample	  big	  data	  implementations	  across	  disciplinary	  boundaries	  
using	  the	  Velocity-‐Variety-‐Veracity-‐Volume	  typology	  will	  support	  the	  discussions	  on	  interdisciplinary	  
research	  and	  development	  in	  this	  domain,	  and	  cross-‐fertilize	  further	  development	  with	  the	  benefit	  of	  
lessons	  learned	  informing	  all	  disciplines.	  With	  this	  intent,	  below	  we	  first	  describe	  the	  methodology	  we	  
have	  adopted	  for	  the	  preliminary	  analysis,	  and	  then	  present	  the	  results.	  Salient	  lessons	  learned	  from	  
various	  disciplines	  are	  also	  summarized	  to	  further	  inform	  all	  disciplines,	  including	  education.	  

Methodology	  

Our	  goal	  is	  to	  conduct	  a	  preliminary	  analysis,	  using	  the	  Velocity-‐Variety-‐Veracity-‐Volume	  typology,	  to	  
understand	  the	  current	  levels	  of	  exposure	  and	  needs	  in	  data	  storage,	  manipulation	  and	  analysis	  in	  
representative	  case	  studies	  from	  various	  disciplines,	  in	  order	  to	  uncover	  potentials	  for	  sharing	  lessons	  
learned.	  	  In	  order	  to	  choose	  model	  case	  studies,	  NSF	  program	  officers	  from	  different	  directorates	  were	  
contacted	  to	  identify	  exemplary	  big	  data	  projects.	  Nominees	  were	  then	  contacted	  to	  attend	  a	  workshop	  
where	  they	  introduced	  their	  projects	  discussing	  challenges	  and	  opportunities.	  Data	  for	  our	  analysis	  is	  
comprised	  of	  the	  presentations	  by	  these	  speakers	  (project	  principle	  investigators),	  supplemented	  by	  the	  
notes	  taken	  during	  the	  presentation	  and	  Q&A	  sessions	  and	  related	  literature.	  The	  remaining	  steps	  of	  the	  
analysis	  methodology	  can	  be	  summarized	  as	  follows.	  

1. Mine	  PowerPoints,	  notes,	  and	  related	  publications	  from	  the	  workshop	  and	  fill	  out	  a	  table	  
with	  each	  speaker	  in	  the	  rows	  and	  the	  4	  Vs	  in	  the	  columns	  

2. Cross-‐validate	  classifications	  
3. Ask	  speakers	  for	  corroboration	  	  
4. Seek	  additional	  literature	  to	  support/	  reject	  conclusions	  
5. Conduct	  a	  broader	  literature	  review	  of	  the	  current	  status	  and	  evolution	  (including	  profile	  

and	  trajectory)	  of	  data-‐intensive	  research	  in	  each	  discipline	  	  
	  

Results	  and	  Discussion	  

Preliminary	  assessments	  of	  the	  case	  studies	  are	  presented,	  followed	  by	  a	  deeper	  examination	  of	  a	  case	  
study	  in	  biology.	  	  Further	  quantitative	  detail	  and	  a	  thorough	  literature	  review	  will	  be	  conducted	  for	  each	  
project	  presented	  at	  the	  workshop.	  

High-‐level	  Reflections	  	  

The	  structure	  of	  the	  first	  workshop	  proved	  very	  productive	  in	  revealing	  the	  differential	  nature	  of	  data-‐
intensive	  research	  challenges.	  



	  
The	  first	  of	  the	  two	  earth	  science	  presentations	  focused	  on	  Big	  Data	  in	  open	  topography,	  which	  is	  a	  
mature	  area	  in	  which	  data	  is	  easily	  and	  unobtrusively	  obtained	  via	  LIDAR	  (light	  detection	  and	  ranging)	  
measurements	  from	  laser	  sensors.	  A	  large	  user	  community	  draws	  on	  this	  data,	  which	  is	  collected,	  
transformed,	  optimized,	  and	  organized	  in	  a	  central	  repository.	  The	  development	  of	  tools	  for	  analyzing	  
this	  data	  is	  an	  important	  part	  of	  the	  cyberinfrastructure.	  Exponential	  growth	  in	  data	  and	  rapidly	  evolving	  
scientific	  findings	  are	  emerging	  challenges	  in	  this	  field,	  but	  at	  present	  there	  are	  no	  major	  issues.	  Models	  
from	  this	  type	  of	  data-‐intensive	  research	  may	  be	  of	  value	  for	  comparable	  types	  of	  big	  data	  in	  education,	  
such	  as	  student	  behavior	  data	  in	  higher	  education	  and	  the	  growing	  use	  of	  predictive	  model	  to	  derive	  
insights	  from	  this	  for	  issues	  such	  as	  student	  retention.	  Another	  parallel	  in	  education	  is	  multi-‐modal	  data	  
about	  student	  learning	  behaviors	  such	  as	  that	  available	  from	  sensors,	  video	  gesture	  recognition,	  and	  
logfiles.	  
	  
Also	  in	  the	  earth	  sciences,	  but	  facing	  much	  more	  immediate	  challenges	  is	  Big	  Data	  in	  climate	  modeling.	  
The	  amount	  of	  data	  now	  available	  is	  pushing	  both	  computational	  and	  storage	  capability	  to	  its	  limits,	  and	  
the	  important	  next	  step	  of	  improving	  the	  fidelity	  of	  climate	  models	  will	  necessitate	  a	  million-‐fold	  
increase	  in	  computing	  capability,	  with	  comparable	  impacts	  on	  data	  storage,	  transfer,	  and	  other	  parts	  of	  
cyberinfrastructure.	  Models	  from	  this	  type	  of	  data-‐intensive	  research	  may	  be	  of	  value	  for	  comparable	  
types	  of	  big	  data	  in	  education,	  such	  as	  the	  massive	  amounts	  of	  learning	  data	  that	  could	  be	  collected	  
outside	  of	  formal	  educational	  settings	  via	  games,	  social	  media,	  and	  informal	  learning	  activities	  such	  as	  
makerspaces.	  
	  
In	  biology,	  data-‐intensive	  research	  in	  plant	  genomics	  required	  a	  multi-‐decade	  series	  of	  five	  year	  plans,	  
developed	  and	  actualized	  across	  the	  entire	  scholarly	  community	  in	  this	  field.	  These	  coordinated	  
activities	  focused	  on	  translating	  basic	  knowledge	  into	  a	  comprehensive	  understanding	  of	  plant	  
performance,	  studying	  the	  effects	  of	  local	  climate	  variations,	  and	  accelerating	  the	  field’s	  processes	  of	  
discovery.	  The	  evolution	  of	  systems	  and	  data	  interoperability	  and	  standards	  was	  crucial	  to	  success,	  and	  
substantial	  cyberinfrastructure	  challenges	  remain	  in	  data	  aggregation,	  computational	  power,	  and	  
analytic	  methods.	  Models	  from	  this	  type	  of	  data-‐intensive	  research	  may	  be	  of	  value	  for	  comparable	  
types	  of	  big	  data	  in	  education,	  such	  as	  the	  massive	  amounts	  of	  learning	  data	  that	  could	  be	  collected	  
from	  MOOCs,	  intelligent	  tutoring	  systems,	  and	  digital	  teaching	  platforms.	  
	  
In	  health	  informatics,	  data-‐intensive	  research	  requires	  collecting	  and	  integrating	  data	  from	  a	  wide	  
variety	  of	  sources,	  posing	  considerable	  challenges	  of	  interoperability	  and	  standardization.	  Further,	  
unlike	  the	  types	  of	  scientific	  data	  discussed	  thus	  far,	  issues	  of	  privacy	  and	  security	  are	  paramount	  in	  
medicine	  and	  wellness,	  greatly	  complicating	  the	  processes	  of	  collection,	  storage,	  and	  analysis.	  Models	  
from	  this	  type	  of	  data-‐intensive	  research	  may	  be	  of	  value	  for	  comparable	  challenges	  of	  big	  data	  in	  
education,	  such	  the	  development	  and	  management	  of	  repositories	  containing	  all	  the	  types	  of	  behavioral	  
and	  learning	  data	  discussed	  above.	  
	  
Both	  engineering	  and	  astronomy	  confront	  challenges	  of	  needing	  more	  human	  capacity	  in	  data	  sciences	  
to	  cope	  with	  the	  amount	  of	  data	  being	  collected	  and	  stored.	  In	  engineering,	  the	  development	  for	  
centers	  that	  specialize	  in	  access	  to	  big	  data,	  the	  creation	  of	  specialized	  analytical	  tools,	  and	  the	  use	  of	  
visualization	  are	  aiding	  with	  many	  of	  these	  problems.	  In	  astronomy,	  the	  recruitment,	  training,	  and	  usage	  
of	  citizen	  scientists	  to	  aid	  in	  data	  analysis	  is	  essential	  to	  advancing	  the	  field,	  given	  the	  enormous	  and	  
growing	  amounts	  of	  data	  being	  collected.	  Models	  from	  these	  types	  of	  data-‐intensive	  research	  may	  be	  of	  
value	  for	  comparable	  challenges	  of	  big	  data	  in	  education,	  such	  the	  involvement	  of	  educational	  scholars,	  



practitioners,	  and	  policymakers	  in	  understanding	  and	  utilizing	  findings	  from	  the	  data	  repositories	  
discussed	  above.	  
	  
Developing	  new	  types	  of	  analytic	  methods	  tailored	  to	  the	  unique	  characteristics	  of	  big	  data	  is	  an	  
important,	  cross-‐cutting	  issue	  across	  all	  fields	  of	  research.	  In	  the	  sciences	  and	  engineering,	  new	  
approaches	  to	  statistical	  inference	  are	  developing,	  and	  machine	  learning	  is	  making	  advances	  on	  handling	  
types	  of	  information	  outside	  the	  kinds	  of	  quantitative	  data	  for	  which	  statistical	  methods	  are	  
appropriate.	  Advances	  in	  these	  and	  other	  types	  of	  analytics	  may	  be	  of	  value	  for	  comparable	  challenges	  
of	  big	  data	  in	  education.	  
	  
Overall,	  these	  insights	  from	  the	  first	  workshop	  illustrate	  emphases,	  issues,	  and	  structures	  for	  the	  
subsequent	  workshop	  on	  data-‐intensive	  research	  in	  education.	  
	  
Biological	  Sciences	  Case	  Study	  

Research	  Challenges	  and	  Resource	  Needs	  in	  Cyberinfrastructure	  &	  Bioinformatics:	  BIG	  DATA	  in	  Plant	  
Genomics,	  Diane	  Okamuro	  

Current	  Big	  Data	  Boundary.	  	  While	  the	  National	  Plant	  Genome	  Initiative	  (NPGI)	  is	  advancing	  capabilities	  
in	  Big	  Data	  science	  with	  relation	  to	  all	  four	  V’s,	  variability	  is	  perhaps	  their	  greatest	  challenge.	  	  
Particularly	  with	  their	  current	  five-‐year	  objectives	  of	  increasing	  open-‐source	  resources	  that	  span	  the	  
data	  to	  knowledge	  to	  action	  continuum,	  their	  goal	  is	  to	  enable	  translation	  of	  all	  types	  of	  plant	  data	  
ranging	  from	  genomic	  and	  proteomic	  to	  phenotypic	  data.	  	  NPGI	  has	  over	  16	  partners	  in	  providing	  open	  
access	  resources,	  including	  NSF’s	  iPlant	  Collaborative,	  which	  in	  itself	  houses	  bioinformatics	  databases,	  
high	  performance	  computing	  platforms,	  and	  image	  storage	  and	  analysis	  capabilities,	  and	  has	  a	  data	  
storage	  capacity	  of	  427	  TB.	  	  In	  addition,	  iPlant	  alone	  provides	  new	  registrations	  at	  a	  velocity	  of	  almost	  
500	  per	  month.	  	  Data	  created	  through	  NPGI	  comes	  from	  industry,	  academia,	  government,	  and	  NGOs,	  
and	  comes	  in	  many	  different	  forms	  at	  different,	  but	  ever-‐increasing	  velocities.	  

	  
Lessons	  Learned.	  	  Stressing	  the	  importance	  of	  standards	  and	  ontologies	  from	  the	  beginning	  is	  critical.	  	  
Even	  though	  it	  is	  tedious	  and	  takes	  time	  away	  from	  making	  immediate	  “progress”,	  funding	  agencies	  and	  
reviewers	  should	  understand	  that	  the	  long-‐term	  benefit	  is	  enormous.	  	  In	  addition,	  it	  is	  highly	  beneficial	  
when	  companies	  have	  incentive	  to	  make	  their	  data	  available	  and	  collaborate	  with	  academics.	  	  In	  
genomics,	  this	  incentive	  came	  about	  when	  patent	  laws	  changed	  so	  that	  proof	  of	  gene	  function,	  and	  not	  
simply	  gene	  sequence,	  is	  required	  for	  patents,	  which	  requires	  a	  much	  larger,	  often	  collaborative	  effort.	  

Echoing	  the	  importance	  of	  data-‐intensive	  work	  in	  this	  field,	  Howe	  et	  al.	  (2008)	  direct	  attention	  to	  the	  
need	  for	  structure,	  recognition	  and	  support	  for	  biocuration	  —	  “the	  activity	  of	  organizing,	  representing	  
and	  making	  biological	  information	  accessible	  to	  both	  humans	  and	  computers”	  —	  Further,	  they	  urge	  
scientific	  community	  to	  (1)	  facilitate	  the	  exchange	  of	  journal	  publications	  and	  the	  databases,	  (2)	  develop	  
a	  recognition	  structure	  for	  community-‐based	  curation	  efforts,	  and	  (3)	  increase	  the	  visibility	  and	  support	  
of	  scientific	  curation	  as	  a	  professional	  career.	  The	  importance	  of	  biocuration	  is	  evident	  in	  the	  urgency	  
and	  complexity	  in	  researchers’	  need	  to	  locate,	  access	  and	  integrate	  data.	  Howe	  et	  al.	  (2008)	  provide	  
examples	  of	  such	  complexities.	  For	  example,	  papers	  often	  report	  newly	  cloned	  genes	  without	  providing	  
GenBank	  IDs,	  the	  human	  gene	  CDKN2A	  has	  ten	  literature-‐based	  synonyms,	  etc.	  Indeed,	  efforts	  in	  



interoperability	  and	  standards-‐based	  curation	  exemplified	  in	  the	  NSF	  investments	  in	  this	  field	  could	  be	  
modeled	  by	  others.	  
	  

Conclusion	  

Once	  all	  of	  the	  presentations	  from	  the	  first	  workshop	  are	  analyzed,	  conclusions	  will	  summarize	  salient	  
common	  and	  uncommon	  lessons	  learned	  across	  disciplines.	  
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Strategies for Scaling Student Success: 
The PAR (Predictive Analytics Reporting) Framework 

	  
Ellen	  Wagner	  

PAR	  Framework	  	  
	  

	  
Metrics currently used to describe and compare the performance of higher 
education institutions in the United States do not reflect the post-traditional 
students, instructional methods, business models, and data resources that 
distinguish contemporary higher education.  This paper describes the 
evolution of a massive data research project using predictive analytics to 
gain a multi-institutional perspective on patterns of student loss and 
momentum for all types of students in the US post-secondary system.  This 
project, named the Predictive Analytics Reporting Framework, and known 
as PAR, is now informing the development of institutionally specific 
predictive models and national outcomes benchmarks for the 
postsecondary community, providing insight into the performance of for-
profit and alternative delivery models, including online learning. PAR has 
also started to identify potential improvements to federal data collections, 
statutory disclosure and reporting requirements, especially with regards to 
transfer students and adult learners. Perhaps of greatest potential value is 
PAR’s current work on intervention measurement. 
. 
PAR began as big audacious idea, when members of the Western Interstate 
Commission for Higher Education’s Cooperative for Educational 
Technology (WCET) proposed using predictive analytics to address the 
ongoing problem of student loss in US post-secondary education. PAR 
originally intended to pay attention to improving the retention and 
completion rates of online students. Despite much investment and myriad 
solutions for improving student success, postsecondary education 
completion rates have generally remained unchanged for the past forty 
years. Of all students who enroll in postsecondary education, less than half 
(46.1 percent) complete a degree within 150 percent of "normal time" to 
degree. (Knapp, Kelly-Reid and Ginder, 2012)1. While online learning offers 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 1 Knapp, L.G.; Kelly-Reid, J.E. and Ginder, S.A. (2012), "Enrollment in Postsecondary Institutions, 
Fall 2010; Financial Statistics, Fiscal Year 2010; and "Graduation Rates, Selected Cohorts, 2002–
2007," NCES 2012-280 (Washington, D.C.: National Center for Education Statistics, 2012); U.S. 
Department of Education, National Center for Education Statistics, Integrated Postsecondary 
Education Data System (IPEDS), Spring 2009, Graduation Rates component (Table 33) 



a legitimate path for pursuing a college education and provides students 
with a convenient alternative to face-to-face instruction, it, too, is laden 
with retention-related concerns,2 with even lower rates of completion and 
retention than in their on-the-ground counterpart courses and programs. 
 
As described by Ice et al (2012)3, PAR commenced by working with six 
forward-thinking post-secondary institutional partners who contributed 
student and course data into one dataset, and a managing partner that 
built predictive models, managed the data and managed all project 
operations. These collaborators worked together to determine factors 
contributing to retention, progression, and completion of online learners 
with specific purposes of (1) reaching consensus on a common set of 
variables that inform student retention, progression and completion; and 
(2) exploring advantages and/or disadvantages of particular statistical and 
methodological approaches to assessing factors related to retention, 
progression and completion.  

 
Using the results of this initial study as evidence, the PAR team continued 
to develop predictive modeling and descriptive benchmarking, adding an 
additional sixteen colleges and universities to the collaborative and an 
additional 44 variables in the dataset in the three years that followed. From 
these data, PAR continued to develop and refine institutional predictive 
models for finding students at risk, national benchmarks showing 
comparative outcomes data and an intervention insight platform for 
inventorying, tracking, measuring and managing interventions. 
 
After receiving four research grants from the Bill & Melinda Gates 
Foundation between 2011 and 2014 to conduct rigorous testing and 
evaluation of the predictive models, benchmarks and intervention ROI 
tools, PAR launched as a non-profit provider of analytics-as-a-service in 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 Wagner, E.D. and Davis B.B. (2013) The Predictive Analytics Reporting (PAR) Framework, WCET 
(December 6, 2013) http://www.educause.edu/ero/article/predictive-analytics-reporting-par-
framework-wcet 
 
3 Ice, P., Diaz, S., Swan, K., Burgess, M., Sherrill, J., Huston, D., Okimoto, H. (2012).  The PAR 
Framework Proof Of Concept: Initial Findings From A Multi-Institutional Analysis Of Federated 
Postsecondary Data   Vol 16, n.3 (2012) 
http://olj.onlinelearningconsortium.org/index.php/jaln/article/view/277    

 
	  



January 2015. PAR has further differentiated itself from other analytics 
providers in the post-secondary educational ecosystem by actively 
leveraging its common, and openly published student success data 
definitions. PAR then further differentiates itself by connecting predictions 
of risk to solutions that mitigate risk as measured by improved retention. 
PAR predictions of student risk are linked to information about 
interventions shown to work with specific risks with specific students at 
specific points in the college completion life cycle. For example, Bloemer 
et al, (2014)4 note that predictions of students at risk are of greater value 
when tied to interventions that have been empirically shown to mitigate 
risks for “students like them” at specific point of need. 
 
PAR Framework Current Status 

PAR currently holds over 2,600,000 anonymized student records and 

24,000,000 institutionally de-identified course level records, working with 

more than 350 unique member campuses. PAR provides actionable 

institutional-specific insight to member institutions from 2 year, 4 year, 

public, proprietary, traditional, and progressive institutions.  Participating 

institutions, each one committed to student success, actively engage in the 

collaborative by voluntarily their assets and experience and benefitting 

from the member insight tools and exchange of best practices, all in the 

service of measurably improving student outcomes. PAR is included among 

the Institute for Higher Education Policy (IHEP)’s PostsecData Collaborative 

national Voluntary Data Projects5.  Gartner Research6 notes that PAR is 

distinguished among the many data analytics solutions emerging in the 

education domain by its common, openly published data definitions and 

student success frameworks. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4Bloemer, B., Swan, K., Cook, V., Wagner, E.D., Davis, B. (2014) The Predictive Analytics Reporting 

Framework: Mitigating Academic Risk Through Predictive Modeling, Benchmarking, and Intervention 

Tracking, Illinois Education Research Conference, Bloomington IL, Oct 7, 2014. 

5 http://www.ihep.org/research/initiatives/postsecondary-data-collaborative-postsecdata 
 
6 Lowendahl, J.M (2014). The Education Hype Cycle, 2014. Gartner Research. 
https://www.gartner.com/doc/2806424/hype-cycle-education-  

	  



How PAR Works 

The PAR Framework identifies factors that affect success and loss among 
undergraduate students, with a focus on at-risk, first-time, new, and 
nontraditional students. While attention had initially been paid only to 
online students, the sample now includes records of all students from on-
the-ground, blended, and online programs attending partner institutions.  
PAR focuses on 77 student variables that are available for each student in 
the massive data set. Viewing normalized data through a multi-institutional 
lens and using complete sets of undergraduate data based on a common 
set of measures with common data definitions provides insights that are 
not available when looking at records from a single institution. 

 
 
 
PAR works with institutional partners to gather data according to the PAR 
Framework common data definitions and a detailed file specification.  As a 
last step before data submission, institutions remove any personally 
identifiable data, including date of birth, social security number and local 
student ID number and replace those items with a PAR student ID. 
Institutions maintain a translation table of their internal ID to PAR Student 
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Common Data Elements  

Student 
Demographics  & 

Descriptive!

• Gender 
• Race 
• Prior Credits 
• Perm Res Zip Code 
• HS Information 
• Transfer GPA 
• Student Type 

Student Course 
Information!

• Course Location 
• Subject 
• Course Number 
• Section 
• Start/End Dates 
• Initial/Final Grade 
• Delivery Mode 
• Instructor Status 
• Course Credit 

Course Catalog 

• Subject 
• Course Number 
• Subject Long 
• Course Title 
• Course Description 
• Credit Range 

Lookup Tables 

• Credential Types 
Offered 

• Course Enrollment 
Periods 

• Student Types 
• Instructor Status 
• Delivery Modes 
• Grade Codes 
• Institution 
Characteristics 

Student Financial 
Information 

• FAFSA on File – 
Date 

• Pell Received/
Awarded – Date 

Student Academic 
Progress 

• Current Major/CIP 
• Earned Credential/
CIP 

Difficult!to!define!data!variables!

• What!is!a!passing!grade?!!
• What!is!a!term!
• What!is!reten:on?!!

New!Elements!Planned!for!2015D16!

• Placement Tests                            !  LMS Data !
• Admission/Application Data        !  Satisfaction Surveys 
• College Readiness Surveys           !  Intervention Measures 



ID which is used to easily re-identify those students after the data has been 
analyzed by PAR.  PAR puts the data through more than 600 quality 
assurance tests as it is prepared for inclusion in PAR’s Amazon Web 
Services-hosted data warehouse. Data are then analyzed to develop 
institutional-, program-, course- and student-level descriptive analytics and 
predictive insights contained in predictive analytic dashboards and in 
national benchmark reports built using SAS Visual Analytics, a choice made 
thanks to unlimited institutional visualization software licenses at PAR 
partner institutions. PAR members provide incremental data updates at the 
end of each term/course enrollment period to measure changes over time, 
evaluate the impact of student success interventions, and enable the PAR 
predictive models to be adjusted and tuned for current data. 
 
PAR data experts work hand-in-hand with member institutions, providing 
individualized support for understanding, gathering and delivering 
longitudinal student-level data from across institutional systems using a well 
validated and market-adopted set of data definitions and file specifications. 
The PAR processes and support, combined with scalable, automated 
Quality Assurance tools, guide member institutions in crafting and 
delivering accurate and meaningful student level record sets. Throughout 
the process PAR data representatives help college and university staff 
diagnose and correct cumbersome and potentially costly institutional data 
issues that can impede correct reporting, insight, and availability of funds 
based on performance funding, student financial and veteran aid. PAR’s 
framework for gathering student-level data based on common definitions 
helps member institutions: 
 
•  Understand their local data issues and challenges. 
•  Develop capacity for reaching across systems and silos to create 

meaningful longitudinal student level record sets. 
•  Organize data across campuses consistently using common 

definitions and data types, making campus level comparisons 
possible. 

•  Uncover gaps, errors and overlaps in student data elements across 
institutional systems. 

•  Isolate and remedy anomalies in student cohort reporting generated 
by student exception handling. 

•  Improve the capture and reporting of student military and veteran 
statuses across the multiple systems where that data is recorded. 



	  
	  
Linking Predictions to Action: The PAR Framework Student Success 
Matrix 
	  
Most institutions have more than 100 student success services in effect at 
any one time. PAR’s student success framework and Student Success Matrix 
(SSMx) application use a validated mechanism to inventory those student 
success activities across the institution. PAR SSMx gives users the tools to 
capture, measure and compare ROI at the individual intervention level. 
 

 
 
The PAR SSMx helps institutional members: 
 

•  Eliminate duplicate or redundant programs. Most campuses find that 
at least 10% and as many as 30% of intervention programs are 
serving the same audience and the same goal. 

 
•  Understand the scale of their student success programs. Many 

student success initiatives are upside-down in terms of the 

Knowing what to do next  
PAR!Student!Success Matrix (SSMx)  
Research-based tool for applying 

and benchmarking student services 
and interventions 

!  600+ interventions  
!  >80 known predictors  
!  Basis for field tests  
!  Publically available, 

over 1,900 downloads 
since June 2013 

h#ps://par.datacookbook.com/public/ins6tu6ons/par!

PREDICTORS/+
TIME+ CONNECTION+ ENTRY+ PROGRESS+ COMPLETION+

Learner!
Characteris6cs!

Learner!Behaviors!

Fit/Learners!
Percep6ons!of!
Belonging!

Other!Learner!
Supports!

Course/Program!
Characteris6cs!

Instructor!
Behaviors/!

Characteris6cs!!



institutional resources attached to the program relative to the 
students served. The SSMx helps institutions right-size their 
investments to the student need and potential impact on retention 
and graduation. 

 
•  Match interventions with causes of student academic risk. Together 

with PAR predictive models that identify which students are at-risk 
and why, the SSMx identifies which key risk factors lack any success 
program counterparts. For example, while low GPA and student 
withdrawals often contribute to student risk for course success and 
retention, many campuses lack initiatives that flag for and address 
those behaviors. 

 
•  Measure the impact of student success programs. Even among the 

most data-driven institutions, only about 10% of the many 
intervention programs are properly evaluated for effectiveness — 
millions are invested campus-wide with limited understanding of 
returns. Using the PAR SSMx enables institutions to measure the 
investment and number of students reached for every intervention. 
More importantly, PAR analysis statistically measures intervention 
effectiveness enabling ROI comparison of impact to students at the 
intervention level. 

 
•  Respond to budget cuts with informed decisions about the fat vs. 

bone. With a comprehensive understanding of programs and their 
impact, institutions can make informed decisions on how to 
eliminate waste and redundancy during times of budget contraction 
without worrying they are cutting the wrong programs. 

	  
Reflections after Four Years in the Data Trenches 
	  

• Scale requires reliable, generalizable outcomes and measures that 
can be replicated in a variety of settings with a minimal amount of 
customization. In the case of PAR, common definitions and look-up 
tables served as a “Rosetta Stone” of student success data, making 
it possible for project to talk to one another between and within 
projects. 
 

• Common data definitions are a game changer for scalable, 



generalizable, repeatable learner analytics.  
 

• Predictions are of greater institutional value when tied to treatments 
and interventions for improvement, and intervention measurement 
to make sure results are being delivered. 

 
• Change happens when fueled by collaboration, transparency and 

trust. 
 

• Data needs to matter to everyone on campus. While data 
professionals will be needed to help construct new modeling 
techniques, ALL members of the higher education community are 
going to need to “up their game” when it come to being fluent with 
data-driven decision-making, from advisors to faculty to 
administrative staff to students. 
 

• Using commercial software stacks already in place on campuses and 
data exchanges to extend interoperability with other IPAS systems 
extends value and utility of tech investments. 

 
• It takes all of us working together toward the same goal in our own 

unique ways to make the difference. 
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Using Predictive Analytics to Drive Student Success 
  

David Yaskin, Senior Vice President for Student Success, Hobsons 
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Although 90 percent of students enter college with the intention of completing a degree 

or certificate (Ruffalo Noel-Levitz, 2013), only 59 percent of full-time students earn their 

bachelor’s degrees within six years and only 31 percent of community college students earn 

their degrees or certificates within 150 percent of the time allotted to do so (National Center for 

Education Statistics, 2014). Thus, it is not surprising that higher education institutions are being 

pressured, either by regulation or law, to submit “student success1” data to state, regional, or 

federal agencies in order to receive funding (Hayes, 2014).  Currently, 34 states are either using 

or in the process of implementing performance-based funding (National Conference of State 

Legislatures, 2015). In addition, the Federal Postsecondary Institutional Rating System seeks to 

link college performance, via retention, completion, and loan default rates, to financial aid (U.S. 

Department of Education, 2013). 

Habley and Randy (2004) located more than 80 programs and practices that institutions 

have implemented to help students, including supplemental learning, academic advising, 

tutoring, and first-year experience programs. Even so, student completion rates have not 

significantly changed, leading Tinto and Pusser (2006) to suggest that higher education 

institutions must shift their attention from simply responding to students’ attributes to evaluating 

how institutional policies and structures affect student success. 

Creating a Digital Engagement Strategy for Student Success 

Hayes (2014) argues that digital engagement—defined as the “use of technology and 

channels to find and mobilize a community around an issue and take action” (Visser & 
                                                
1 Kuh, Kinzie, Buckley, Bridges, & Hayek (2006) define student success as persistence, satisfaction, 
academic achievement, education and skills/knowledge/competency attainment, education engagement, 
and performance post-college. 
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Richardson, 2013)—is the “logical extension” of Tinto and Pusser’s (2006) suggestion.  Hayes 

(2014) continues to state that “[i]n this context, digital engagement involves using data and 

online tools to inform and motivate the entire campus community in order to underscore its 

student success efforts and drive change in completion outcomes.”  We also argue that a digital 

engagement strategy for student success will improve student outcomes by giving institutions 

greater insight into how students are performing and how the institution is responding. 

To facilitate a digital engagement strategy, institutions can: (1) leverage an enterprise 

success platform (e.g., the Starfish® platform) to analyze student performance data using 

predictive analytics, (2) solicit feedback from key members of a student’s success network, (3) 

deliver information to the right people who can help the student, and (4) collectively keep track 

of their efforts along the way—all of which leads to a continuous data-informed process-

improvement cycle. 

We will discuss a specific example of such an enterprise success platform that uses 

predictive analytics later in this paper. However, first a discussion of system-centered versus 

student-centered data is warranted. 

Using Student-Centered Data Versus System-Centered Data 

Institutions collect vast amounts of data about their students, and the most important 

aspect of an enterprise success platform is making better use of the data they already have. 

The data lives in disparate data stores, such as the student information system (SIS) and the 

learning management system (LMS). Data is also being captured through tutoring centers, 

attendance records, and student self-assessments—among many other sources. As Hayes 

(2014) argues, this “system-centered approach makes it difficult to uncover the relationships 

among the data that, taken together, provide critical insight into the plans, progress, and needs 

of individual students.”   

Thus, Hayes (2014) recommends a student-centered approach for institutional data use.  

By focusing on the student instead of the systems that generated the data, stakeholders see a 
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comprehensive view of a student’s experience.  According to Conrad and colleagues (Conrad, 

Gaston, Lundberg, Commodore, & Samayoa, 2013), a student-centered approach facilitates 

greater understanding of the relations between students, their college experiences, and 

outcomes. To make data collection and integration straightforward, an enterprise success 

platform can be utilized. Such a platform will leverage the time and money that the institution 

has invested to implement and maintain its existing technology systems.   

Valuable Drivers for Employing Predictive Analytics 

Even with a student-centered approach in place, there are still some issues that need to 

be addressed when using an enterprise success platform. These include: 

1. Student Data Permissions. Inadequate attention to who requires access to student 

data can expose inappropriate student information to staff. Thus, robust permissions 

schemas must exist that allow permissions to be tailored to the campus, college, and 

departmental levels per their policies.  

2. Data Overload. Access to too much data can overwhelm staff. While it is useful to gain 

access to rich data for a single student, it can be difficult for staff to determine how to 

prioritize their time with students based on this data. 

3. When to Act? Software applications and predictive analytics are needed to triage 

mountains of student data into actionable to-do items for staff members. Staff need to 

know when they should act. Should it be as soon as a student misses a class? Or when 

a student receives a mid-term grade below a D? By analyzing historical data, a 

predictive model can be created to determine which characteristics and behaviors 

require the most urgent action. 

We believe the answer to these three issues requires the use of predictive analytics based on 

historical data, instead of “snapshot” reports of student data at any single point in time. To 

illustrate this point, we will provide an example of how we are using predictive analytics within 

the Starfish Enterprise Success Platform. 
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Example: Predictive Analytics and the Starfish Platform 

Starfish Retention Solutions, which became part of Hobsons in early 2015, began 

developing its predictive analytics solution in mid-2014. During development, Starfish worked 

with two existing clients to build models from their data and provide predictive success scores 

for their students. To extend this work, in December 2014 at the White House College 

Opportunity Day of Action, Starfish committed to offer complimentary predictive analytics 

services to Davidson County Community College, Northeast Wisconsin Technical College, and 

Morgan State University in Baltimore. 

Starfish’s first predictive model was designed to answer the question, “Which students 

are most at risk of leaving the institution before the next term without completing their degrees?” 

The model produces a success probability for each student, where success means continuing at 

the institution in a future term. Registered students are scored against the model once per term, 

early in the term, and these predictive scores appear to advisors in the Starfish Platform. Each 

individual student gets a score (e.g., 80% chance of continuing). 

Starfish employs machine-learning techniques and random forest models, a type of 

nonlinear, nonparametric regression model, which are known for their versatility, performance, 

and ability to scale to large amounts of data (Breiman, 2001). Because these models are 

nonlinear, they find patterns such as discontinuities, threshold effects, break points in predictor 

variables, and interaction effects. These effects are nonlinear and therefore cannot be 

discovered automatically by generalized linear models (GLMs) such as linear regression or 

logistic regression. 

The predictive model is built from data contained within the Starfish database, which 

includes data from the institution’s SIS, the LMS, and the Starfish application itself. For new 

clients who do not have historical Starfish data, an initial model is constructed from an initial 

load of historical SIS data. Data available from the SIS includes admissions data, GPAs (term 
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and cumulative), credit hours attempted, credit hours earned (term and cumulative), credit hours 

attempted but not completed (term and cumulative), age, gender, ethnicity, program, time in 

program, financial aid and tuition data, and term GPA relative to past performance.  Some of the 

strongest predictors come from the SIS data.   

Once students have scores, the Starfish platform provides a variety of options for follow-

up.  For example, students may be flagged based on their predictive scores. The Starfish 

platform tracks these flags and records follow-up actions taken. The platform can define cohorts 

that represent students with predictive scores in a certain range, and follow-up for students in 

these cohorts can be managed as a group within the Starfish Platform. 

As the Starfish Platform is used to advise and monitor students, it records additional 

behavioral data that can define or refine future models. These data can include appointment 

types, reasons for making appointments (e.g., tutoring or advisement), topics discussed in 

meetings (as documented by Starfish “speed notes”), instructor-raised flags for attendance or 

other concerns, and system-raised flags (e.g., low assignment grades in LMS). We have begun 

to incorporate some of these behavioral data into the models.  

Behavioral metrics are difficult to standardize and interpret when moving from the 

context of one institution to another. Our models, therefore, do not use behavioral data from one 

institution to build models for use at a different institution. Just because making appointments of 

type X is predictive of persistence at one institution, we do not assume that appointments of 

type X will necessarily have predictive value at another institution. As we go forward, we will 

continue to explore the use of additional behavioral data. 

In addition to providing predictive scores, we are working to provide more visibility into 

the reasons that certain students received certain scores. Having the ability to cluster or group 

students who received low scores for similar reasons can help guide different intervention 

strategies for different groups. For example, one identified group might be “non-traditional 

students (part-time with an above-average age) who are experiencing below-average progress 
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toward completion.” These students might need a different type of intervention than, for 

example, traditional students who have received an academic warning. 

Summary 

Arguably, there is no more important issue to engage the campus community in than 

student success. As Hayes (2014) mentions, switching to a student-centered approach for 

improving student outcomes will require a paradigm shift (Vuong & Hairston, 2012). 

Hayes (2014) also argues that “the right” enterprise success platform offers tools “to 

identify at-risk students, offer academic advising and planning, and facilitate connections to 

campus support” using this student-centered data. Taylor and McAleese (2012) found that such 

an approach can contribute to significant gains in grades, persistence, and graduation rates. 

Such capabilities can also affect student success, support student needs, and promote student 

persistence outcomes (Center for Community College Student Engagement, 2013; Kuh et al., 

2006; Tinto & Pusser, 2006; Vuong & Hairston, 2012).  

We argue that the use of an enterprise success platform combined with predictive 

analytics that are based on historical student data can make institutional staff more effective at 

helping students succeed. 
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National Science Foundation Workshop Thought Paper: 
Ethics, Big Data, and Algorithms1 

 
 
In this brief report, I’d like to focus on the relationships between and among privacy, big 
data, algorithms and the concept of harms. I will use a context of applied ethics and 
professional ethics to frame issues and controversies, and hope to encourage reflection and 
reasoned debate about the ethical realities of big data. 
 
Ethics is about what’s possible and what’s “good,” what’s “just.” However, in our 
professional literatures and educational discourses, there tends to be more focus on 
compliance and restriction: What are the legal, technological, economic constraints to our 
actions and decisions? Compliance is not ethics, and the goal of this thought paper is to 
encourage readers to move away from a prescribed and regulatory way of thinking about 
ethics and towards a more humanistic understanding of the ethics of technologies, or more 
specifically, the ethics of big data and the ethics of algorithms.  I am concerned with the 
larger issue of harms that may result from algorithmic manipulation and the uses of big data. 
Redefining and appreciating the depth and variety of emotive harms is critical to the fields of 
big data science and analytics. Focusing on emotive harms allows us to talk about such 
complex issues as technological determinism, values in design, anticipatory ethics, and 
predictive design, among other ethical concerns.  
 
As a relatively new field, data science is still in its infancy in terms of its values and ethical 
stances. As a profession matures, its values become more solidified for its professionals and 
evident to others influenced by the profession. Thus, a simple question arises: Where do data 
scientists, or those responsible for the creation, analysis, use, and disposal of big data, learn 
their professional ethics? The first Code of Conduct (not ethics), for Data Scientists2 was 
released in 2013.  It is unclear how many data science programs include any reference to the 
code of conduct, but a cursory review of the major big data analytics programs reveals few 
include ethics content.3 Big data education focuses more on the technical, statistical, and 
analytic processes over the emotive, contextual, or values-based considerations with data. 
When do we consider the neutrality or bias of data? In the act of algorithmic processing, or 
manipulation, do data lose their neutrality and take on bias? And ultimately, can data, or an 
algorithm, do harm?  
 
Technology and information ethics considerations have long included such topics as access 
to information, ownership of information, copyright protections, intellectual freedom, 
accountability, anonymity, confidentiality, privacy, and security of information and data.  



Fields such as information studies, computer science, and engineering have grappled with 
these ethical concerns, and data science is now experiencing its own cadre of ethical 
concerns. Gradually, more attention is being paid to explicit and implicit bias embedded in 
big data and algorithms and the subsequent harms that arise. To this end, big data analytics 
should include methodologies of: 
 

• Values-sensitive design,  
• Community-based participatory design,  
• Anticipatory ethics,  
• Ethical algorithms,  
• Action research.   

 
These approaches situate our participants, actors, users as central and informed, as 
empowered decision makers. Friedman states that “central to a value sensitive design 
approach are analyses of both direct and indirect stakeholders; distinctions among designer 
values, values explicitly supported by the technology, and stakeholder values; individual, 
group, and societal levels of analysis; the integrative and iterative conceptual, technical, and 
empirical investigations; and a commitment to progress (not perfection).”4  
 
These approaches allow us to stimulate our moral imaginations and experience ethical 
opportunities in big data work while pushing the boundaries of our computational powers. 
The era of big data has been upon us for a number of years, and we’ve accepted the core 
characteristics of big data: velocity, veracity, volume, and variety as the norm. We’ve 
accepted the ways in which we are targeted and identified through our big data streams and 
the ways algorithms silently (or not so silently in many cases) operate in the background of 
our daily technology-mediated experiences.  Within these newfound strengths, algorithms, 
those processes or sets of rules followed in calculations or other problem-solving operations, 
seem smarter and faster, and more intentional.  Big data and algorithms now tell us who is 
eligible for welfare, what political affiliations we have, and where are children will go to 
college. Today, “an algorithm is a set of instructions designed to produce an output: a recipe 
for decision-making, for finding solutions. In computerized form, algorithms are increasingly 
important to our political lives….algorithms …become primary decision-makers in public policy”5.  
 
 
Are we confident with big data and the ways in which algorithms make decisions?  Are there 
decisions we would not defer to them? Recall the uproar over the Facebook Emotional 
Contagion study, when algorithms manipulated what news was seen by individuals on their 
news feeds.  Using that experiment as an example, we can consider the differences between 
machine and human-based decision making. “Our brains appear wired in ways that enable 
us, often unconsciously, to make the best decisions possible with the information we’re 
given. In simplest terms, the process is organized like a court trial. Sights, sounds, and other 
sensory evidence are entered and registered in sensory circuits in the brain. Other brain cells 
act as the brain’s “jury,” compiling and weighing each piece of evidence. When the 
accumulated evidence reaches a critical threshold, a judgment — a decision — is 
made.”6 Consideration of risks and harms are part of the decision-making process, and we 
have an ability to readjust and change our decision if the risk-benefit ration is out of 
alignment. “Scientists have found that when a decision goes wrong and things turn out 



differently than expected, the orbitofrontal cortex, located at the front of the brain behind 
the eyes, responds to the mistake and helps us alter our behavior.”7 But, our human 
decisions are also affected by implicit and explicit biases, and to a great degree, “We are 
ruined by our own biases. When making decisions, we see what we want, ignore 
probabilities, and minimize risks that uproot our hopes.”8 When we consider big data 
analytics, we rely on probabilities, and we correlate data. The ethics of correlation and 
causation must be addressed in big data analytics. We can make the best and the worst out of 
data; algorithms can solve problems, just as they can cause them: “You probably hate the 
idea that human judgment can be improved or even replaced by machines, but you probably 
hate hurricanes and earthquakes too. The rise of machines is just as inevitable and just as 
indifferent to your hatred.”9 
 
To return to the concepts of harms generated out of big data analytics, take a few examples: 
A widow is continually reminded of her deceased spouse, on birthdays, anniversaries, special 
occasions; she does not want to change his Facebook status as it will disrupt past their 
shared experiences on Facebook. A young man is greeted by pictures of his burning 
apartment burning down, as one of the features in his “Year in Review.” And, perhaps most 
well quoted, Erik Meyer has described his response to an algorithmically generated 
experience, calling it “inadvertent algorithmic cruelty”:  
 

A picture of my daughter, who is dead.  Who died this year. 
Yes, my year looked like that.  True enough.  My year looked like the now-
absent face of my little girl.  It was still unkind to remind me so forcefully. 
 
And I know, of course, that this is not a deliberate assault.  This inadvertent 
algorithmic cruelty is the result of code that works in the overwhelming 
majority of cases, reminding people of the awesomeness of their years, 
showing them selfies at a party or whale spouts from sailing boats or the 
marina outside their vacation house. 
 
But for those of us who lived through the death of loved ones, or spent 
extended time in the hospital, or were hit by divorce or losing a job or any 
one of a hundred crises, we might not want another look at this past year. 
 
To show me Rebecca’s face and say “Here’s what your year looked like!” is 
jarring.  It feels wrong, and coming from an actual person, it would be 
wrong.  Coming from code, it’s just unfortunate.  These are hard, hard 
problems.  It isn’t easy to programmatically figure out if a picture has a ton of 
Likes because it’s hilarious, astounding, or heartbreaking. 
Algorithms are essentially thoughtless.  They model certain decision flows, 
but once you run them, no more thought occurs.  To call a person 
“thoughtless” is usually considered a slight, or an outright insult; and yet, we 
unleash so many literally thoughtless processes on our users, on our lives, on 
ourselves.10 
 

Reputational harms, or informational harms, are often touted as the only real risks in 
big data analytics.  These examples are related to privacy invasions, but are different. 
These experiences are not of that quality. “These abstract formulas have real, 



material impacts.”11 They are emotive harms, and recognition of these types of harms 
must occur at the design and implementation stage of analytics and big data. 
 
What would ethical algorithms do differently? How can we ensure our work with big data is 
ethically informed?  Jeremy Pitt, Imperial College, is working on ethical algorithms: "One is 
about resource allocation, finding a way an algorithm can allocate scare resources to 
individuals fairly, based on what's happened in the past, what's happening now and what we 
might envisage for the future….Another aspect is around alternative dispute resolution, 
trying to find ways of automating the mediation process.….A third is in what we have called 
design contractualism, the idea that we make social, moral, legal and ethical judgements, then 
try to encode it in the software to make sure those judgements are visually perceptive to 
anyone who has to use our software."12  
 
From a harms perspective, the lack of transparency in big data analytics is concerning. 
“Computer algorithms can create distortions. They can become the ultimate hiding place for 
mischief, bias, and corruption. If an algorithm is so complicated that it can be subtly 
influenced without detection, then it can silently serve someone's agenda while appearing 
unbiased and trusted….Whether well or ill intentioned, simple computer algorithms create a 
tyranny of the majority because they always favour the middle of the bell curve. Only the 
most sophisticated algorithms work well in the tails."13 
 
To an ethical end, Eubank14 recently recommended four strategies:  
 
 1) We need to learn more about how policy algorithms work.  
 2) We need to address the political context of algorithms. 
 3) We need to address how cumulative disadvantage sediments in algorithms. 
 4) We need to respect constitutional principles, enforce legal rights, and strengthen 
 due process procedures. 
 
 
As we continue to explore the potential and boundlessness of big data, and increase our 
analytical and computation powers, ethics must be at the fore of our advances, not an 
inadvertent afterthought.  
 
 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 This briefing is a revised version of my keynote address, “Living in a Time of (Un) Ethical 
Algorithms, Information Architecture Summit, 25 April 2015, Minneapolis, Minnesota. 
2 http://www.datascienceassn.org/code-of-conduct.html 
3 Using two sources, http://www.mastersindatascience.org/schools/23-great-schools-with-masters-
programs-in-data-science/ and http://www.informationweek.com/big-data/big-data-analytics/big-
data-analytics-masters-degrees-20-top-programs/d/d-id/1108042?, curricular offerings were 
reviewed. Some, for example, Carnegie Mellon, includes an Ethics and Management course, or 
Maryland offers Business Ethics, while UC-Berkeley’s unique in its Legal, Policy, and Ethical 
Considerations for Data Scientists course. The overwhelming majority of programs had no ethics 
content. 
4 http://www.vsdesign.org/index.shtml 
5 The Policy Machine, 
http://www.slate.com/articles/technology/future_tense/2015/04/the_dangers_of_letting_algorith



	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
ms_enforce_policy.html?wpsrc=sh_all_tab_tw_top&utm_content=bufferbab23&utm_medium=soci
al&utm_source=twitter.com&utm_campaign=buffer 
6 http://www.brainfacts.org/sensing-thinking-behaving/awareness-and-
attention/articles/2009/decision-making/ 
7 http://www.brainfacts.org/sensing-thinking-behaving/awareness-and-
attention/articles/2009/decision-making/ 
8 http://www.wsj.com/articles/SB10001424052970203462304577138961342097348 
9 http://www.wsj.com/articles/SB10001424052970203462304577138961342097348 
10 http://meyerweb.com/eric/thoughts/2014/12/24/inadvertent-algorithmic-cruelty/ 
11 
http://www.slate.com/articles/technology/future_tense/2015/04/the_dangers_of_letting_algorith
ms_enforce_policy.html 
12 http://www.cio.co.uk/insight/compliance/quest-for-ethical-algorithms/ 
13 http://www.cio.co.uk/insight/compliance/quest-for-ethical-algorithms/ 
14 
http://www.slate.com/articles/technology/future_tense/2015/04/the_dangers_of_letting_algorith
ms_enforce_policy.html	  	  











1 
 

PATRICIA HAMMER 

IMPLICATIONS OF AND APPROACHES TO PRIVACY IN EDUCATIONAL 

RESEARCH 

 Changes in research opportunities and independent review board (IRB) oversight have 

changed the way that social sciences research in general, and education research in specific, are 

being implemented.  Fear over privacy is leading to the stifling of public educations research and 

pushing research into corporate hands where transparency is less required and compliance is 

easier.  This poses risks to educational research, which is often the font of new ideas 

implemented in public institutions and across socioeconomic levels. 

Improved technologies now allow educators to conduct research in ways never before 

possible, such as use of big data, in-home or in-classroom audiovisual recordings, or biometric 

stress indicators, and data can be collected simultaneously from across the world and analyzed 

across hundreds of potential variables.  IRBs, parents, and subjects may be concerned with the 

risks posed by these technologies, but there are security approaches to address each of the risks 

posed.  By identifying concerns and risks, researchers can build safeguards into their research to 

minimize risks and more easily have research approved.  If the combination of research and 

safeguarding can be pre-approved by a reputable, knowledgeable, and accountable institution, 

such as Department of Education (DOE), will benefit IRBs by developing , clear guidelines to 

follow and standards they can rely upon.  Researchers will therefore have less difficulty having 

projects approved by IRBs.  Society also benefits by increasing the amount of research done in 

educational and research facilities vice through non-transparent commercial processes.   

Educational research is noninvasive, and the greatest perceived risk is often a privacy 

risk.  IRBs generally do not include a privacy or technology expert, and the IRB may perceive a 
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risk to be greater than it is because no member has expertise in the field.  Often this leads to 

delay, indecision, or overly conservative restrictions being placed on the researchers.  One 

solution, often proposed, is to include privacy experts and security technology experts as part of 

the IRB.  This solution can be difficult based on the limited number of experts available and, in 

my belief, dilutes the purpose of the IRB which is to evaluate the risk posed by the research.  

Instead of having one or two members be experts on privacy and/or technology, DOE or another 

third-party organization could develop a set of baselines standards for privacy and system 

protection in educational and/or other types of research.  A project could demonstrate that it met 

the minimum guidelines before IRB review, which would inherently expedite the process and 

limit or eliminate the institution’s liability in the case of a privacy breach. 

 Each new technology a researcher may want to use will present a unique combination of 

risks, most of which can be guarded against using available technologies and proper information 

policies.  Speaking generally, privacy can be adequately protected through encrypted servers and 

data, anonymized data, having controlled access to data, and by implementing and enforcing in-

office privacy policies to guard against unauthorized and exceeded data access.  

 A risk-based approach, similar to the approach taken by the National Institute of 

Standards and Technologies in guidelines for federal agencies, would allow for confidentiality, 

consent, and security concerns to be addressed commensurate with the consequences of a breach.  

A risk approach allows for changes in the types of research being done and the range of 

safeguarding solutions that could be applied.  This would provide a framework to allow the 

newest research into privacy practices, security approaches, and research methodologies to be 

evaluated for how they mitigate risk and reuse those evaluations across the research community.  

Standardization and reuse would minimize the cost of evaluation while increasing the quality of 
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evaluation.   The IRB could still be the organizations voice in determining acceptable risk but 

would be addressing these questions from a position of knowledge.   

 

Evolving Research Capabilities/Privacy Issues 

It is critical that any standard be developed with an ongoing evaluation function.  This 

function must allow for new research in privacy and new approaches to research.  In the field of 

privacy, continued research is identifying new threats, vulnerabilities and mitigation approaches.   

 

Data Aggregation and Maintaining Large Data Sets 

People’s ubiquitous use of the internet has led to an explosion in the amount of 

commercially available data concerning individuals.  Although this data is available for a cost, 

many research organizations have shied away from maintaining large, aggregating data sets.  The 

concerns over maintaining the data are often not weighed against the benefit to research that 

might be available through maintaining long-term, large population data sets (e.g., quicker access 

to the data for other, related studies, and the ability to execute longitudinal studies).  In the 

commercial environment, the cost benefit is often easier to understand and document than the 

societal benefits for the public researcher.  

 

Big Data 

Using and compiling Big Data can allow researchers to see trends or anomalies across a 

wide spectrum of individuals.  Researchers can take data trends from persons they have never 

met and analyze data to find trends based on age, race, income, geographic location, level of 

education, time of day, physical activity, physical traits, etc.   In education, researchers may be 



4 
 

able to correlate math scores with scores in other subjects, such as science and music, to identify 

a possible causation.  Or make determinations of how someone learns best in order to develop a 

more personalized learning plan. 

Big Data also brings in the possibility of “found data.” In contrast to researcher-designed 

data, which are data sets of information collected according to a defined protocol by private 

sector and government sector agencies, the big data collectors are not research organizations.  

They usually collect the data as an auxiliary function to their core business.  They use the data to 

improve business processes and to document organization activities.  Social scientists have 

become interested in these data because they are a) timely, often real-time documentation of 

behavior, b) collected on large sets of individuals, yielding massive data sets, c) relatively 

inexpensive to acquire, and d) relevant to behaviors that are of common interest to social 

scientists.  This data is growing based on social media, wearable technology, and other internet 

sensors that collect and store data.  The internet has spawned new businesses that actively collect 

detailed attributes about their customers.  Indeed, for many of these businesses the personal data 

resource is their business.   

However, these data are often limited in the attributes they describe.  Education research 

often uses these massive data, but lean, sets in combination with some other source of data (e.g., 

demographic data on geographical units based on census and other measurements), in order to 

enrich the set of attributes to be studied.  Indeed, companies that assemble these data sources into 

unified data sets are popular sources of marketing data on individuals and households. 
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Minimization/De-anonymization 

The trend in data privacy is to minimize the amount of data collected, which would then 

reduce the risks of de-anonymization to which subjects are exposed. However, with the growth 

of Big Data and associated analysis techniques, the validity of anonymization is being 

questioned. In light if this, there must be careful consideration, lest the data set suffer over-

minimization, which could actually expose more subjects than necessary to privacy risks.  Using 

Big Data as an example, hundreds of variables could be collected in one study over three years 

that tracks a student’s progress.  If the researcher is focused on math performance by geographic 

location, a later researcher may want to use the same data to correlate performance trends over 

the three years, or performance by gender, or math performance with music performance.  By 

being able to use the same data set with anonymized data, researchers have limited the risk to the 

10,000 students involved.  If an IRB told the researchers only to collect data absolutely necessary 

for the study, subsequent researchers may need to conduct the same type of testing using 

different subjects to collect a variable not collected the first time.  This would expose 20,000 

subjects to a risk instead of 10,000.  By not collecting a variable there could be a trend or 

correlation the researchers are missing which could otherwise innovate education. 

Minimization of data collection should exclude personally identifiable information not 

necessary to a study, while including information that may be helpful to that or future studies.  

Educational research probably does not need a student’s social security number, street address, 

or fingerprint, but ethnicity, age, and native language may be generally extremely useful.  By 

reducing the number of times similar studies must be conducted researchers can limit the overall 

risk to any group of students, not just the students involved in the original study.  Additionally, if 

the same research can be used repeatedly but analyzed in different ways, then subsequent studies 
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do not need IRB approval because the data collected does not affect any new subjects in a new 

way. 

 

Conclusion 

There are risks to society from making it difficult to study educational impact.  The delay in 

research, students opting out of research that may not be approved, and studies that never take 

place diminish our knowledge.  We lose the opportunity to obtain great strides in education that a 

more personalized learning program may allow.  We also push research into the hands of 

commercial entities that need not be transparent and compliant in their testing.   By developing a 

risk-based standard approach to privacy and information security in the social sciences, we create 

a community that can better leverage the available data, seize research opportunities, and share 

knowledge.   
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CASES:
The kinds of big data/data-intensive research in education you have experience with 

and the specific types of data collected

I founded and currently partner, with Dr Kalyan Veeramachaneni, the AnyScale Learning 
For All (ALFA) Group at MIT’s Computer Science and Artificial Intelligence Lab 
(CSAIL). ALFA’s research centers on elucidating the general design principles of data 
science workflows that enable rapid data transformation for analytic and predictive 
purposes.  We currently have a project called MOOCDB (url: MOOCdb). One of the 
project’s overarching goals is to identify and develop enabling technology for data-
intensive research into MOOCS. The project is intended to unite education researchers 
and technologists, computer science and machine learning researchers, and big data 
experts toward advancing MOOC data science.  It also supports our specific learning 
science research into MOOC student online problem solving, resource usage behavior 
and persistence prediction. One high-profile ambition of the project revolves around 
developing the means to efficiently study MOOC student behavior across multiple 
MOOCs released on different platforms (specifically Coursera and edX). This capability 
will allow cross platform comparisons of learning behavior across or within institutions. 
It will facilitate the detection of universal aspects of behavior as well as tease out the 
implications of important differences. Other project activities have goals such as enabling 
a collaborative, open-source, open-access data visualization framework, enabling crowd 
sourced feature discovery (featurefactory) and preserving the privacy of online student 
data. ALFA’s team is currently working to openly release a number of its tools and 
software frameworks. 

Specific Types of Data Collected:
A short description of the multiple raw data streams of MOOC edX platform data that are 
supplied for data science/analytics can be found in Section 2 of "Likely to Stop - 
Predicting Stopout in Massive Open Online Courses (arXiv#1408.3382). By far the 
largest is clickstream data.  To analyze this data at scale, as well as write reusable analysis 
scripts, it is first organized into a schema designed to capture pertinent information and 
make cross-references to the MOOC’s content. That schema is exhaustively described in 
the MOOCdb report. Chapter 2 of  Modeling Problem Solving in Massive Open Online 
Courses provides a very nice (friendly) summary. 

http://moocdb.csail.mit.edu/
http://moocdb.csail.mit.edu/
http://moocviz.csail.mit.edu/
http://moocviz.csail.mit.edu/
http://featurefactory.csail.mit.edu/
http://featurefactory.csail.mit.edu/
http://arxiv.org/abs/1408.3382
http://arxiv.org/abs/1408.3382
http://arxiv.org/abs/1408.3382
http://arxiv.org/abs/1408.3382
http://moocdb.csail.mit.edu/wiki/index.php?title=MOOCdb
http://moocdb.csail.mit.edu/wiki/index.php?title=MOOCdb
http://groups.csail.mit.edu/EVO-DesignOpt/groupWebSite/uploads/Site/FanProblemSolvingThesis.pdf
http://groups.csail.mit.edu/EVO-DesignOpt/groupWebSite/uploads/Site/FanProblemSolvingThesis.pdf
http://groups.csail.mit.edu/EVO-DesignOpt/groupWebSite/uploads/Site/FanProblemSolvingThesis.pdf
http://groups.csail.mit.edu/EVO-DesignOpt/groupWebSite/uploads/Site/FanProblemSolvingThesis.pdf


We create data: In the course of answering learning science questions, like “who is 
likely to stop?” we add interpretation and knowledge to transform and enhance the data 
that lies in MOOCdb tables. This data is of a higher-level nature or of a particular data 
abstraction and is stored in new tables. For example, we might efficiently express each 
learner’s trajectory of actions when solving each problem or a learner’s navigation 
sequence through material each module.  See Chapter 4 of  Modeling Problem Solving in 
Massive Open Online Courses for a clear example explaining the transformation of data 
to form student trajectories for every problem of a MOOC. 

When we develop predictive models of learner behavior, we use the transformed data 
directly, or with some logic, populate yet another table that consisting of predictive 
features and labels for each machine learning training or testing example. The training 
data is input to the machine learning algorithm where the label acts as a supervisory 
signal and the features as explanatory model variables. The testing data is used to gauge 
generalized model accuracy. 

Technologies, infrastructures, and tools you use, including mechanisms for 
collection, storage, analysis, and sharing

We are computer scientists so we fairly routinely develop software and use open source 
and/or commercial software.  Our software operates at every part of the data science 
workflow. We execute our analyses on workstations and the cloud and databases.  
Machine learning is, perhaps less frequently known outside academia

Issues with standards and interoperability
To achieve interoperability with MOOC data from different platform providers, we 
initiated the MOOCdb schema and the open source release of translation software. For 
more information see MOOCdb documentation.  We develop software that we intend to 
share once it is release-ready.

Methods and analytic approaches you use, including visualization
Machine learning: we largely use open source libraries situated within our own research 
frameworks that allow rapid scaling and result comparison.

REFLECTIONS
Strategies for building partnerships between big data producers and consumers
The ideal time for a partnership is before or during education technology design and 
implementation. If education technologists and instructors can explicitly communicate 
their learning goals and desired learning outcomes and articulate the intent of their 
assessments AHEAD OF IMPLEMENTATION, the “producers” will be able to 
instrument the technology in a way that captures the appropriate feedback to validate 
hypotheses and outcome success.  

http://groups.csail.mit.edu/EVO-DesignOpt/groupWebSite/uploads/Site/FanProblemSolvingThesis.pdf
http://groups.csail.mit.edu/EVO-DesignOpt/groupWebSite/uploads/Site/FanProblemSolvingThesis.pdf
http://groups.csail.mit.edu/EVO-DesignOpt/groupWebSite/uploads/Site/FanProblemSolvingThesis.pdf
http://groups.csail.mit.edu/EVO-DesignOpt/groupWebSite/uploads/Site/FanProblemSolvingThesis.pdf
http://moocdbdocs.readthedocs.org/en/latest/.
http://moocdbdocs.readthedocs.org/en/latest/.


One strategy is to encourage development projects where the stakeholders work together 
toward a deliverable rather than the consumers receiving the data after digital learning. 
One goal of such projects, from a software technology perspective, should be open source 
middleware that hides layers of functionality that are necessary but not central to the 
consumer’s mission. This is much as Amazon Web Services does with a lot of its 
services. AWS services always handle compute scalability, elasticity and reliability. This 
allows their “consumer” to focus on the tasks central to their business without attending 
to aspects (like scaling) that are not central to their mission.  The AWS services also 
provide convenient interface abstractions and design patterns that are very common to 
their consumers. AWS develops the patterns for their internal business, gets them “right” 
and then offers them externally where they really help save development time.

Another way to answer this question is to list explicit examples of producers and 
consumers. In the MOOC-sphere the producers are the platform providers: edX and 
Coursera. The consumers of data are stakeholders: students, instructors, education 
technologists, institutional registrars, learning scientists.  In the MOOC-sphere, 
relationship building has been driven by the platform providers because they have the 
data.

Issues of privacy and security 
MOOC learners will require privacy during personalized learning interventions. We need 
to deeply explore different positive and negative scenarios in this context so we can 
inform and keep policy up to date, then define policy-dictated boundaries to inform 
capabilities and, finally develop the required privacy technology. One technology 
question would be: how do we design the algorithms and personalization technology to 
be accountable to policy?
MOOC learners also require privacy protection long after their learning interaction is 
completed and logged. In the digital learning enterprise multiple stakeholders have 
legitimate reasons to retrospectively access logged data and analyze it. In the current 
context of digital learner data being shared the concerns for learner privacy must be 
respected. Even when personally identifiable records within the data are removed and the 
learner’s identity is replaced with a randomized value, there remains risk of re-
identification, i.e. the recovery of a specific learner’s identity. 
From the learner’s perspective, despite contributing MOOC data, they do not directly 
receive or control it. The learner acknowledges this arrangement by accepting a terms of 
use agreement in return for using the site. They are briefed of the reasonable protections 
that will be afforded to their personally identifiable information via a site privacy policy. 
As a result of the learner’s activity, the data passes to the platform and content providers. 
From this perspective, their responsibility is to oversee and control its further 
transmission. They are entrusted, by the learner, to respect relevant parts of the terms of 
use and privacy policy. In transmitting the data, their current practice is essentially to 
ensure the receiver is trustworthy while transmitting the minimum data required in order 
to minimize potential privacy loss. They further bind the parties to whom they transfer 
data with some form of data use agreement.1 



Finally, from the perspective of those who receive learner data from platform or content 
providers, they agree to the data use agreement that commits them to fundamental 
measures that protect the learner. These include not ever attempting to re-identify anyone 
from the data, not contacting a learner they might recognize, and not transmitting the data 
onwards. 
In its entirety, the process is based upon trust that is granted based on direct verification 
of people and institutions. The process culminates, indirectly, in trust that the best efforts 
of the parties involved to honor their commitments will be sufficient. This endpoint 
exposes vulnerability: it assumes the data won’t fall into the wrong hands inadvertently, 
when, in fact, it may. This problem could happen when the data is held by any of the data 
controllers.  This implies a need for the development of new, practical, scalable privacy 
protection technology to mitigate the risk arising should the data fall into the wrong 
hands. This need is arguable because to date there is only one MOOC-related dataset in 
general open release.  It is the HarvardX-MITx Person-Course Academic Year 2013 De-
Identified dataset. It holds aggregate records, one per individual per single edX course 
for 5 MOOCs offered by Harvard X and 8 by MITx. The dataset is ”sanitized” for release 
by two complementary privacy protection technologies. It achieves k-anonymity (for k = 
5), a measure of degree of de-identification, by a means called “generalization of quasi-
identifiers” (see [Daries 2014] for more details). Using a second mechanism, it checks for 
L-diversity along sensitive variables and if all values of a variable are the same, redacts 
the value. In fact, the release is not completely open because a terms of use agreement is 
required to download the dataset, however it provides a solid starting point for future 
open releases. The k-anonymity measures and L-diversity redaction don’t provide a 
quantitative tradeoff measuring risk of re-identification and utility. One option that does 
offer this tradeoff measure is differential privacy. While research in differential privacy is 
largely theoretical, advances in practical aspects could address how to support the content 
and platform providers who transmit the data when they want to choose a tradeoff 
between risk of re-identification and utility. Subsequently, effort would be required to 
mature the demonstrations for regular use by development of prototypes that have user-
friendly interfaces to inform controller decisions. Controller acceptance will require a set 
of technology demonstrations that in turn require major effort and resources. 
Demonstrations would be feasible if a “safety zone” could be set up where technology 
can be explored and validated against (friendly) re-identification adversaries who try 
to“crack” identities without any threat of real harm to the learners’ data. Data scientists in 
the MOOC analytics sphere who develop variables and analytic models should be 
encouraged and supported to explore differential privacy mechanisms and bring them to 
practice. 

Una-May O’Reilly’s Author Bio:
I founded and currently partner the AnyScale Learning For All (ALFA) group at CSAIL. 
ALFA focuses on scalable machine learning, evolutionary algorithms, and frameworks 
for large-scale knowledge mining, prediction and analytics.  The group has data science 
projects in MOOC technology: MoocDB, student persistence and resource usage 
analysis, data privacy protection technology; clinical medicine knowledge discovery: 

http://harvardx.harvard.edu/dataset
http://harvardx.harvard.edu/dataset
http://harvardx.harvard.edu/dataset
http://harvardx.harvard.edu/dataset
http://research.microsoft.com/apps/pubs/default.aspx?id=116123
http://research.microsoft.com/apps/pubs/default.aspx?id=116123


arterial blood pressure forecasting and pattern recognition, diuretics in the ICU; wind 
energy: turbine layout optimization, resource prediction, cable layout.
My research is in the design of scalable data science systems that execute on a range of 
hardware systems: clouds, GPUs, grids, clusters, and volunteer compute networks. I am 
interested in agile and rapid intelligent data analytics capability and apply unsupervised, 
semi-supervised, and supervised learning algorithms for similarity search, classification, 
non-linear regression, and forecasting. I consider end-to-end systems, i.e. ones that start 
with raw data, move to data organization and information transformation, next   on to 
inferential analysis on conditioned exemplars, and finally to the deployment and 
evaluation of learned “algorithmic machines” in the original application context.  

[Daries 2014] Daries, Reich, Waldo, Young, Whittinghill, Seaton, Ho, and Chuang] 
Daries, Jon P, Reich, Justin, Waldo, Jim, Young, Elise M, Whittinghill, Jonathan, Seaton, 
Daniel Thomas, Ho, Andrew Dean, and Chuang, Isaac. Quality social science research 
and the privacy of human subjects requires trust. acmqueue, 2014. 



1 I can provide detailed descriptions of how MOOC data is released at Stanford U and 
MIT if it would be helpful. 



What Causes Changes in Learning Rate?  Data Intensive Research Opportunities	  
Ken Koedinger, Director of LearnLab, Professor of Human-Computer Interaction and Psychology, 
Carnegie Mellon University	  
koedinger@cmu.edu	  
	  
One concern to raise regarding data intensive research is the question of whether we are currently using 
data as effectively as possible? In education we sometimes seek data to confirm our intuitions rather than 
looking at data closely to try to determine what is really going on in student learning. It is a bit like looking 
around and deciding the world is flat and then seeking data to confirm that. We need to take the position 
that learning is not plainly visible and that we will not be able to gain insight by simply reflecting on our 
classroom experiences. We sometimes act as though we can easily observe learning.  For example, in 
response to data (e.g., Duckworth et al., 2011; Ericcsson et al., 1993) indicating that a substantial amount of 
deliberate practice is needed to acquire expertise, Hambrick et al. (2014) quote Gardner (1995) as 
suggesting “the deliberate practice view ‘requires a blindness to ordinary experience’ (p. 802).”  Instead of 
relying on our “ordinary experience”, we need to couple careful investigation of data along with theoretical 
interpretation to get at what is unseen and not immediately apparent. While ordinary experience suggests 
the world is flat, it took a combination of data and geometric theory to infer that the world is round and 
initially measure its circumference.  New data opportunities in education, especially ones afforded by 
technology use, will increasingly allow us to get beyond our ordinary experience and yield insights into 
what cognitive, situational, motivational, and social emotional factors cause the unseen changes in learners’ 
minds that lead to desired educational outcomes. 	  
	  
We have pursued this idea in LearnLab, an NSF funded Science of Learning Center (see learnlab.org; 
Koedinger, Perfetti, & Corbett, 2013).  A major output of LearnLab has been the creation of DataShop, the 
world’s largest open and free repository of educational technology data and analytic methods (Koedinger, 
Baker, Cunningham, Skogsholm, Leber, Stamper, 2011).  One of the many insights that can be drawn from 
the vast amount of data we have collected in DataShop is evidence on the rate at which learning occurs (see 
Figure 1). We see across many data sets that each opportunity to practice or learn a skill in the context of 
problem-solving reveals a rather small average improvement in student success (or, equivalently, drop in 
error rate as shown in Figure 1). These changes in student success across opportunities to practice or learn 
(get as-needed feedback or instruction on a skill) can be modeled as learning curves. DataShop provides a 
statistical modeling technique for estimating the shape of the learning curves which uses a logistic 
regression generalization of item-response theory, called AFM (cf., Koedinger, McLaughlin  & Stamper, 
2012).  The predictions of AFM are shown in blue (dotted) lines in Figure 1, with the actual data (average 
error) shown in red (solid) lines.	  
	  

	  
	  

	  
	  

Figure 1. Learning curves showing a decrease in error rate (y-axis) for each successive opportunity (x-axis) 
to demonstrate or learn a skill, averaged across students for different skills in the first row and averaged 
across skills for different students in the second row.  The variations in learning rate (how much the error 
changes for each opportunity) are much bigger for skills than for students (the curves in the first row have 
more variation in their slopes than the curves in the second row).  [Respective learning rates in log odds for 
the five skills shown are .07, .27 .15 .09 .03.]	  

	  
The average error rate increases about .15 in log odds (or “logit” scale used in item response theory and, 
more generally, logistic regression) for every opportunity to practice.  That means if a group of students are 



at about 50% correct on a skill, after one opportunity of practice they will now be at about 54% correct. 
This 4% increase diminishes as correctness increases toward 100%.  Thus, to get from 50% correct to 95% 
correct requires about 20 practice opportunities. 	  
	  
This learning rate estimated from educational technology data seems faster (indicating about 15 minutes of 
accumulated learning time per skill) than data from self-reports on expertise acquisition (e.g., Ericsson et 
al., 1993) that suggests it takes about 10,000 hours to become an expert.  Other estimates that expertise 
involves about 10,000 chunks of knowledge (or skills), yields a learning rate of about 1 hour per skill.   The 
faster learning rate apparent in educational technology data might be an indication that deliberate practice 
in the context of educational technology is more effective than it is in the typical real world learning 
environment.  These estimates are rough at this point, so more careful work would need to be done to make 
such a point firmly and rigorously. Nevertheless, it does open the possibility for interesting further 
research. Might it be possible to establish some baselines on which to compare learning rate achieved by 
different instructional approaches or learning supports?	  
	  
We do see large variations for different skills (see the first row in Figure 1). For example, in a unit on 
geometric area, learning rate for finding the area of triangles is .03 logits whereas the learning rate for the 
planning skill of identifying what regular shapes to use to find the area of a irregular shape is .15 
logits.  However, there is a relatively small variation across students (Liu & Koedinger, 2015). At least 
relative to skills, it seems that most students learn at about the same rate.  In contrast, some skills are much 
harder to learn than other things and these skill difficulty variations are common across all students.  We do 
find some variation in learning rate across students (Liu & Koedinger, 2015) and this variation is quite 
interesting. What accounts for these student differences in learning rate?  Is it innate ability, differences in 
domain-specific prior knowledge, or in general, but malleable, metacognitive learning skills, motivational 
dispositions, identity self attributions?  To the extent that student learning rate differences are not innate, 
might it be possible to increase the learning rate of some students through instruction that addresses one of 
these causes?  In other words, is there a data-driven path to helping students learn how to learn?	  

Returning to the larger point, given the relatively consistent and, frankly, relatively slow rate, at which 
learning generally occurs across students, we can ask whether it might be better to focus attention on 
learning supports or instructional methods that increases learning for all. These methods may still be highly 
student adaptive to the large variations in student learning progress (how much sudents know), despite our 
observation above about the relatively small variations in student learning rate (how quickly they can 
change what they know). (Note: Large student variations in learning progress/achievement are clearly 
apparent in DataShop data sets even as only small variations in learning rate are seen.)  Which of the 
trillions of different combinations of learning supports (Koedinger, Booth, & Klahr, 2013) is best for what 
kinds of student learning outcomes?	  

The increasing availability of large scale data, for instance, from Massively Open Online Courses 
(MOOCs) brings further opportunities to address these (and other) questions.  For example, a recent 
analysis of a Psychology MOOC data set explored how variations in students’ choices to use different 
learning resources was associated with learning outcomes.  Students who choose to do more interactive 
activities (tasks with as-needed feedback and instruction) had six times better learning outcomes (total quiz 
and final exam scores) than students who chose to watch more videos or read more web pages (Koedinger 
et al., 2015).  Many questions remain unanswered including: What particular patterns of learning resource 
use did students engage in?  Do significant differences in student learning rates emerge in this course due to 
their resource choices and/or strategies?  Do these results 
generalize to other online courses?	  

With the help of NSF funding (Data Infrastructure Building 
Blocks), a team of researchers at Carnegie Mellon 
University, MIT, Stanford, and University of Memphis are 
building LearnSphere (see learnsphere.org) to help data 
researchers address these questions. 	  
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Abstract

Video captures the complexity, richness, and diversity of behavior unlike any other

measure. As a result, large numbers of people who study teaching and learning employ

video. Video documents itself to a large degree. This presents significant potential for reuse

by others. The potential remains largely unrealized because videos are rarely shared. Video

contains information about personal identities. This poses challenges to sharing. The large

size of video files, diversity of formats, and incompatible software tools pose technical

challenges. We describe how the Databrary data library has overcome the most significant

barriers to sharing video within the developmental sciences community. Databrary has

developed solutions to maintaining participant privacy, storing, streaming, and sharing

video, and for managing video datasets and associated metadata. The Databrary

experience suggests ways that video and other identifiable data collected in the context of

education research might be shared. We envision a data intensive science of teaching and

learning, with video as its core, that allows educational experiences to be tailored to

students in ways that big data promises to personalize medicine. The creation and support

of repositories that enable the open sharing of dense, richly informative, high value, and

high impact data about teaching and learning will help realize this ambitious vision.
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Open Video Data Sharing Can Transform Education Research

Introduction

Open data sharing can help to translate insights from scientific research into

applications serving essential human needs. Open data sharing bolsters transparency and

peer oversight, encourages diversity of analysis and opinion, accelerates the education of

new researchers, and stimulates the exploration of new topics not envisioned by the original

investigators. Data sharing and reuse increases the impact of public investments in

research and leads to more effective public policy. Although many researchers in the

developmental, learning, and education sciences collect video as raw research data, most

research on human learning and development remains shrouded in a culture of isolation

(Adolph, Gilmore, Freeman, Sanderson, & Millman, 2012). Researchers share

interpretations of distilled, not raw data, almost exclusively through publications and

presentations. The path from raw video to research findings to conclusions cannot be

traced or validated by others. Other researchers cannot pose new questions that build on

the same raw materials. This paper describes how the Databrary data library has overcome

the most significant barriers to sharing video within the developmental sciences community.

It highlights how open video data sharing might improve scientific practice and advance

research on learning and development.

The Promise and Challenge of Video

Video is a uniquely rich, inexpensive, and adaptable medium for capturing the

complex dynamics of behavior. Researchers use video in home and laboratory contexts to

study how infants, children, and adults behave in natural or experimenter-imposed tasks

(Karasik, Tamis-LeMonda, & Adolph, 2014). Researchers record videos of students in

classrooms (Alibali & Nathan, 2012) to understand what teachers do and how students

respond. Because video closely mimics the multisensory experiences of live human

observers, recordings collected by one person for a particular purpose may be readily
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understood by another person and reused for a different purpose. Moreover, the success of

YouTube and other video-based social media demonstrates that web-based video storage

and streaming systems are now sufficiently well developed to satisfy large-scale demand.

The question for researchers and policymakers is how to capitalize on video’s potential to

improve teaching and learning.

The answer requires overcoming significant technical, ethical, practical, and cultural

challenges to sharing research video. File sizes and diverse formats present special

challenges for sharing. Video files are large (one hour of HD video can consume 10+ GB of

storage) and come in varied formats (from cell phones to high-speed video). Many studies

require multiple camera views to capture desired behaviors. Research video creates a data

explosion: A typical lab studying infant or child development collects 8-12 hours of

video/week (Gilmore & Adolph, 2012). Thus, sharing videos requires substantial storage

capacity and significant computational resources for transcoding videos into common,

preservable formats.

Technical challenges involved in searching the contents of videos present barriers to

sharing. Videos contain rich and diverse information that requires significant effort by

human observers to extract. Researchers make use of videos by watching them and, using

paper and pencil or more automated computerized coding software, translating

observations into ideas and numbers. In many cases, researchers assign codes to particular

portions of videos. These codes make the contents of videos searchable by others, in

principle. However, researchers focus on different questions from varied theoretical

perspectives and lack consensus on conceptual ontologies. So, in practice, most coded data

are not easily shared. Although human-centered video coding capitalizes on the unique

abilities of trained observers to capture important dimensions of behavior, machine

learning and computer vision tools may provide new avenues for tagging the contents of

videos for educational and developmental research (Amso, Haas, Tenenbaum, Markant, &

Sheinkopf, 2014; Yu & Smith, 2013; Fathi, Hodgins, & Rehg, 2012; Google Research, 2014;
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Raudies & Gilmore, 2014).

Open video sharing must overcome ethical challenges linked to sharing personally

identifiable data. Although policies exist for sharing de-identified data, video contains

easily identifiable data: faces, voices, names, interiors of homes and classrooms, and so on.

Removing identifiable information from video severely diminishes its reuse value and poses

additional burdens on researchers. So, open video sharing requires new policies that

protect the privacy of research participants while preserving the integrity of raw video for

reuse by others.

Open video sharing faces practical challenges of data management. Developmental

and education research is inundated by an explosion of data, most of which is inaccessible

to other researchers. Researchers lack time to find, label, clean, organize, and copy their

files into formats that can be used and understood by others (Ascoli, 2006a). Study designs

vary widely, and no two labs manage data in the same way. Idiosyncratic terms,

record-keeping, and data management practices are the norm. Few researchers document

workflows or data provenance. Although video requires minimal metadata to be useful,

video files must be electronically linked to what relevant metadata exist including

information whether participants have given permission to share.

Perhaps the most important challenge is cultural–community practices must change.

Most researchers in the education, learning, and developmental sciences do not reuse their

own videos or videos collected by other researchers; they neither recognize nor endorse the

value of open sharing. Contributing data is anathema and justifications against sharing are

many. Researchers cite intellectual property and privacy issues, the lack of data sharing

requirements from funding agencies, and fears about the misuse, misinterpretation, or

professional harm that might come from sharing (Ascoli, 2006b; Ferguson, 2014). Data

sharing diverts energy and resources from scholarly activities that are more heavily and

frequently rewarded. These barriers must be overcome to make data sharing a scientific

norm.
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Databrary.org

The Databrary project has built a digital data library (http://databrary.org)

specialized for open sharing of research videos. Databrary has overcome the most

significant barriers to sharing video, including solutions to maintaining participant privacy,

storing, streaming, and sharing video, and for managing video datasets and associated

metadata. Databrary’s technology and policies lay the groundwork for securely sharing

research videos on teaching and learning. In only a year of operation, Databrary has

collected more than 7,000 individual videos, representing 2,400 hours of recording,

featuring more than 1,800 infant, child, and adult participants. Databrary has more than

100 authorized researchers representing more than 60 institutions across the globe. Video

data is big data, and the interest in recording and sharing video for research, education,

and policy purposes continues to grow.

The Databrary project (databrary.org) arose to meet the challenges of sharing

research video and to deliver on the promise of open data sharing in educational and

developmental science. With funding from NSF (BCS-1238599) and NIH (NICHD

U01-HD-076595), Databrary has focused on building a data library specialized for video,

creating data management tools, crafting new policies that enable video sharing, and

fostering a community of researchers who embrace video sharing. Databrary also developed

a free, open-source video annotation tool, Datavyu (http://datavyu.org). The project

received funding in 2012-2013, began a private beta testing phase in the spring of 2014 and

opened for public use in October 2014.

System Design

The Databrary system enables large numbers of video and related files to be

uploaded, converted, organized, stored, streamed, and tagged. Databrary is a free,

open-source (http://github.com/databrary) web application whose data are preserved

indefinitely in a secure storage facility at NYU. Databrary can house video and audio files,
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along with associated materials, coding spreadsheets, and metadata. Video and audio data

are transcoded into standard and HTML5-compatible formats. This ensures that video

data can be streamed and downloaded by any operating system that supports a modern

browser. Copies of original video files are also stored. Databrary stores other data in their

original formats (e.g., .doc, .docx, .xls, .xlsx, .txt, .csv, .pdf, .jpg, .png).

The system’s data model embodies flexibility. Researchers organize their materials by

acquisition date and time into structures called sessions. A session corresponds to a unique

recording episode featuring specific participants. It contains one or more videos and other

file types and may be linked to user-defined metadata about the participants, tasks or

measures, and locations. A group of sessions is called a volume. Databrary contributors

may combine sessions or segments with coding manuals, coding spreadsheets, statistical

analyses, questionnaires, IRB documents, computer code, sample displays, and links to

published journal articles.

Databrary does not enforce strict ontologies for tagging volumes, sessions, or the

contents of videos. Video data are so rich and complex that in many domains, researchers

have not settled on standard definitions for particular behaviors and may have little

current need for standardized tasks, procedures, or terminology. Indeed, standardized

ontologies are not necessary for many use cases. Databrary empowers users to add keyword

tags and to select terms that have been suggested by others without being confined to the

suggestions. Moreover, Databrary encourages user communities within Databrary to

converge on common conceptual and metadata ontologies based on the most common

keyword tags, and to construct and enforce common procedures and tasks wherever this

makes sense.

Future challenges include enhancing the capacity to search for tagged segments inside

of videos. Some search functionality exists in the current software, with more extensive

capabilities on the near horizon. A related challenge involves importing files from desktop

video coding tools. This will allow for the visualization of user-supplied codes independent



VIDEO DATA SHARING 8

of the desktop software deployed in a particular project. We envision a parallel set of

export functions that permit full interoperability among coding tools. The priority will be

to create interoperability with tools using open, not proprietary file formats. Databrary

also recognizes the need to develop open standards and interfaces that enable Databrary to

link to and synchronize with outside sources that specialize in other data types.

Policies for Safe and Secure Video Sharing

Policies for openly sharing identifiable data in ways that securely preserve participant

privacy are essential for sharing research video. Databrary does not attempt to de-identify

videos. Instead, we maximize the potential for video reuse by keeping recordings in their

original unaltered form. To make unaltered raw videos available to others for reuse,

Databrary has developed a two-pronged access model that (a) restricts access to authorized

researchers, and (b) enables access to identifiable data only with the explicit permission of

participants.

To gain access to Databrary a person must register on the site. Applicants agree to

uphold Databrary’s ethical principles and to follow accepted practices concerning the

responsible use of sensitive data. Each applicant’s institution must co-sign an access

agreement. Full privileges are granted only to those applicants with independent researcher

status at their institutions. Others may be granted privileges if they are affiliated with a

researcher who agrees to sponsor their application and supervise their use. Ethics board or

IRB approval is not required to gain access to Databrary because many use cases do not

involve research, but IRB approval is required for research uses. Once authorized, a user

has full access to the site’s shared data, and may browse, tag, download for later viewing,

and conduct non- or pre-research activities.

Unique among data repositories, the Databrary access agreement authorizes both

data use and contribution. However, users agree to store on Databrary only materials for

which they have ethics board or IRB approval. Data may be stored on Databrary for the
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contributing researcher’s use regardless of whether the records are shared with others or

not. When a researcher chooses to share, Databrary makes the data openly available to the

community of authorized researchers.

In addition to restricting access to authorized researchers, Databrary has extended

the principle of informed consent to participate in research to encompass permission to

share data with other researchers. To formalize the process of acquiring permission,

Databrary has developed a Participant Release Template (Databrary Project, 2015) with

standard language we recommended for use with study participants. This language helps

participants to understand what is involved in sharing video data, with whom the data will

be shared, and the potential risks of releasing video and other identifiable data to other

researchers.

Managing Data for Sharing

When researchers do share, standard practice involves organizing data after a project

has finished, perhaps when a paper goes to press. This “preparing for sharing” after the

fact presents a difficult and unrewarding chore for investigators. It makes curating and

ingesting datasets challenging for repositories, as well. Databrary has chosen a different

route to curation.

We have developed a data management system that empowers researchers to upload

and organize data as it is collected. Immediate uploading reduces the workload on

investigators, minimizes the risk of data loss and corruption, and accelerates the speed with

which materials become openly available. The system employs familiar, easy-to-use

spreadsheet and timeline-based interfaces that allow users to upload videos, add metadata

about tasks, settings, and participants, link related files, and assign appropriate permission

levels for sharing. To encourage immediate uploading, Databrary provides a complete set

of controls so that researchers can restrict access to their own labs or to other users of their

choosing. Datasets can be openly shared with the broader research community at a later
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point when data collection and ancillary materials are complete, whenever the contributor

is comfortable sharing, or when journals or funders require it.

Building a Community

Data sharing works only when the scientific community embraces it. From the

beginning, Databrary has sought to cultivate a community of researchers who support data

sharing and commit to enacting that support in their own work flows. Our community

building efforts involve many interacting components. They include active engagement

with professional associations, conference-based exhibits and training workshops,

communications with research ethics and administration staff, talks and presentations to

diverse audiences, and one-on-one consultations with individual researchers and research

teams. These activities are time and labor-intensive, but we believe that they are critical

to changing community attitudes toward data sharing in the educational and learning

sciences. Looking ahead, it will be critical to engage funders, journals, and professional

organizations in the effort to forge community consensus about the importance, feasibility,

and potential of open video data sharing.

Conclusion

Imagine a time in the near future when researchers interested in studying classroom

teaching and learning can mine an integrated, synchronized, interoperable, open and widely

shared dataset. The components include video from multiple cameras, eye tracking,

motion, and physiological measurements, and information from both historical and

real-time student performance measures. Imagine that this classroom-level data can be

linked with grade, school, neighborhood, community, region, and state-level data about

education practice, curriculum, and policy. Then, imagine training a cadre of experts with

skills in the data science of learning and education who are sensitive to privacy,

confidentiality and ethical issues involved in research involving identifiable information. We

empower these learning scientists to extract from the data meaningful insights about how
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educational practice and policy might be improved. In short, imagine a science of teaching

and learning that can be personally tailored to individuals in ways analogous to the impact

of big data on medicine. The barriers to realizing this vision are similar to those that

confront the vision of personalized medicine – the development of technologies that enable

data to be collected, synchronized, tagged, curated, stored, shared, linked, and aggregated;

policies and practices that ensure security and individual privacy; and the cultivation of

professional expertise needed to turn raw data into actionable insights.

As Gesell once noted, cameras can record behavior in ways that make it “...as tangible

as tissue” (Scott, 2011). The Databrary team contends that video has a central role to play

in efforts to make tangible the anatomy of successful teaching and learning. In fact, we

argue that video can be the core around which other measures of teaching and learning

cluster. This requires reducing barriers to sharing video and fostering new community

values around data sharing that make it indispensible. The Databrary project has built

technology and policies that overcome many of the most significant barriers to widespread

sharing within the developmental sciences community. Databrary suggests ways that video

and other identifiable data collected in the context of education research might also be

shared. Technologies and policies for providing secure access to videos for broader use cases

will have to be developed, tools that allow desktop coding software files to be seamlessly

converted to and from one another will have to be perfected, and ways of synchronizing and

linking disparate data streams will have to be created. Equally important, communities of

scholars dedicated to collecting, sharing, and mining education-related video data will have

to be cultivated. But, we believe that the widespread sharing of high value, high impact

data of the sort that video can provide promises to achieve this ambitious vision to advance

education policy and improve practice. Databrary is working toward a future where open

video data sharing is the norm, a personalized science of teaching and learning is the goal,

and what optimizes student learning is as tangible as tissue.
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The National Science Foundation Ideas Lab to Foster Transformative 
Approaches to Teaching and Learning was an activity intended to bring together 
a range of STEM education developers and researchers to think about how large 
data sets might be leveraged to improve teaching and learning in STEM. The 
central premise of data in the announcement was that new advances in data 
analysis coupled with rich and complex data systems would enable us to develop 
and study new formal and informal learning environments. The focus on data in 
the announcement was deliberately quite wide. 

These new approaches will require the generation and use of data that 
range from micro-level data on individual learners, to data from online 
learning sources (such as massively open online courses), to meso-level 
data from the classroom that provide information to students and teachers 
about how learning is progressing, to macro-level data such as school, 
district, state, and national data, including data from federal science and 
policy agencies. (NSF, 2013) 

Both Ken Koedinger and Rick Gilmore reporting in the Integrating Data 
Repositories panel will discuss the micro level data. What I want to focus on is 
the meso and macro levels of data and the potential for integration across these 
data levels to inform research and policy studies. 
 
The NSF recently funded a proposal for researchers at SRI who are examining 
the ways in which teachers make use of data from an online learning platform 
that includes instructional resources and content assessments that serve as the 
central structure in the students’ learning environments. The intent of the 
research is to examine the key challenges facing practitioners in their use of 
information that comes from data intensive research methods and to identify 
what partnership activities best support evidence-based practices. The findings 
from this study will lead to an understanding of the utility and feasibility of a 
teacher's use of the volumes of data that come from virtual learning 
environments, effectively bridging the micro and meso level data categories. 
 
The collection and use of data collected at the meso level has lagged well behind 
the development of rich data archives at both the micro and macro level. The 
Race to the Top initiative of the Department of Education has supported a 
number of states to develop and implement Instructional Improvement Systems 
(IIS) that are currently being investigated. An IIS model frequently includes 
systems that support curriculum, formative and interim assessment, and 
instructional (lesson-planning) management. They also facilitate the use of 
electronic grade books and may support a professional development 
management component. The IIS frequently includes a daily import of data from 
the state’s Student Information System (SIS) that includes attendance and 



disciplinary data. Usually constructed by a vendor identified through a 
competitive bidding process, these data systems include standards-aligned 
lesson plans developed by teachers and externally developed resources that are 
linked to grade-books, enabling researchers to examine not only student 
achievement, but also opportunity to learn. Data from these systems are also 
used to support the determination of early warning systems that inform districts 
and schools about students at risk. 
 
Much of the meso-level education data are collected through school and district 
level systems that include student demographics, attendance, disciplinary, 
course-taking, grade, local assessments (formative, benchmark and interim), 
state assessment and SAT/ACT testing data. Student information systems are 
frequently linked to human resource data systems that facilitate connecting 
information about teachers to student data. Educators at the school and district 
level are provided data dashboards that facilitate the display of data in formats 
that are intended to be easy to interpret. Increasingly, educator use of these data 
systems has been a focus of research at the school level where the data do not 
necessarily correspond to “big data”. A study by Brunner, Fasca, Heinze, Honey, 
Light, Mandinach and Wexler (2005) documented the ways in which teachers 
used the paper and web-based data that were provided to them through the 
Grow Network in the New York public schools. Findings from this study 
emphasized the focus on “bubble” students, those who are on the cusp of 
meeting proficiency on the high stakes testing. Other researchers have examined 
the interpretive processes and social and organizational conditions under which  
data use is conducted (Coburn & Turner, 2011). But if we begin to study 
populations of teachers in districts using data, the scale increases significantly. 
These meso-level data sets connect to the macro-level data in that much of the 
data included in them are reported to the state longitudinal data systems. 
 
The Department of Education State Longitudinal Data Systems (SLDS) have 
supported the development of P-20 data systems that frequently are attached to 
workforce data as well to the tune of over half a billion dollars. These data 
represent the macro level of data and they contain data at a much larger grain 
size than micro and meso level systems. While many states are at varying levels 
of levels of interoperability of the data in these systems, a number have 
developed systems that allow for quite sophisticated research and policy 
questions to be addressed. For instance, the State of Washington Education 
Research and Data Center (WA-ERDC), housed in the states Office of Financial 
Management, was created in 2007 to assemble, link and analyze education and 
workforce data and support research focusing on student transitions. The WA-
ERDC includes data from the following agencies: 

• Department of Social and Health Services- social service program 
participants; 

• Department of Early Learning, Office – early learning and child care 
providers; 



• Office of Superintendent of Public Instruction – P-12 student state 
assessment, attendance, course-taking patterns, graduation, and 
information about teachers; 

• Washing Student Achievement Council – financial aid information; 
• State Board for Community and Technical Colleges – students, courses, 

degrees, and majors; 
• Public Centralized Higher Education Enrollment System – students, 

courses, degrees and majors; 
• Workforce Training and Education Coordinating Board – career schools, 

non-credit workforce programs; 
• Labor and Industries – state apprenticeships; and 
• Employment Security – industry, hours, and earnings. 

From the integration of these data, the WA-ERDC can produce information for 
parents, teachers, administrators, policy makers, and researchers. The center 
routinely provides data sets to researchers that contain de-identified data that 
can still be linked longitudinally under specific Memoranda of Understanding that 
protect student privacy.  
 
Seven of the first two years of awards from the NSF Building Community and 
Capacity for Data Intensive Research program focused on building the education 
and social science research community to use integrated systems that included 
education data at their core. Northwestern and Duke universities were funded to 
begin to develop a national interdisciplinary network of scholars that would use 
new datasets that linked K-12 data to birth and medical records, information from 
Medicaid and welfare programs, preschool and early childhood interventions, 
marriage and criminal records, and other workforce data. These linked datasets 
facilitate research on early childhood investments and interventions and their 
effect on school performance. They also provide the opportunity to focus on 
salient long run adult outcomes rather than just test scores. The Minnesota 
Linking Information for Kids (Minn-LInK) project expanded the focus of cross-
linked data to support a more complete understanding of child well-being with a 
special focus on at-risk children and youth. In Ohio, the Ohio Longitudinal Data 
Archive seeks to examine the effects of educational processes from pre-school 
through graduate study on economic development in that state. In Virginia, 
researchers working with Project Child HANDS are designing the data interface 
and analytic tools and determining the data governance structure and processes 
to facilitate the use of social services, child care quality and educational data. 
 
In response to the Digital Accountability and Transparency Act (DATA Act), the 
Data Quality Campaign has increased calls for  

“ data that are accessible, understandable, and actionable so they can 
make informed decisions. States’ data collection and public reporting 
efforts should move away from simply complying with state and federal 
regulations and toward answering stakeholders’ questions (DQC, no 
date). 



The Ewing Marion Kauffman Foundation has developed a data tool that is 
intended for such public use by multiple stakeholders. Called EdWise, the tool is 
scheduled for use during the early summer of 2015. 
 
EdWise came out of the need for data to inform both the identification of schools 
that would benefit from foundation support and the need to be good stewards of 
EMKF funds by providing evidence of the potential influence or impact of the 
funding actions. The state of Missouri provides spreadsheets of data on their 
website that include thousands of lines of data. We have combined fourteen 
million records of Missouri K-12 education data into a single easy-t-use online 
tool to help parents, educators, school districts, policymakers, and the general 
public better understand the educational landscape and make informed 
education decisions. With these macro-level and aggregate data, parents can 
identify schools and districts in which to enroll their children. More importantly, 
school districts can better identify other districts that have similar characteristics 
and the might provide either more targeted examples to query for assistance, or 
to use as comparisons when newspapers report annual achievement rates. 
EdWise contains hundreds of variables that extend over two decades to 
understand trends over time. EdWise does not contain student or teacher data 
from Kansas as these data are currently embargoed under Kansas legislation. 
We are currently working with the departments of higher education in both 
Kansas and Missouri to connect aggregate data from postsecondary institutions 
with K-12 information. But what the higher education data users want is the 
connection of higher education data with that from work force so that they can 
demonstrate the importance of postsecondary education. In our experience, each 
level of the system wants to look both behind and ahead of their own level of 
data.  
 
Integrating these multiple levels of data presents serious technical and system 
level problems. Data are frequently still sequestered in silos within and across 
different levels. Figuring out how to address issues around identifiers is another 
technical problem. Privacy issues are also a barrier to integrating data sources. 
Ken and Rick identify even more technical problems. But what kinds of real-world 
educational questions might we answer if we solved these problems and 
developed the ability to truly track students across educational contexts and 
systems?   
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Diana	  Oblinger	  

Introduction	  

This	  document	  touches	  on	  many	  types	  of	  “big	  data”	  applications.	  Large	  amounts	  of	  data	  can	  be	  
gathered	  across	  many	  learners	  (broad	  between-‐learner	  data),	  but	  also	  within	  individual	  learners	  (deep	  
within-‐learner	  data).	  The	  depth	  of	  the	  data	  is	  determined	  not	  only	  by	  the	  raw	  amount	  of	  data	  on	  a	  given	  
learner,	  but	  also	  by	  the	  availability	  of	  contextual	  information.1	  Possible	  applications	  range	  from	  game-‐
based	  learning	  environments	  to	  analytics	  to	  MOOCs,	  to	  integrated	  advising	  systems,	  to	  competency-‐
based	  systems,	  and	  more.	  

Big	  data	  in	  education	  provides	  many	  opportunities,	  such	  as:	  

• Individualizing	  a	  student’s	  path	  to	  content	  mastery,	  through	  adaptive	  learning	  or	  competency-‐
based	  education.	  

• Better	  learning	  as	  a	  result	  of	  faster	  diagnosis	  of	  learning	  needs	  or	  course	  trouble	  spots.	  
• Targeted	  interventions	  to	  improve	  student	  success	  and	  reduce	  overall	  costs	  to	  students	  and	  

institutions.	  
• Deeper	  learning	  and	  better	  transfer	  of	  knowledge	  by	  using	  game-‐based	  environments	  for	  

learning	  and	  assessment,	  where	  learning	  is	  situated	  in	  complex	  information	  and	  decision-‐making	  
situations,	  using	  games	  as	  an	  architecture	  for	  engagement	  and	  assessment	  of	  skills	  such	  as	  
systems	  thinking,	  collaboration,	  problem	  solving	  in	  the	  context	  of	  subject-‐area	  knowledge.	  

• A	  new	  credentialing	  paradigm	  for	  the	  digital	  ecosystem,	  integrating	  micro-‐credentials,	  diplomas,	  
and	  informal	  learning	  in	  ways	  that	  serve	  the	  individual	  and	  employers.	  

• Academic	  resource	  decision-‐making,	  such	  as	  managing	  costs	  per	  student	  credit	  hour,	  reducing	  
DFW	  rates,	  eliminating	  bottleneck	  courses,	  aligning	  course	  capacity	  with	  changing	  student	  
demand,	  etc.	  	  

While	  there	  is	  tremendous	  potential,	  many	  questions	  remain	  unasked	  and	  unanswered.	  Below	  are	  some	  
of	  the	  challenges	  that	  might	  be	  addressed	  through	  additional	  research.	  Note	  that	  several	  items	  are	  not	  
discussed	  here	  because	  they	  are	  likely	  to	  be	  addressed	  in	  other	  papers	  (e.g.,	  analytics	  or	  game-‐based	  
environments).	  	  

Challenges	  

There	  are	  a	  number	  of	  challenges	  associated	  with	  data-‐intensive	  environments.	  Below	  is	  a	  sampling	  of	  
issues.	  One	  illustrates	  the	  challenges	  of	  complex	  systems	  (integrated	  competency	  management	  system	  
for	  students,	  higher	  education	  and	  employers);	  another	  focuses	  on	  technical	  infrastructure	  (next	  
generation	  digital	  learning	  environment).	  Two	  illustrate	  challenges	  in	  human	  capacity,	  specifically	  
awareness/adoption	  and	  workforce	  development.	  The	  final	  area	  illustrated	  deals	  with	  policy.	  Note	  that	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  Thille,	  C.,	  Schneider,	  D.	  E.,	  Kizilcec,	  R.	  F.,	  Piech,	  C.,	  Halawa,	  S.	  A.,	  &	  Greene,	  D.	  K.	  (2014).	  The	  Future	  of	  data–
enriched	  assessment.	  Research	  &	  Practice	  in	  Assessment,	  9(2),	  5-‐16.	  http://www.rpajournal.com/dev/wp-‐
content/uploads/2014/10/A1.pdf	  
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some	  (e.g.,	  policy	  issues)	  may	  not	  lend	  themselves	  to	  NSF-‐supported	  research	  however	  they	  must	  be	  
addressed	  to	  achieve	  the	  potential	  of	  data-‐intensive	  environments.	  

Integrated	  Competency	  Management	  System	  for	  Students,	  Higher	  Education	  and	  Employers	  

There	  is	  an	  opportunity	  to	  use	  big	  data	  capabilities	  to	  create	  an	  integrated	  competency	  management	  
system	  that	  supports	  students,	  higher	  education	  and	  employers.	  Such	  a	  system	  would	  integrate	  “the	  
body	  of	  knowledge,	  skills,	  and	  experience	  achieved	  through	  both	  formal	  and	  informal	  activities	  that	  an	  
individual	  accumulates	  and	  validates	  during	  their	  lifetime.”2	  	  

The	  current	  environment	  for	  skills,	  credentials,	  and	  employment	  opportunities	  is	  disconnected.	  	  
Students	  attend	  multiple	  institutions	  and	  can	  assemble	  experience	  and	  credentials	  that	  go	  beyond	  a	  
degree.	  Students	  use	  non-‐institutional	  career	  development	  networks,	  in	  part	  because	  institutions	  do	  not	  
have	  enough	  career	  services	  professionals.	  Students	  and	  employers	  are	  turning	  to	  LinkedIn,	  Monster,	  
and	  CareerBuilder.	  For	  example,	  LinkedIn	  reports	  hosting	  300	  million	  individual	  profiles.	  More	  than	  75%	  
of	  employers	  use	  social	  networks	  for	  employee	  recruitment.	  The	  opportunity	  appears	  to	  be	  significant.	  
For	  example,	  investors	  have	  dedicated	  more	  than	  $700	  million	  to	  education	  businesses	  focused	  on	  
ventures	  that	  disaggregate	  and	  re-‐aggregate	  credentials.3	  

“Foundational	  lifelong	  skills	  such	  as	  critical	  thinking,	  teamwork	  and	  collaboration,	  and	  problem	  solving	  
are	  climbing	  to	  the	  top	  of	  employers’	  wish	  lists,	  and	  yet	  few	  institutional	  measures	  capture	  these	  
attributes.	  These	  dynamics	  are	  pushing	  students	  and	  employers	  to	  explore	  alternative	  platforms	  for	  
both	  presenting	  and	  evaluating	  profiles	  that	  capture	  an	  individual’s	  evidence	  of	  learning.”4	  	  	  	  	  

There	  are	  at	  least	  5	  elements	  that	  involve	  big	  data:	  

• Experience:	  The	  process	  of	  learning,	  formally	  or	  informally,	  including	  MOOCs,	  adaptive	  learning,	  
social	  learning	  models,	  etc.	  Also	  included	  are	  non-‐course-‐based	  learning	  activities.	  

• Validate:	  Assessing	  and	  recognizing	  experiences	  for	  credit	  or	  qualifications,	  including	  non-‐
cognitive	  attributes	  of	  students,	  badging	  or	  micro-‐credentialing,	  credit	  for	  prior	  learning	  and	  
training	  experiences.	  

• Assemble:	  Capturing	  and	  curating	  evidence	  of	  learning,	  including	  transcripts,	  assessments,	  
outside	  learning	  experiences,	  etc.	  

• Promote:	  Marking	  the	  assembled	  evidence	  to	  link	  candidates	  and	  opportunities,	  which	  may	  
include	  social	  media	  analytics,	  behavioral	  assessment,	  and	  other	  data-‐mining	  techniques.	  

• Align:	  Using	  feedback	  loops	  to	  constantly	  evaluate	  performance	  and	  make	  improvements	  and	  
the	  individual	  and	  enterprise	  level.	  

Today,	  this	  emerging	  cross-‐segment	  competency	  management	  system	  appears	  to	  be	  developing	  outside	  
of	  higher	  education.	  Colleges	  and	  universities	  can	  bridge	  students	  and	  the	  workplace	  by	  aligning	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  Newman,	  Adam.	  (2015,	  February).	  Evidence	  of	  Learning:	  The	  Case	  for	  an	  Integrated	  Competency	  Management	  
System.	  http://tytonpartners.com/library/evidence-‐learning-‐case-‐integrated-‐competency-‐management-‐system/	  	  
3	  Ibid.	  
4	  Ibid,	  page	  6	  
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learning	  outcomes	  across	  institutions	  and	  employers.	  But	  developing	  scalable	  systems	  will	  also	  require	  
technical	  integration	  and	  workflow	  processes.	  

Research	  could	  advance	  individual	  elements	  (e.g.,	  adaptive	  learning,	  non-‐cognitive	  skill	  assessment,	  etc.)	  
of	  this	  framework.	  Research	  may	  catalyze	  the	  necessary	  data	  exchanges	  among	  institutions	  and	  
employers	  that	  will	  be	  required	  for	  such	  a	  system	  to	  be	  successful.	  	  

Next	  Generation	  Digital	  Learning	  Environment	  

The	  LMS	  is	  the	  most	  ubiquitous	  digital	  tool	  in	  higher	  education.	  In	  spite	  of	  its	  prevalence,	  the	  LMS	  is	  
largely	  designed	  to	  administer	  learning	  (e.g.,	  distribution	  of	  materials,	  gradebooks,	  etc.)	  rather	  than	  
enabling	  it.	  It	  is	  also	  predicated	  on	  a	  course-‐centric	  and	  instructor-‐centric	  model.	  That	  model	  is	  being	  
replaced	  with	  a	  focus	  on	  learning	  and	  the	  learner,	  moving	  beyond	  courses	  and	  today’s	  credentialing	  
systems.	  	  

The	  LMS	  needs	  to	  be	  replaced	  by	  a	  new	  digital	  architecture	  and	  components	  for	  learning.	  This	  “next	  
generation	  digital	  learning	  environment”	  may	  not	  be	  a	  single	  application	  like	  today’s	  LMS	  but	  be	  more	  of	  
a	  “mash-‐up”	  or	  “lego	  set.”	  EDUCAUSE	  research	  suggests	  that	  the	  next	  generation	  digital	  learning	  
environment	  (NGDLE)	  will	  be	  an	  ecosystem	  of	  sorts,	  characterized	  by:	  

• Interoperability	  and	  integration:	  Interoperability	  is	  the	  linchpin	  of	  the	  NGDLE.	  The	  ability	  to	  
integrate	  tools	  and	  exchange	  content	  and	  learning	  data	  enables	  everything	  else.	  

• Personalization:	  Personalization	  is	  the	  most	  important	  user-‐facing	  functional	  domain	  of	  the	  
NGDLE.	  

• Analytics,	  advising,	  and	  learning	  assessment:	  The	  analysis	  of	  all	  forms	  of	  learning	  data	  is	  a	  vital	  
component	  of	  the	  NGDLE	  and	  must	  include	  support	  for	  new	  learning	  assessment	  approaches,	  
particularly	  in	  the	  area	  of	  competency-‐based	  education.	  

• Collaboration:	  The	  NGDLE	  must	  support	  collaboration	  at	  multiple	  levels	  and	  make	  it	  easy	  to	  
move	  between	  private	  and	  public	  digital	  spaces.	  

• A	  cloud-‐like	  space	  to	  aggregate	  and	  connect	  content	  and	  functionality,	  similar	  to	  a	  smartphone,	  
where	  users	  fashion	  their	  environments	  directly	  with	  self-‐selected	  apps.	  	  

In	  addition,	  there	  may	  be	  a	  host	  of	  additional	  NGDLE	  components,	  such	  as:	  

• Learning	  environment	  architectures:	  A	  set	  of	  exemplary	  NGDLE	  architecture	  designs,	  which	  
could	  serve	  as	  models	  for	  the	  community.	  	  

• Smart	  tools:	  A	  set	  of	  learning-‐tool	  designs	  that	  explicitly	  incorporate	  learning	  science	  and	  
universal	  design	  and	  are	  fully	  NGDLE	  compliant.	  	  

• Learning	  measurement	  rubrics:	  A	  set	  of	  designs	  to	  effectively	  integrate	  new	  rubrics	  for	  learning	  
measurement	  and	  degree	  progress	  (e.g.,	  competency)	  into	  the	  NGDLE.	  5	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5	  Brown,	  M.,	  Dehoney,	  J.,	  and	  Millichap,	  N.	  (2015).	  The	  next	  generation	  digital	  learning	  environment:	  a	  report	  on	  
research.	  (EDUCAUSE	  Learning	  Initiative	  Paper).	  http://net.educause.edu/ir/library/pdf/eli3035.pdf	  	  
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Research	  is	  needed	  to	  validate	  these	  elements	  and	  document	  best	  practices	  in	  architectures,	  tools,	  
rubrics,	  etc.	  

	   	  



5	  
	  

Audience,	  Awareness	  and	  Adoption	  

Awareness	  and	  adoption	  of	  data-‐intensive	  educational	  tools	  is	  very	  uneven.	  MOOCs	  are	  an	  example.	  
EDUCAUSE	  surveys	  found	  that	  about	  three	  in	  four	  faculty	  (76%)	  said	  they	  are	  either	  conceptually	  or	  
experientially	  familiar	  with	  MOOCs;	  compare	  this	  to	  only	  one	  in	  four	  undergraduates	  (24%)	  who	  say	  
they	  know	  what	  a	  MOOC	  is.	  Though	  few	  faculty	  reported	  having	  actually	  taught	  a	  MOOC	  (3%),	  they	  are	  
much	  more	  likely	  than	  students	  to	  know	  about	  this	  alternative	  model	  for	  online	  learning.	  	  

Part-‐time	  faculty	  (53%)	  expressed	  more	  support	  than	  full-‐time	  faculty	  (38%);	  furthermore,	  non-‐tenure-‐
track	  faculty	  (46%)	  were	  more	  supportive	  than	  tenured	  (34%)	  or	  tenure-‐track	  (39%)	  faculty.	  About	  two	  
in	  five	  faculty	  (43%)	  with	  less	  than	  10	  years	  of	  teaching	  experience	  were	  supportive,	  whereas	  somewhat	  
fewer	  faculty	  (37%)	  with	  10	  or	  more	  years	  of	  experience	  were	  supportive.	  Not	  surprisingly,	  the	  picture	  
painted	  here	  is	  that	  newer	  (less	  experienced)	  faculty	  have	  more	  positive	  perceptions	  of	  MOOCs	  adding	  
value	  to	  higher	  education.6	  

The	  population	  enrolling	  in	  MOOCs	  may	  be	  somewhat	  different	  than	  earlier	  predictions.	  Young	  learners	  
are	  a	  rising	  proportion	  of	  the	  MOOC	  population,	  according	  to	  University	  of	  Edinburgh	  research,	  with	  
those	  under	  18	  rising	  50%.	  While	  they	  are	  still	  only	  5%	  of	  the	  learners	  on	  average,	  the	  increase	  may	  be	  
tied	  to	  teachers.7	  Recent	  research	  from	  edX	  and	  HarvardX	  illustrated	  that	  a	  major	  audience	  for	  MOOCs	  
are	  teachers	  (28%	  of	  enrollees	  in	  11	  different	  MOOCs	  were	  former	  or	  active	  teachers).8	  As	  we	  
understand	  more	  about	  MOOC	  audiences	  and	  motivations,	  we	  may	  need	  to	  shift	  the	  design	  of	  MOOCs	  
to	  better	  align	  with	  audiences	  served.	  Ongoing	  research	  on	  audience,	  experience,	  and	  outcomes	  will	  be	  
important.	  	  

Workforce	  Development	  

Data-‐intensive	  environments	  demand	  a	  new	  type	  of	  professional	  that	  some	  call	  data	  scientists.	  No	  
matter	  what	  the	  name,	  higher	  education	  needs	  to	  develop	  the	  skills	  of	  these	  professionals	  as	  well	  as	  a	  
“pipeline”	  into	  the	  profession.	  Data	  science	  is	  a	  blend	  of	  fields,	  including	  statistics,	  applied	  mathematics,	  
and	  computer	  science.	  

Qualities	  of	  data	  scientists	  who	  can	  address	  data-‐intensive	  challenges	  include:	  

• Technical	  Skills:	  Mathematics,	  statistics,	  and	  computer	  science	  skills	  to	  work	  with	  data	  and	  
analyze	  it.	  	  

• Tool	  Mastery:	  Complex	  software	  tools	  are	  critical	  to	  analyzing	  massive	  amounts	  of	  data.	  	  
• Teamwork	  Skills:	  Almost	  all	  of	  the	  data	  science	  roles	  are	  cross-‐disciplinary	  and	  team-‐based,	  

hence	  teamwork	  skills	  are	  critical.	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6	  Dahlstrom,	  E.,	  and	  Brooks,	  D.C.	  (2014,	  July)	  ECAR	  Study	  of	  Faculty	  and	  Information	  Technology,	  2014.	  (ECAR	  
Research	  Report)	  http://net.educause.edu/ir/library/pdf/ers1407/ers1407.pdf	  	  
7	  Macleod,	  H.,	  Haywood,	  J.,	  Woodgate,	  A.,	  and	  Alkhatnai,	  M.	  (2015).	  Emerging	  patterns	  in	  MOOCs:	  Learners,	  
course	  designs	  and	  directions.	  TechTrends,	  59(1),	  56-‐63.	  doi:10.1007/s11528-‐014-‐0821-‐y	  
8	  Pope,	  J.	  (2015).	  What	  Are	  MOOCs	  Good	  For?	  Technology	  Review,	  118(1),	  68-‐71.	  
http://www.technologyreview.com/review/533406/what-‐are-‐moocs-‐good-‐for/	  	  
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• Communication	  Skills:	  Deriving	  insights	  from	  data,	  communicating	  the	  value	  of	  a	  data	  insight,	  
and	  communicating	  in	  a	  way	  that	  decision	  makers	  can	  trust	  what	  they’re	  being	  told.	  

• Business	  Skills:	  Understanding	  of	  the	  business,	  bringing	  value	  from	  contextual	  understanding	  to	  
the	  data	  analysis.9	  

	  
Developing	  an	  understanding	  of	  the	  skills	  essential	  in	  data	  scientists	  and	  others	  who	  support	  big	  data	  
systems	  will	  be	  important	  so	  that	  institutions	  can	  develop	  the	  appropriate	  training	  and	  education	  
programs	  as	  well	  as	  attract	  students.	  	  
	  
Policy	  

Most	  data-‐intensive	  environments	  represent	  risks	  and	  challenges	  in	  policy	  areas,	  particularly	  privacy	  and	  
security.	  While	  there	  may	  be	  model	  policies	  in	  place	  at	  some	  institutions,	  the	  appropriate	  policy	  
infrastructure	  is	  not	  in	  place	  at	  many	  institutions.	  In	  addition,	  many	  policy	  discussions	  are	  hampered	  by	  
misinformation	  and	  fear.	  Appropriate	  policies	  must	  address	  privacy,	  security,	  and	  data	  sharing.	  Federal	  
regulations,	  such	  as	  FERPA,	  are	  often	  misunderstood.	  	  	  

Good	  information	  security	  practices	  are	  essential	  to	  reduce	  risk;	  safeguard	  data,	  information	  systems,	  
and	  networks;	  and	  protect	  the	  privacy	  of	  the	  higher	  education	  community.	  Good	  institutional	  
information	  security	  practices	  encompass	  the	  technologies,	  policies	  and	  procedures,	  and	  education	  and	  
awareness	  activities	  that	  balance	  the	  need	  to	  use	  information	  to	  support	  institutional	  missions	  with	  the	  
need	  to	  protect	  it	  from	  internal	  and	  external	  threats	  and	  ensure	  the	  privacy	  of	  the	  campus	  community.	  
These	  practices	  constantly	  evolve	  as	  the	  threat	  landscape	  evolves.	  
	  
All	  individuals	  associated	  with	  colleges	  and	  universities,	  whether	  faculty,	  staff,	  or	  students,	  need	  to	  
protect	  their	  privacy	  and	  control	  their	  digital	  footprint.	  Big	  data	  environments	  escalate	  the	  importance	  
of	  ensuring	  that	  protecting	  privacy	  and	  data	  are	  everyone's	  priority.	  There	  are	  different	  types	  of	  privacy	  
that	  should	  be	  recognized.	  For	  example,	  autonomy	  privacy	  is	  an	  individual's	  ability	  to	  conduct	  activities	  
without	  concern	  of	  or	  actual	  observation.	  Information	  privacy	  is	  the	  appropriate	  protection,	  use,	  and	  
dissemination	  of	  information	  about	  individuals.	  Information	  security	  supports,	  and	  is	  essential	  to,	  
autonomy	  and	  information	  privacy.10	  

Institutions	  must	  be	  aware	  of	  many	  ramifications	  of	  big	  data,	  such	  as:	  

• Legal	  and	  compliance	  issues:	  The	  consequences	  of	  compliance	  failure	  may	  be	  significant	  in	  
analytics	  systems.	  Regulatory	  compliance	  (e.g.,	  FERPA,	  HIPAA),	  e-‐discovery	  rules,	  open	  records	  
laws,	  student	  privacy	  expectations	  (confidentiality),	  and	  the	  role	  of	  the	  institutional	  review	  
board	  may	  all	  come	  into	  play.	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
9	  Dan	  Woods	  (2012,	  March)	  What	  Is	  a	  Data	  Scientist?:	  Michael	  Rappa,	  Institute	  for	  Advanced	  Analytics.	  Forbes	  
Magazine.	  http://www.forbes.com/sites/danwoods/2012/03/05/what-‐is-‐a-‐data-‐scientist-‐michael-‐rappa-‐north-‐
carolina-‐state-‐university/3/	  	  
10	  Ho,	  Lisa.	  (2015)	  Privacy	  vs.	  Privacy.	  http://www.educause.edu/blogs/lisaho/privacy-‐vs-‐privacy	  	  
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• Unintended	  consequences	  of	  third-‐party	  data	  access/use:	  The	  use	  of	  big	  data	  systems	  may	  raise	  
concerns	  about	  third-‐party	  misuse	  of	  data	  or	  its	  use	  for	  anything	  other	  than	  its	  intended	  
purpose.	  	  

• Inappropriate	  use	  of	  data:	  Institutions	  may	  make	  inappropriate	  use	  of	  the	  data	  presented	  in	  
dashboards	  or	  reports,	  or	  misunderstand	  their	  limits.11	  	  

• Data	  ownership:	  Arguments	  exist	  for	  students	  to	  control	  data	  about	  themselves,	  as	  they	  do	  for	  
institutions.	  The	  success	  of	  analytics	  depends	  on	  institutions	  accessing,	  curating,	  harvesting,	  and	  
controlling	  multiple	  sources	  of	  data.	  Lack	  of	  control	  over	  the	  data	  might	  compromise	  the	  
integrity	  of	  data-‐driven	  initiatives.12	  	  

Research	  associated	  with	  data-‐intensive	  applications	  must	  be	  based	  on	  an	  understanding	  of	  the	  relevant	  
policy	  factors.	  And,	  institutional	  implementation	  of	  these	  systems	  will	  only	  be	  successful	  if	  there	  is	  a	  
solid	  policy	  framework	  at	  the	  institution	  as	  well	  as	  at	  Federal	  levels.	  	  

Conclusion	  

The	  five	  sections	  included	  in	  this	  thought	  paper	  are	  illustrative	  of	  the	  opportunities,	  challenges	  and	  
research	  needed	  to	  advance	  data-‐intensive	  areas	  in	  education.	  	  
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11	  EDUCAUSE.	  (2014,	  April)	  What	  Leaders	  Need	  to	  Know	  about	  Managing	  Data	  Risk	  in	  Student	  Success	  Systems.	  	  
http://www.educause.edu/library/resources/what-‐leaders-‐need-‐know-‐about-‐managing-‐data-‐risk-‐student-‐success-‐
systems	  	  
12	  Jones,	  K.	  M.	  L.,	  Thomson,	  J.,	  and	  Arnold,	  K.	  (2014,	  August	  25).	  Questions	  of	  data	  ownership	  on	  campus.	  
EDUCAUSE	  Review	  Online.	  http://www.educause.edu/ero/article/questions-‐data-‐ownership-‐campus	  	  
	  



Big Data and Assessment of Complex Skills

Piotr Mitros
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Historically, assessment in classrooms was limited to instructor grading, or problems that lend
themselves well to relatively simple automation, such as multiple-choice questions. Progress
in educational technology, combined with economies of scale, has allowed us to digitally mea-
sure student performance on authentic assessments such as engineering design problems and
free-form text answers, radically increasing the depth and the accuracy of our measurements
of what students learn, allowing us to tailor instruction to specific students needs and giving
individualized feedback for an increasing range of issues. In addition, social interactions have
increasingly moved on-line. We now have traces of a substantial portion of student-student
interactions. By integrating these and other sources of data, we have data with which we can
estimate complex skills, such as mathematical maturity, complex problem solving, and team-
work for large numbers of students. This paper looks at the potential information found in the
data we now collect, some of the challenges with making sense of that data, and some early
successes in analyzing that data. The data is complex. Actually extracting useful high-level
metrics has proven difficult. The next grand challenge in big data in education will be finding
ways to analyze complex data from heterogeneous sources to extract such measurements.

Keywords: educational datamining, assessment

Twenty years ago, most digital assessments consisted of
multiple choice questions and most social interactions hap-
pened in person. Data was spread out over multiple sys-
tems with no practical means of integration. Over the past
two decades, we have seen fundamental progress in edu-
cational technology, combined with broad-based adoption
of such technology at scale1. Digital assessment has in-
creasingly moved towards rich authentic assessment. Pre-
viously, widely available data for large numbers of students
principally came from standardized exams or standardized
research instruments such as the Force Concept Inventory.
These assessments are limited to a short time window, and
as a result, they either contain a large number of small prob-
lems (which are statistically significant, but generally fail to
capture skills which require more than a minute or two to
measure), or a small number of large problems (which, on a
per-student basis lack statistical significance). Today, we are
increasingly collecting data for students doing a large num-
bers of complex problems as part of their regular coursework.
For example, the first edX/MITx course2, 6.002x (Mitros et
al., 2013) was implemented entirely with authentic assess-
ment. Students completed circuit design problems (verified
through simulation), and design and analysis problems (with
answers as either equations or numbers). Since these types of
questions have a near-infinite number of possible solutions,
answers cannot be guessed. Students could attempt to submit
an answer as many times as necessary in order to completely
understand and solve a problem. The assessments were com-
plex – most weeks of the course had just four assessments,

but completing those four required 10-20 hours of work. We
see similarly rich assessments in courses such as chemistry,
biology, physics, digital electronics, and many others. Such
complex assessments, taken together across many courses,
give rich data about problem solving skills, creativity, and
mathematical maturity.

Furthermore, we now collect microscopic data about indi-
vidual student actions. We can see not only which problems
students answered correctly, but how they got there. Exten-
sive literature on expert-novice shows differences in prob-
lem solving strategy between novices and experts. For ex-
ample, experts can chunk information (Schneider, Gruber,
Gold, & Opwis, 1993) – an expert looking at an analog cir-
cuit will be able to remember that circuit, whereas a novice
will not (Egan & Schwartz, 1979). In our data sets, we can
see actions which reflect such differences. Continuing with
the example of chunking, we record how many times a stu-
dent flips between pages of a problem set, looks up equations
in a textbook, and similar activities which are proxies for ex-
pertise.

Next, social interactions are increasingly moving on-line.
As we introduce increased amounts of digital group work to

1We define at-scale learning environments as ones where thou-
sands of students share common digital resources, and where we
collect data about such use. This includes MOOCs, but also many
educational technologies predating MOOCs, as well as formats
such as SPOCs.

2Used both in a pure on-line format, as well as in a blended
format in a number of schools
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courses, we start to see traces of social activity in our logs.
We can begin to look for students who under-perform or
over-perform in group tasks, and directly measure students’
contributions to groups. We have enough data to begin to
look for specific actions and patterns that lead to good over-
all group performance, and hopefully we will be able to use
such patterns to provide feedback to students. Natural lan-
guage processing frameworks, such as the open-source edX
EASE and Discern, are still used primarily for short-answer
grading, but were designed to also apply to analysis of so-
cial activities, such as e-mails and forum posts, as well. We
believe this will begin to give insights into soft skills, writ-
ing processes (Southavilay, Yacef, Reimann, & Calvo, 2013),
communications styles, and group dynamics.

Finally, aside from just looking within individual courses,
we can perform longitudinal analysis across a student’s edu-
cational career. In most cases, a single group design project
does not provide statistically significant information. How-
ever, all of the projects over the duration of a student’s
schooling are likely to be significant. Learning analytics sys-
tems are increasingly moving in the direction of aggregating
information from multiple sources across multiple courses.
Open analytics architectures (Siemens et al., 2011) such as
edX Insights (Mitros, 2013) or Tin Can provide a common
data repository for all of a student’s digital learning activities.

However, going from data to measurement is a complex
problem. In the next few sections of this paper, we will dis-
cuss some of the challenges, as well as early successes.

Challenges – Pedagogical Design

There is substantial friction between the design for dif-
ferent educational purposes, of which, measurement is just
one. Assignments and assessments in courses have several
objectives:

• Initial and formative assessment as an ongoing
means of monitoring what students know. This al-
lows instructors and students to tailor teaching and
learning to problematic areas (Sadler, 1989).

• The principal means by which student learn new
information. In many subjects, most student learning
happens through assignments where they manipulate,
derive, or construct knowledge (Chi, 2011) – not lec-
tures, videos, or readings.

• A key components of grading. Grading itself has
multiple goals, from certifying student accomplish-
ment to providing motivation for desired student be-
haviors.

• Summative assessment of both students and
courses. Summative assessment has many goals, such
as student certification and school accreditation.

Historically, different research communities emphasized
different objectives and gave very different principles around
how good assessments ought to be constructed. For example,
the psychometrics community principally relies on metrics
such as validity and reliability. These suggest a high level of
standardization in assessments. In contrast, the physics edu-
cation research community emphasizes concepts such as the
trade-off between authentic assessment and deliberate prac-
tice (Ericsson, Krampe, & Tesch-Römer, 1993), as well as
principles such as rapid feedback, active learning, and con-
structive learning. Educational psychology (Bloom, 1984)
and gamification emphasize mastery learning (where stu-
dents eventually get all questions right).

Numerical techniques which presume that assessments are
developed designed based on principles which optimize for
measurement often fail when applied to the much broader
set of classroom assessments. There is an inherent friction
between:

• Having a sufficient number of problems for statisti-
cal significance vs. long-form assessments which al-
low students to exercise complex problem solving and
mathematical maturity.

• Measuring individual students vs. group work3.

• Standardized assessments vs. diversity in education.
The US economy benefits from a diverse workforce,
and the educational system, especially at a tertiary
level, is designed to create one. There are over ten
thousand distinct university-level courses.

• Aiming for 50% of questions correct (maximize mea-
surement) vs. 100% of concepts mastered (mastery
learning)

To give an example of how friction comes into play, the
MIT RELATE group applied item response theory (Embret-
son & Reise, 2000), a traditional psychometric technique,
to calibrate the difficulty of problems in 6.002x, the first
MITx/edX course. However, IRT presumes that problem cor-
rectness is a measure of problem difficulty. 6.002x is based
on mastery learning, and students can continue trying until
they answer a question correctly – any sufficiently dedicated
student could answer all questions correctly. To apply IRT
in this context, RELATE had to substantially adapt the tech-
nique (Champaign et al., 2014).

Challenges – Diversity and Sample Bias

Many traditional psychometric techniques rely on a rel-
atively uniform dataset generated with relatively unbiased
sampling. For example, to measure learning gains, we would

3At this point, we have overwhelming evidence that well-
structured groupwork leads to improved student outcomes.
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typically run a pre-test and a post-test on the same set of stu-
dents. In most at-scale learning settings, students drop out
of classes, take different sets of classes, and indeed, the set
of classes taken often correlates with student experience in
previous classes. We see tremendous sampling bias. For ex-
ample, a poor educational resource may cause more students
to drop out, or to take a more basic class in the future. This
shifts demographics in a future assessments to a stronger stu-
dents taking weaker courses, giving a perceived gain on post-
assessment if such effects were not controlled for.

Likewise, integrating different forms of data – from peer
grading, to mastery-based assessments, to ungraded forma-
tive assessments, to participation in social forums – gives an
unprecedented level of diversity to the data. This suggests
a moves from traditional statistics increasingly into machine
learning, and calls for very different techniques from those
developed in traditional psychometrics.

Challenges – Data Size and Researcher Skillset

Traditionally, big data educational research was con-
ducted by statisticians in schools of education with tools such
as spreadsheets, and numerical packages such as R. This
worked well when data sets were reasonably small. A typ-
ical data set from a MOOC is several gigabytes. The data
at a MOOC provider is currently several terabytes. While
this is not big data in a classic sense, the skills and tools re-
quired for managing this data go far beyond those found at
many schools of education. With continuing moves towards
technologies such as teleconferencing, we expect datasets to
grow manyfold.

As a result, most data science in MOOCs has been con-
ducted in schools of computer science by researchers gener-
ally unfamiliar with literature in educational research. This
shortcoming is reflected in the quality of published results
– for example, in many cases, papers unknowingly replicat-
ing well-established decades-old results from classical edu-
cational research.

Meaningful research requires skillsets from both back-
grounds. There are few researchers with such skillsets, and
collaborations are sometimes challenging due to substan-
tial cultural differences between schools of education and
schools of computer science.

Early Successes

An early set of high-profile successes in this sort of data
integration came from systems which analyzed data across
multiple courses in order to predict student success in fu-
ture courses. This includes systems such as Purdue Course
Signals (Arnold & Pistilli, 2012), Marist Open Academic
Analytics Initiative (Lauría, Moody, Jayaprakash, Jonnala-
gadda, & Baron, 2013), and Desire2Learn Student Success
System (Essa & Ayad, 2012).

There have been early successes with system which look
at different types of data as well. For example, the first proto-
type of the edX Open-ended Response Assessment (ORA1)
system integrated:

• Self-assessment – students rate their own answers on
a rubric.

• Peer assessment – students provide grading and feed-
back for assignments submitted by other students.

• Instructor assessment – the traditional form of as-
sessment.

• AI assessment – a computer grades essays by attempt-
ing to apply criteria learned from a set of human-
graded answers.

In the theoretical formulation (Mitros & Paruchuri, 2013),
each of the four grading systems contributes a different type
and amount of information. The system routes problems to
the most appropriate set of grading techniques. An algorithm
combines responses from graders to individual rubric items
into feedback and a final score. A simplified form of this
algorithm was experimentally validated.

Conclusion

While many of the goals of an educational experience can-
not be easily measured, it is much easier to improve, control,
and understand those that can. The breadth and depth of data
now available has the potential to fundamentally transform
education.

Students and instructors are incentivized to optimize
teaching and learning to measured skills, often at the ex-
pense of more difficult-to-measure skills. While we have
seen tremendous progress in education with the spread of
measurement, limited or inaccurate assessments can actually
cause harm if relied on too much. Measurement in tradi-
tional education is tremendously resource-constrained which
severely restricts what can be measured. Standardized high-
stakes tests are typically 3-4 hours long, and must be graded
for millions of students in bulk. In most cases, such high-
stakes exams can only accurately measure some skills and
use those as proxies for more complex to measure skills.
Many completely fail to capture skills such as mathematical
maturity, critical thinking, complex problem solving, team-
work, leadership, organization, time management, and simi-
lar skills. While time constraints in traditional classroom set-
tings are somewhat more relaxed than in high-stakes exams,
instructors still often rely on proxies. For example, when
measuring communication skill, a common proxy is an es-
say – a medium relatively rare in outside of the classroom.
Instructors cannot effectively critique longer formats of com-
munications, such as e-mail threads, meetings, and similar
without extreme student:faculty ratios – computers can.
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Digital assessments have long been effective means
to liberate instructor time, particularly in blended learn-
ing settings, as well as for providing immediate forma-
tive feedback (VanLehn, 2011) (National Research Council,
2000) (Patterson, Gavrin, & Christian, 1999). Building on
this work, we are increasingly seeing a move to authentic as-
sessment, approaches where humans and machines work in
concert to quickly and accurately assess and provide feed-
back to student problems (Basu, Jacobs, & Vanderwende,
2013), where data is integrate from very diverse sources, and
where data is collected longitudinally.

With this shift, for the first time, we have data about
virtually all aspects of students skills – including complex
ones that are, ultimately, more important than simple factual
knowledge (Sternberg, 2013). We have the potential to pro-
vide new means to assess students in ways which can im-
prove the depth, frequency, and response time, potentially
dramatically expanding the scope with which students and
instructors can monitor learning, including assessment of
higher-level skills, and proving personalized feedback based
on those assessments. However, the tool for understanding
this data (edX ORA, Insights, EASE, and Discern, in our sys-
tem, and their counterparts in others) are still in their infancy.
The grand challenge in data-intensive research in education
will be finding means to extract such knowledge from the
extremely rich data sets being generated today.
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Four variations on a theme of data-intensive research in education 
Andrew Ho 
Harvard Graduate School of Education 
Thought Paper – National Science Foundation Workshop on Data-Intensive Research in Education 
 
In this brief thought paper, I offer four loosely related perspectives and arguments on the present and 
possible future of data-intensive research in education: 
 
1) Before “data collection” comes “data creation” 
2) Defining (and committing to) the MOOC “student” 
3) NSF Training Grants for graduate-level research using digital learning data 
4) The purpose of education is not prediction but learning 
 
1) Before “data collection” comes “data creation” 
 
Where do data come from?  The phrases, “data collection,” and, “data mining,” both suggest that data 
simply exist for researchers to collect and mine.  In educational research, I think a more useful term is, 
“data creation,” because it focuses analysts on the process that generates the data. From this 
perspective, the rise of “big data” is the result of new contexts that create data, not new methods that 
extract data from existing contexts. If I create a massive open online course (MOOC), or an online 
educational game, or a learning management system, or an online assessment, I am less enabling the 
collection of data, than creating data in a manner that happens to enable its collection. 
 
This is a consequential perspective because it discourages lazy generalizations and false equivalencies.  
In previous work, my coauthors and I described MOOCs not as new courses but new contexts, where 
conventional notions of enrollment, participation, curriculum, and achievement required 
reconceptualization (DeBoer et al., 2014). We tempered early optimism around MOOCs as labs for 
researching learning by focusing on what made MOOCs different from seemingly analogous learning 
contexts in residential and online education: heterogeneous participants, asynchronous use, and low 
barriers to entry.  Note that a completion rate is one minus a browsing rate, and browsing is a desired 
outcome for many MOOC participants (Reich, 2014). Research that tries to increase completion rates 
(and by definition decrease browsing rates) is both poorly motivated and unlikely to inform dropout 
prevention where it matters in residential institutions and selective online courses.  
 
Beyond MOOCs, I am arguing that NSF should be critical of any line of work that touts its “data 
intensive” or “big data” orientation without describing the contexts and processes that generate the 
data.  When the context and process are particular, as they often are in “big data” educational research, 
applicants that promise general contributions to “how we learn” are likely to damage or at least muddy 
a field already overpopulated with mixed findings.   
 
2) Defining (and committing to) the MOOC “student” 
 
In the previous section, I argue that we should view many “data-intensive” contexts in education not as 
familiar contexts with data but as unfamiliar contexts, else why would there be so much data?  I believe 
this perception can refocus research productively on describing these contexts and determining 
whether, not just how, research findings within them generalize to contexts more familiar.  In the 
context that I have studied most closely, Harvard and MIT open online courses (Ho et al., 2014; 2015), 
my colleagues and I do indeed find a “classroom” like no physical classroom on earth, with considerable 



variation in participant age, education, and geography, along with many teachers (see also, Seaton et al., 
2015) and varying levels of initial commitment (see also, Reich, 2014).  We and others have argued that 
this makes evaluating MOOCs extremely difficult (Reich & Ho, 2014), with the uncritical use of 
“completion rates” as an outcome variable being particularly problematic.  In this section, I make a 
normative argument that this difficulty should not exempt MOOCs from critical evaluation, and I point a 
path forward, coming full circle to completion rates. 
 
I believe that many MOOC platforms, instructors, and institutions feel accountability to the first “M,” for 
“Massive,” and therefore report undifferentiated numbers of registrants whether they ultimately use or 
are interested in completing the course.  Unsurprisingly, given the context I describe, completion rates 
for these registrants are very low.  Unfortunately, the response by some MOOC insiders has been to rely 
on the contextual argument to exempt themselves from accountability to any metrics at all.  I think this 
is bad science and bad pedagogy.  Without a mutual sense of accountability, from students and 
instructors alike, I would describe MOOCs not as Massive Open Online Courses but Massive Open Online 
Content.  
 
Content alone is a contribution, and content alone is indeed all that many instructors and institutions 
may be interested in providing. However, providing open content alone makes MOOC completion likely 
for a particular kind of learner, those who know what they need, those who are self-motivated, and 
those who have the time and skills necessary to keep themselves in the zone of proximal development 
as the course progresses.  The general finding that MOOC registrants are disproportionately college 
educated is a testament to this. I consider this less “teaching” than “providing content to learners,” a 
distinction that can also be described as that between “active teaching” and “teaching,” similar to that 
between “active learning” and “learning.”  The consequence of passive teaching is that MOOCs will not 
close achievement gaps and provides a very limited definition of “access.” 
 
All MOOCs that commit to “active teaching” should embrace a common definition of a “committed 
learner” and make this clear to registrants and the public.  My proposed definition of a “committed 
learner” is those registrants who a) state a commitment to completing the course and b) spend at least 
5 hours in the courseware.  I choose this cutoff because it seems a sufficient amount of time for a 
student to understand what she or he is getting into (the “shopping period”) and because it results in a 
completion rate of 50% in the Harvard and MIT data (tautologically, this maximizes variance in the 
dichotomous outcome variable).  Instructors and institutions should publish counts of committed 
learners along with their completion rates and strive to improve them from baseline rates. 
 
Importantly, this definition of “committed learner” does not exclude other participants.  Under this 
model, browsers who are curious, auditors who merely wish access to videos, and teachers who are 
seeking materials may use MOOCs as they please.  In other words, the natural response to the 
heterogeneity of the MOOC population is not to decide that measurement and accountability is 
impossible.  It is the opposite: Now that we know who our participants are, the teacher’s instinct is to 
hold oneself accountable to helping them achieve their goals. 
 
3) NSF Training Grants for graduate-level research using digital learning data 
 
I like to say that, in academia, the unit of work is not the professor but the graduate student.  Graduate 
students also facilitate collaborations between research groups and push their advisers to learn new 
analytic methods and ask new questions.  Some of the best researchers riding the recent wave of data-
intensive research in education have been graduate students or recent graduates, and many of them 



have organized cross-disciplinary communities that could benefit from structured financial support and 
training. Especially as “big data” in education are attracting those with little background in causal 
inference, assessment, or educational research, inferential and analytic errors remain common: 
confusing correlation with causation, assuming all assessment scores are valid for their intended uses , 
assuming all distributions are normal, confusing statistical significance with substantial effect sizes, and 
generally wielding hammers without first asking whether there are nails. 
 
I think that a targeted investment by NSF in ongoing research training for doctoral students would be 
very wise long-term.  As always, the keys to practical research training include granting students access 
to real data and training them in hands-on analytic methods.  The Institute of Education Science (IES) 
Research Training Programs could serve as a model here, except that the particular focus would be on 
rigorous methods for drawing relevant inferences from digital learning data. 
 
4) The purpose of education is not prediction but learning 
 
The most common questions I see being asked of digital learning data involve prediction, including 
prediction of certification, attrition, and future outcomes like course taking patterns.  I think it’s worth 
remembering that, in any formative educational process, the criterion for prediction is not accuracy, as 
measured by distance between predictions and outcomes.  Instead it is impact, as measured by the 
distance between student learning with the predictive algorithm in place, and student learning had it 
not been in place.  I find the emphasis on technically sophisticated predictive models and intricate 
learning pathways to be disproportionate, and I think there is too little attention to rigorous 
experimental designs to ascertain whether students and instructors can use these tools to increase 
learning. 
 
In short, we want educational predictions to be wrong.  If our predictive model can tell that a student is 
going to drop out, we want that to be true in the absence of intervention, but if the student does in fact 
drop out, then that should be seen as a failure of the system.  A predictive model should be part of a 
prediction-and-response system that a) makes predictions that would be accurate in the absence of a 
response and b) enables a response that renders the prediction incorrect.  In a good prediction-and-
response system, all predictions would ultimately be negatively biased.  The only way to demonstrate 
this empirically is to exploit random variation in the assignment of the system, as in random assignment 
of the prediction-and-response system to some but not all students. 
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Creating creative learning data scientists 
Matthew Berland (University of Wisconsin–Madison), mberland@wisc.edu 
 
I am an assistant professor of Digital Media in the Dept. of Curriculum & Instruction at 
University of Wisconsin–Madison, part of the Games+Learning+Society group, with 
appointments in both Computer Science and Library & Information Studies. My background is 
in both learning sciences and computer science, and my first paper on "big data" (or “very large 
corpora; Berland & Charniak, 1999) is taught in computer science classes globally. I am also the 
director of the Learning Games Play Data Consortium (PDC). The PDC is made of up of game 
designers, the education industry, learning scientists, computer scientists, data scientists, 
students, and startups; the core mission of the PDC is to bring people together to facilitate 
collaboration and advance understanding on how to create the next generation of data-driven 
learning games, learning theories, and learning tools. The PDC has developed and maintains 
several tools to help people implement advanced data analysis for learning in game design, 
research, and industry. 
 
As director of the PDC, I work with a wide range of people who are using data in new ways to 
understand learning, education, games, play, and creativity. We have currently identified five 
imminent challenges in data science for learning and education: training learning data scientists, 
building analytic tools, developing learning theory for design, designing new models of 
assessment, visualizing learning data, and innovating curricula. In this piece, I will cover one 
core aspect that underlies many of the others: training new creative learning data scientists. 
 
Training a diverse and wide-ranging set of designers and researchers to think about new 
possibilities with data is hard. Training people to think creatively about the possibilities for data 
in education turns out to be really hard, and there are few good examples of how to do it.  
Imminent possibilities, given well trained people, include: pioneering new modes of assessment; 
new tools for teachers, students, and administrators; innovating design for games and learning 
environments; and new understandings of how people learn and how schools work. Those 
possibilities lie at the overlap of several disciplines (computer science, statistics, education, 
design, information studies), but creative data-driven design thinking is not necessarily the 
purview of any single discipline. This makes the problem even harder: the data scientists trained 
by (say) industry, startups, or computer science tend (quite reasonably) to hew closely to their 
missions. When I look at the landscape of what is possible in education, few people are using 
data to design or create new things that were not possible before modern data science. Both 
industry and academia (myself included) often use data to reify and reinforce classical ways of 
doing things, but it seems likely that the "killer apps" of data-driven learning are not going to 
come from deeper investment in (say) computer-based tests. As data-driven thinking is 
democratized, those models will likely seem more problematic to learners.  
 
Part of the problem with training is that we know relatively little about creative data analysis and 
visualization towards creating educational learning environments. Learning sciences - my home 
academic field and a place in which novel work is being done - is quite small and only modestly 
funded, but computer scientists (of which I am also one) are usually not trained in how people 
learn and tend to replicate traditionalist models of education, thinking, and learning while vastly 



improving models of how to work with a lot of data. Information studies, design schools, arts, 
journalism, and applied mathematics have pioneered new ways of visualizing data, but they 
frequently lack training in either computer science and learning sciences. In short, there are very 
few people who are training students (and faculty) to consider new modes of how to understand, 
visualize, and change how people learn and how education works.  
 
It is simpler and cheaper to reproduce classical modes of education with big data than it is to 
develop new modes of giving learners agency. As a result, many of the data scientists in 
education are being trained to do very careful large-scale analyses of inherently problematic 
assessments. A scenario in which schools are optimized to produce the most available and easily 
parsable data would presumably result in a situation worse than the testing-driven model we are 
seeing now: it can (and may) become a model in which students are constantly tested, evaluated, 
and all opportunities to productively fail (in other words, learn) are eliminated. This is a real (if 
dystopian) possibility, and it may be the most likely one. I have heard many successful friends 
and colleagues say something to the effect of "I do not know how I would have learned anything 
if Twitter had been around when I was learning - I would hate to have all of my mistakes 
archived forever." When all mistakes are evaluated, people are more afraid to make mistakes.  
 
That said, teenagers read and write more than they did before social media, they make fewer 
grammatical mistakes, and they "connect" with many more people (boyd, 2007). The utopian 
promise of data in education is that students will be able to learn from their mistakes in real-time 
and authentic situations. Social media provides instant feedback - it is a novel mode of "big data 
analysis" - furthermore, one of the most salient introductions to data-driven learning comes from 
the kinds of simple analytics that Twitter, Facebook, and Google Analytics give to people. 
People like creating, and they would like to use the data they create to better understand their 
world. By giving the data back to people, we will be both making people happy, helping them 
learn more quickly, and creating the next generation of data scientists. 
 
Our group at UW–Madison (together with our many wonderful colleagues across the US) has 
attempted to do this in a few ways. One way is by developing tools through which the creation of 
data collection and analytics can be open to a much wider group of game designers and people 
designing creative learning environments. For instance with ADAGE (2014; 2015), we have 
developed a widely used, free, open source platform for collecting and analyzing learning data 
from games. We have also been developing ways to look at many different forms of data 
multimodally through our PDC Dashboard. Our view is that learning data look fundamentally 
different from the kinds of data that people look at in most data dashboards, that learning data 
happens over time, and outliers should be focused on and explored rather than ignored (Berland, 
Baker, & Blikstein, 2014). We also have several games in which data analytics are used to 
inform students and teachers about what is happening in their classrooms and understand why 
students are successful (e.g., Berland, Martin, Benton, Petrick Smith, & Davis, 2013; Berland, 
Smith, & Davis, 2013; Berland & Wilensky, 2015); in all of these games, it is important that 
some element of analysis is structured and driven by the teachers and students themselves.  
 
The group has learned several factors of successful data-driven learning: students love analyzing 
data about themselves; teachers understand better than we do when data would be helpful for 
teaching; and using advanced data analytics on constructive, creative learning environments is 



both possible and not nearly as hard as we had thought. In short, we learned that training novice 
data scientists through real constructive work - as researchers on my team, designers on my 
team, teachers we work with, and target students themselves - is not only possible but that it can 
enjoyable for all parties. We have found that people become deeply engaged and understand 
complex data analytic content more fully when they are deeply connected to that content. From 
there, it is possible for both learners and researcher to think differently about that data by 
connecting and visualizing many different modes of those data, such as transcript, game play, 
pre-/post-tests, and more longitudinal data. Those connections both to the data and across 
different types and modes of data seem essential to understanding the data more fully. 
Some recommendations for supporting the growth of data analytics to learning: 1) bring 
interested, diverse novices into your groups and let them be wrong; and 2) build tools that help 
students understand how they are creating (think: twitter) rather than evaluating them post-hoc 
(think: standardized testing). Novices will frequently have terrible, unimplementable ideas, and 
the process will be horribly inefficient, but it will lead to a better solution. In artificial 
intelligence, this is how many optimization algorithms (such as simulated annealing) work - not 
by evaluating every possible branch forever but by finding pathways around and through local 
maxima. We are all stuck in our local maxima, we are all hindered by the activation energy to 
make big changes. To find new spaces in which to grow, we have to listen to what novices say 
when they are most totally wrong: What do they want to say? What information do they think 
might help them? Leverage their misunderstanding to reshape your own understanding, and 
teach them to use data to come to understand how they learn. By training new people to think 
creatively with data, you will be exposed to new ways of thinking by people who might use those 
data. 
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Game-‐Based	  Learning	  Ecosystem	  
	  
Few	  people	  learn	  anything	  from	  playing	  games.	  	  But	  there	  is	  a	  potential	  for	  many	  people	  to	  
learn	  things	  with	  games.	  	  The	  distinction	  comes	  from	  how	  we	  situate	  game	  play	  into	  the	  
learning	  experience.	  	  Games	  have	  the	  greatest	  potential	  impact	  on	  learning	  when	  they	  are	  part	  
of	  an	  experience	  that	  also	  involves	  reflection,	  abstraction,	  and	  application	  of	  concepts.	  	  This	  
differentiates	  what	  has	  come	  to	  be	  known	  (via	  Jim	  Gee	  and	  others)	  as	  the	  game	  (the	  digital	  
distributed	  experience)	  from	  the	  Game	  (the	  entire	  experience	  including	  what	  happens	  on	  and	  
off	  screen—including	  interactions	  with	  peers	  and	  mentors,	  and	  use	  of	  complimentary	  media	  
like	  websites	  and	  video).	  
	  
While	  some	  learners	  may	  possess	  the	  skills	  necessary	  to	  consciously	  reflect	  on	  what	  they	  are	  
doing	  in	  a	  game	  in	  order	  to	  be	  able	  to	  abstract	  from	  specific	  instances	  to	  more	  general	  
concepts,	  and	  then	  apply	  that	  in	  a	  different	  context,	  in	  practice	  this	  is	  rare.	  	  Most	  students	  take	  
the	  game	  play	  at	  its	  face	  value	  and	  would,	  on	  their	  own,	  struggle	  to	  connect	  that	  experience	  to	  
learning	  goals.	  	  Instead	  this	  process	  typically	  needs	  to	  be	  scaffolded	  by	  teachers	  (or	  peers,	  
mentors,	  etc.).	  	  The	  question	  is	  then,	  How	  can	  we	  better	  support	  teachers	  in	  making	  that	  cycle	  
of	  learning	  more	  efficient	  and	  more	  effective?	  
	  
Effectively	  addressing	  this	  challenge	  actually	  requires	  us	  to	  first	  take	  a	  step	  back	  and	  ask	  a	  
series	  of	  questions	  about	  the	  goals	  and	  nature	  of	  game-‐based	  learning	  in	  classrooms	  today:	  	  

• What	  are	  the	  experiences	  that	  we	  want	  to	  provide	  students	  through	  games?	  	  And	  how	  
are	  those	  situated	  in	  the	  learning	  experience?	  	  	  

• How	  do	  we	  design	  targeted	  experiences	  that	  focus	  on	  the	  learning	  activities	  that	  we	  are	  
interested	  in?	  	  And	  how	  do	  we	  collect	  the	  relevant	  data	  from	  those	  experiences	  to	  guide	  
teachers/learners?	  

• What	  kind	  of	  data	  do	  we	  provide	  to	  teachers	  that	  is	  actionable?	  
	  
I	  argue	  that	  games	  have	  their	  greatest	  potential	  as	  learning	  experiences	  when	  they	  precede	  
formal	  instruction,	  providing	  a	  concrete	  and	  common	  reference	  point	  upon	  which	  to	  build	  
formal	  concepts.	  	  They	  further	  provide	  value	  as	  a	  touchpoint	  that	  students	  periodically	  return	  
to	  as	  they	  iteratively	  build	  their	  knowledge	  in	  increasingly	  complex	  ways.	  	  Games	  provide	  
meaningful	  learning	  experiences,	  and	  provide	  feedback	  to	  the	  learner	  on	  their	  understanding	  
and	  engagement	  in	  that	  system.	  Thus,	  games	  play	  a	  role	  as	  vehicles	  of	  formative	  assessment,	  
where	  performance	  on	  tasks	  generates	  actionable	  information	  that	  guides	  their	  experience—
and	  ultimately	  leads	  to	  enhanced	  learning.	  	  Games	  may	  also	  play	  a	  role	  as	  a	  means	  for	  
summative	  assessment,	  as	  they	  provide	  rich	  and	  complex	  problem	  spaces.	  	  But	  for	  the	  purpose	  
of	  this	  paper	  I	  will	  focus	  on	  formative	  assessment.	  
	  
The	  data	  generated	  by	  games,	  and	  in	  games,	  creates	  a	  tremendous	  opportunity	  for	  supporting	  
better	  learning	  experiences.	  As	  is	  so	  often	  the	  case	  with	  data,	  the	  opportunities	  also	  bring	  their	  
own	  challenges.	  Though	  we	  may	  be	  able	  to	  “fish	  in	  the	  exhaust”	  (as	  HarvardX	  researcher	  Justin	  



Reich	  says)	  of	  the	  keystrokes	  and	  data	  trails	  of	  games	  to	  recognize	  successful	  patterns	  and	  
differentiate	  them	  from	  those	  of	  players	  who	  struggle,	  that	  methodology	  is	  not	  yet	  sufficient	  
for	  realizing	  this	  potential	  of	  games.	  	  Instead,	  we	  must	  design	  for	  the	  learning	  experiences	  of	  
games,	  the	  data	  they	  can	  generate,	  and	  specifically	  how	  we	  make	  sense	  of	  that	  data	  to	  inform	  
further	  learning.	  Through	  offering	  specific	  activities	  and	  corresponding	  outcomes	  that	  can	  
generate	  the	  data	  we	  need.	  not	  only	  can	  we	  then	  differentiate	  success	  from	  failure,	  but	  to	  
identify	  why	  particular	  students	  are	  succeeding	  or	  struggling	  to	  support	  those	  students	  and	  
allow	  all	  students	  to	  master	  the	  essential	  concepts.	  	  	  
	  
This	  means	  we	  need	  to	  follow	  an	  approach	  that	  helps	  designers	  create	  game-‐based	  tasks	  that	  
elicit	  this	  useful	  data.	  	  Evidence-‐Centered	  Design	  (ECD	  –	  Mislevy,	  Almond	  &	  Lukas,	  2003)	  is	  one	  
useful	  –	  and	  thus	  far	  highly	  popular	  amongst	  learning	  game	  designers	  –	  way	  of	  approaching	  
this.	  	  ECD	  defines	  four	  relevant	  models:	  

• the	  student	  model	  (what	  the	  student	  knows	  or	  can	  do);	  
• the	  evidence	  model	  (what	  a	  student	  can	  demonstrate	  and	  we	  can	  collect	  to	  show	  what	  

they	  know);	  
• the	  task	  model	  (the	  designed	  experience	  from	  which	  we	  can	  collect	  data);	  and	  	  
• the	  presentation	  model	  (how	  that	  actually	  appears	  to	  the	  student).	  	  	  

Though	  ECD	  was	  originally	  conceived	  by	  assessment	  developers	  to	  create	  better	  and	  more	  
diverse	  assessments,	  it	  has	  become	  quite	  popular	  amongst	  learning	  game	  designers	  for	  its	  
ability	  to	  create	  a	  framework	  for	  collecting	  and	  interpreting	  assessment	  data	  in	  games.	  Though	  
the	  details	  of	  this	  methodology	  may	  seem	  onerous	  to	  a	  game	  designer	  seeking	  to	  create	  an	  
experience	  that	  not	  only	  embodies	  the	  potential	  to	  create	  useful	  data,	  but	  the	  ECD	  framework	  
serves	  as	  a	  design	  lens	  that	  can	  also	  provide	  engagement	  and	  challenge	  that	  draws	  players	  into	  
the	  game.	  	  	  	  	  
	  
In	  reality,	  the	  game	  is	  much	  more	  likely	  to	  become	  part	  of	  a	  larger	  educational	  experience	  if	  it	  
can	  provide	  useful	  and	  actionable	  data	  to	  teachers,	  and	  this	  can	  really	  only	  come	  from	  this	  
initial	  thoughtful	  and	  intentional	  design.	  	  Variations	  on	  ECD	  for	  design	  of	  educational	  games	  
may	  make	  this	  methodology	  easier	  and	  more	  effective	  to	  follow.	  	  Groff	  et	  al.	  (2015)	  have	  
proposed	  a	  simplified	  version	  that	  reduces	  this	  to	  a	  Content	  Model	  (the	  relevant	  knowledge	  
and	  skills),	  Evidence	  Model	  (the	  information	  needed	  to	  know	  if	  someone	  has	  that	  knowledge)	  
and	  the	  Task	  Model	  (what	  the	  person	  is	  engaged	  in	  doing	  to	  elicit	  that	  data)	  as	  a	  lens	  for	  
instructional	  design	  that	  aligns	  both	  content	  and	  assessment	  data	  in	  games.	  	  This	  model	  further	  
links	  each	  of	  these	  models	  in	  a	  more	  cyclic	  fashion,	  rather	  than	  a	  linear	  fashion	  as	  ECD	  typically	  
provides,	  which	  is	  better	  aligned	  to	  how	  game	  designers	  think	  about	  their	  craft.	  	  	  
	  



	  
A	  simplified	  version	  of	  ECD	  known	  as	  XCD	  (Groff	  et	  al.	  2015)	  

	  
Similarly	  we	  (Conrad	  et	  al.	  2014)	  have	  created	  a	  variant	  called	  Experiment	  Centered	  Design,	  in	  
which	  the	  tasks	  are	  thought	  of	  specifically	  as	  series	  of	  experiments	  conducted	  by	  the	  learners.	  	  
This	  works	  well	  for	  science-‐based	  games	  as	  well	  as	  math-‐based	  games,	  in	  which	  players	  conduct	  
experiments	  that	  both	  models	  the	  practices	  of	  those	  disciplines	  and	  also	  provides	  a	  foundation	  
upon	  which	  to	  design	  a	  series	  of	  tasks	  that	  can	  elicit	  relevant	  data.	  	  It	  is	  important	  in	  this	  
methodology	  that	  we	  think	  of	  data	  not	  at	  the	  grain	  size	  of	  individual	  actions,	  but	  rather	  a	  series	  
of	  related	  and	  predefined	  actions	  that	  comprise	  an	  iteration	  of	  an	  experiment.	  	  In	  spaces	  where	  
the	  information	  is	  complex,	  mirroring	  authentic	  learning	  environments,	  single	  actions	  are	  not	  
sufficient	  for	  accomplishing	  a	  task,	  and	  a	  priori	  defined	  chunks	  (e.g.	  experimental	  iterations)	  
may	  make	  analysis	  both	  easier	  and	  more	  relevant	  to	  the	  learning	  outcomes.	  	  	  
	  
For	  example,	  in	  a	  game	  designed	  around	  genetics	  experiments	  the	  data	  may	  be	  thought	  of	  not	  
as	  what	  a	  player	  does	  in	  a	  single	  breeding	  experiment,	  or	  even	  as	  the	  action	  taken	  based	  on	  the	  
outcomes	  of	  such	  an	  experiment,	  but	  rather	  as	  an	  iterative	  series	  of	  experiments.	  	  In	  this	  case,	  
the	  learner	  conducts	  an	  experiment,	  gets	  back	  an	  outcome	  and	  performs	  another	  experiment	  
based	  upon	  that	  outcome.	  	  They	  may	  in	  fact	  need	  to	  perform	  a	  fairly	  extensive	  sequence	  of	  
these	  experiments,	  based	  both	  upon	  the	  complexity	  of	  the	  task,	  and	  the	  random	  variation	  that	  
may	  occur	  within	  those	  experiments.	  
	  
This	  is	  a	  methodology	  that	  we	  apply	  in	  an	  educational	  Massively	  Multiplayer	  Online	  (MMO)	  
game,	  called	  The	  Radix	  Endeavor	  (Radix).	  	  In	  Radix,	  players	  are	  set	  in	  an	  earth-‐like	  world	  in	  a	  
Renaissance	  era	  state	  of	  knowledge,	  and	  must	  use	  math	  and	  science	  to	  help	  the	  world	  improve.	  	  



Players	  get	  quests	  (tasks	  with	  proximate	  goals)	  along	  the	  way.	  	  Quests	  range	  from	  fixing	  
buildings	  using	  geometry	  skills	  to	  diagnosing	  disease	  based	  on	  understanding	  of	  body	  systems.	  	  
One	  of	  the	  quest	  lines	  is	  around	  genetics,	  and	  players	  get	  tasks	  such	  as	  delivering	  a	  “true	  
breeding”	  strain	  of	  a	  medicinal	  plant.	  	  Starting	  with	  a	  stock	  of	  seemingly	  similar	  plants	  in	  the	  
field	  they	  must	  breed	  pairs	  of	  plants	  and	  observe	  the	  outcomes.	  	  A	  single	  outcome	  such	  as	  two	  
plants	  producing	  identical	  offspring	  may	  not	  be	  sufficient	  for	  determining	  whether	  the	  plants	  
are	  dominant	  or	  recessive,	  or	  even	  if	  they	  might	  be	  homozygous	  and	  you	  just	  have	  a	  sample	  too	  
small	  to	  show	  diversity.	  	  After	  that	  outcome,	  it	  is	  important	  to	  see	  what	  the	  player	  does	  next.	  	  
Do	  they	  do	  the	  same	  experiment	  again,	  breed	  the	  offspring,	  or	  breed	  with	  one	  of	  the	  parental	  
generation	  plants?	  	  From	  this	  sequence	  we	  can	  begin	  to	  uncover	  what	  the	  student	  understands	  
about	  genotype	  and	  phenotype.	  	  Even	  in	  systems	  such	  as	  geometry,	  which	  are	  not	  stochastic,	  
the	  series	  of	  measurements	  and	  building	  activities	  can	  be	  informative.	  	  An	  initial	  guess	  at	  the	  
angles	  in	  a	  triangle	  may	  need	  to	  be	  adjusted	  in	  a	  second	  iteration	  and	  it	  is	  key	  to	  observe	  which	  
way	  they	  are	  adjusted.	  	  Based	  on	  these	  models	  we	  can	  diagnose	  specific	  misconceptions	  and	  
send	  players	  on	  “side	  quests”	  that	  specifically	  address	  their	  learning	  challenges.	  	  	  
	  
In	  practice,	  doing	  this	  effectively	  is	  a	  significant	  challenge.	  	  Determining	  the	  student	  learning	  
challenges,	  defining	  the	  models	  with	  sufficient	  specificity,	  implementing	  them,	  interpreting	  the	  
data,	  and	  feeding	  it	  back	  to	  students	  and	  teachers	  is	  a	  lot	  of	  work.	  	  That	  work	  translates	  into	  
cost,	  which	  is	  a	  challenge	  within	  the	  research	  space	  and	  a	  bigger	  challenge	  within	  the	  
commercial	  space	  that	  might	  bring	  these	  games	  to	  scale.	  	  	  But	  it	  also	  provides	  an	  opportunity	  
for	  creating	  games	  with	  increased	  value.	  	  	  
	  
Looking	  at	  extended	  sequences	  of	  actions	  are	  also	  important	  in	  complex	  spaces	  to	  allow	  for	  
exploration,	  that	  is	  times	  when	  players	  are	  simply	  orienting	  themselves	  and	  pursuing	  their	  own	  
interests,	  which	  may	  not	  be	  targeting	  a	  particular	  learning	  outcome.	  	  This	  is	  often	  seen	  as	  a	  
desirable	  outcome.	  	  In	  Radix,	  if	  players	  are	  exploring	  and	  conducting	  additional	  experiments	  on	  
their	  own	  or	  just	  exploring	  the	  game’s	  flora	  and	  fauna,	  we	  as	  game	  designers	  would	  view	  that	  
as	  a	  positive.	  	  But	  it	  is	  difficult	  to	  detect	  when	  players	  are	  exploring,	  or	  simply	  don’t	  know	  what	  
to	  do	  next.	  	  This	  is	  an	  area	  in	  which	  we	  may	  be	  able	  to	  examine	  players	  patterns,	  past	  
performance,	  and	  other	  factors	  to	  help	  nudge	  players	  who	  are	  truly	  confused	  back	  in	  the	  right	  
direction.	  	  	  
	  
Related	  to	  exploration	  is	  the	  notion	  of	  productive	  failure—situations	  in	  which	  a	  player	  tests	  the	  
bounds	  of	  the	  system,	  such	  as	  jumping	  off	  a	  cliff	  just	  to	  see	  what	  happens.	  	  The	  simple	  action	  of	  
jumping	  off	  the	  cliff	  is	  not	  sufficient	  information	  to	  deduce	  whether	  the	  players	  on	  a	  pathway	  
to	  success	  or	  failure,	  even	  what	  that	  action	  leads	  to	  an	  outcome	  which	  may	  be	  perceived	  as	  
negative	  (death	  of	  the	  player).	  	  But	  such	  testing	  of	  the	  boundaries	  is	  important	  for	  the	  player	  
understanding	  how	  the	  world	  in	  which	  they	  exist	  works.	  	  Longer	  sequences	  of	  actions	  –	  what	  
the	  player	  does	  after	  that	  event	  –	  may	  provide	  for	  a	  rich	  description	  of	  the	  learner’s	  experience.	  
	  
As	  an	  MMO,	  Radix	  provides	  us	  with	  the	  opportunity	  to	  also	  examine	  multiplayer	  interactions.	  	  
This	  is	  a	  rich	  area	  to	  explore.	  	  The	  current	  iteration	  only	  provides	  optional	  multiplayer	  
interactions	  –	  data	  sharing,	  “partying”,	  chatting,	  etc.	  	  Structured	  interactions,	  where	  players	  are	  



differentiated	  by	  roles	  and	  given	  tasks	  will	  provide	  better	  ways	  of	  examining	  these	  interactions	  
from	  a	  data	  perspective	  (where	  we	  can	  infer	  some	  intentionality	  by	  role)	  as	  well	  as	  a	  player	  
perspective.	  
	  
Evidence-‐Centered	  Design	  (or	  any	  of	  these	  variants)	  allows	  us	  to	  identify	  the	  data	  of	  interest	  in	  
advance.	  	  Rather	  than	  collecting	  every	  bit	  of	  data	  and	  parsing	  it	  after	  the	  fact,	  one	  can	  collect	  
the	  necessary	  sequences	  based	  upon	  the	  defined	  tasks	  and	  provide	  real	  time	  feedback	  on	  
success	  or	  the	  lack	  thereof.	  	  However,	  there	  is	  still	  a	  roll	  for	  “fishing	  in	  that	  additional	  exhaust”.	  	  
As	  mentioned	  previously,	  we	  may	  be	  able	  to	  identify	  correlates	  of	  productive	  or	  
counterproductive	  behaviors	  that	  we	  can	  pick	  up	  easily	  and	  use	  to	  provide	  additional	  feedback.	  	  
In	  the	  formative	  case,	  we	  need	  not	  be	  certain	  that	  the	  person	  is	  on	  the	  right	  or	  wrong	  pathway,	  
we	  need	  only	  to	  make	  a	  best	  guess	  probe	  that	  guess	  and	  make	  a	  correction	  if	  it	  is	  not	  correct.	  	  
We	  may	  also	  be	  able	  to	  identify	  additional	  behaviors	  or	  revise	  our	  theories	  on	  student	  
understanding	  for	  the	  next	  iteration	  of	  a	  task.	  	  But	  in	  these	  cases	  we	  should	  think	  of	  the	  data	  
revising	  our	  theories,	  which	  in	  turn	  can	  influence	  our	  design	  and	  data	  collection,	  rather	  than	  the	  
data	  itself	  directly	  informing	  students.	  
	  
In	  some	  cases	  the	  data	  can	  directly	  inform	  students	  about	  their	  progress,	  directly	  (providing	  
information	  about	  what	  they	  are	  doing	  wrong	  when	  that	  is	  identified)	  or	  indirectly	  (by	  giving	  
them	  increasingly	  more	  difficult	  tasks	  when	  they	  are	  succeeding,	  or	  breaking	  complex	  tasks	  
down	  into	  simpler	  ones	  when	  they	  are	  not).	  	  But	  to	  turn	  the	  game	  into	  a	  Game	  that	  is	  a	  truly	  
productive	  learning	  experience,	  the	  data	  must	  get	  out	  of	  the	  game	  and	  into	  the	  hands	  of	  the	  
teacher	  in	  a	  useful	  way.	  	  This	  is	  a	  significant	  challenge,	  balancing	  the	  depth	  and	  complexity	  of	  
information	  that	  we	  can	  provide,	  with	  the	  simplicity	  and	  immediacy	  that	  teachers	  need	  to	  make	  
use	  of	  that	  data.	  	  	  
	  
The	  first	  wave	  of	  simple	  dashboards	  that	  just	  show	  green,	  yellow,	  red	  do	  not	  provide	  teachers	  
with	  enough	  information	  to	  be	  useful	  on	  a	  case	  by	  case	  basis,	  other	  than	  knowing	  whether	  the	  
class	  is	  “getting	  it”	  or	  not.	  	  The	  other	  end	  of	  the	  spectrum,	  which	  shows	  the	  outcome	  of	  every	  
game	  action	  for	  every	  player	  is	  too	  much	  information	  to	  be	  useful.	  	  A	  teacher	  with	  100	  or	  more	  
students	  cannot	  use	  such	  information	  to	  address	  individual	  (or	  even	  classwide)	  issues.	  	  	  
	  
Additionally,	  as	  many	  of	  these	  models	  are	  probabilistic	  we	  need	  to	  provide	  teachers	  with	  the	  
skills	  that	  they	  need	  to	  correctly	  interpret	  the	  data	  that	  is	  coming	  to	  them.	  	  In	  fact,	  most	  
assessment	  measures	  require	  a	  fairly	  sophisticated	  interpretation,	  but	  we	  don’t	  usually	  convey	  
this	  nuanced	  interpretation.	  While	  we	  may	  not	  need	  to	  turn	  teachers	  into	  data	  scientists	  we	  
need	  to	  provide	  them	  with	  a	  baseline	  of	  skills	  to	  interpret	  data.	  	  	  
	  
This	  all	  means	  that	  using	  games	  to	  know	  what	  students	  know	  is	  not	  an	  activity	  that	  falls	  solely	  
within	  the	  domain	  of	  data	  scientists,	  it	  is	  something	  that	  must	  draw	  upon	  the	  skills	  of	  learning	  
scientists,	  instructional	  designers,	  game	  designers	  and	  teacher	  educators	  well.	  	  These	  roles	  are	  
all	  required	  to	  define	  the	  necessary	  learning	  outcomes	  and	  challenges,	  develop	  effective	  and	  
engaging	  tasks,	  and	  provide	  that	  data	  to	  teachers	  in	  actionable	  ways.	  
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Big Data in Education: Opportunities, Challenges, and Future Research  

Valerie Shute, Florida State University 

Imagine an educational system where high-stakes tests are no longer used. Instead, students would 

progress through their school years engaged in different learning contexts, all of which capture, measure, 

and support growth in valuable cognitive and noncognitive skills. This is conceivable because in our 

complex, interconnected, digital world, we’re all producing numerous digital footprints daily. This vision 

thus involves continually collecting data as students interact with digital environments both inside and, 

importantly, outside of school. When the various data streams coalesce, the accumulated information can 

potentially provide increasingly reliable and valid evidence about what students know and can do across 

multiple contexts. It involves high-quality, ongoing, unobtrusive assessments embedded in various 

technology-rich environments (TREs) that can be aggregated to inform a student’s evolving competency 

levels (at various grain sizes) and also aggregated across students to inform higher-level decisions (e.g., 

from student to class to school to district to state, to country).  

The primary goal for this vision of assessment is to improve learning (e.g., Black & Wiliam, 1998; Shute, 

2009), particularly learning outcomes and processes necessary for students to succeed in the 21st century. 

Most current approaches to assessment/testing are too disconnected from learning processes. That is, the 

typical classroom cycle is: Teach. Stop. Administer test. Go loop (with new content). But consider the 

following metaphor representing an important shift that occurred in the world of retail outlets (from small 

businesses to large department stores), suggested by Pellegrino, Chudhowsky, and Glaser (2001, p. 284). 

No longer do these businesses have to close down once or twice a year to take inventory of their stock. 

Instead, with the advent of automated checkout and barcodes for all items, these businesses have access to 

a continuous stream of information that can be used to monitor inventory and the flow of items. Not only 

can businesses continue without interruption, but the information obtained is far richer, enabling stores to 

monitor trends and aggregate the data into various kinds of summaries, as well as support real-time, just-

in-time inventory management. Similarly, with new assessment technologies, schools should no longer 

have to interrupt the normal instructional process at various times during the year to administer external 

tests to students. Instead, assessment should be continual and invisible to students, supporting real-time, 

just-in-time instruction and other types of learning support.  

The envisioned ubiquitous nature of assessment will require a reconceptualization on the boundaries of 

the educational system. That is, the traditional way of teaching in classrooms today involves providing 

lectures and giving tests in class, then assigning homework to students to complete outside of class 

(usually more reading on the topic and perhaps answering some topical questions).  Alternatively, 

consider a relatively new pedagogical approach called “flipped classrooms.” This involves a reversal of 

the traditional approach where students first examine and interact with a target topic by themselves at 

home and at their leisure (e.g., viewing an online video and/or playing an educational game); and then in 

class, students apply the new knowledge and skills by solving problems and doing practical work (see 

Bergmann & Sams, 2012). The flipped classroom is already operational for core courses at some schools 

and universities across North America. The teacher supports the students in class when they become 

stuck, rather than delivering the initial lesson in person. Flipped classrooms free class time for hands-on 

work and discussion, and permit deep dives into the content. Students learn by doing and asking 

questions, and they can also help each other, a process that benefits a majority of learners (Strayer, 2012).  

Challenges and Future Research  

For this vision of the future of assessment—as ubiquitous, unobtrusive, engaging, and valid—to gain 

traction, there are a number of large hurdles to overcome.  Following are four of the more pressing issues 

that need more research.  
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1. Quality of Assessments. The first hurdle relates to variability in the quality of assessments within 

TREs. That is, because schools are under local control, students in a given state could engage in 

thousands of TREs during their educational tenure.  Teachers, publishers, researchers, and others 

will be developing TREs, but with no standards in place, they will inevitably differ in curricular 

coverage, difficulty of the material, scenarios and formats used, and many other ways that will 

affect the adequacy of the TRE, tasks, and inferences on knowledge and skill acquisition that can 

justifiably be made from successfully completing the TREs. Assessment design frameworks (e.g., 

ECD, Mislevy et al., 2003; Assessment Engineering, Lucht, 2013) represent a design 

methodology but not a panacea, so more research is needed to figure out how to equate TREs or 

create common measurements (i.e., standardized) from diverse environments. Towards that end, 

there must be common models employed across different activities, curricula, and contexts. 

Moreover, it is important to figure out how to interpret evidence where the activities may be the 

same but the contexts in which students are working are different (e.g., working alone vs. 

working with another student).  

2. Interpreting Different Learning Progressions. The second hurdle involves accurately capturing 

and making sense of students’ learning progressions. That is, while TREs can provide a greater 

variety of learning situations than traditional face-to-face classroom learning, evidence for 

assessing and tracking learning progressions becomes heterogeneous and complex rather than 

general across individual students. Thus there is a great need to model learning progressions in 

multiple aspects of student growth and experiences, which can be applied across different 

learning activities and contexts (Shavelson & Kurpius, 2012). However as Shavelson and Kurpius 

point out, there is no single absolute order of progression as learning in TREs involves multiple 

interactions between individual students and situations, which may be too complex for most 

measurement theories in use that assume linearity and independence. Clearly, theories of learning 

progressions in TREs need to be actively researched and validated to realize TREs’ potential.  

3. Expanded educational boundaries. The third problem to resolve involves impediments to moving 

toward the idea of new contexts of learning (e.g., flipped classrooms). One issue concerns the 

digital divide where some students may not have access to a home computer.  In those cases, 

students can be allowed to use library resources or a computer lab. Alternatively, online 

components can be accessed via a cell phone as many students who do not have computers or 

Internet at home do have a phone that can meet the requirements of online activities.  In addition, 

some critics argue that flipped classrooms will invariably lead to teachers becoming outdated. 

However, teachers become even more important in flipped classrooms, where they educate and 

support rather than lecture (i.e., “guide on the side” rather than “sage on a stage”). This represents 

an intriguing way to take back some of the very valuable classroom time, and serve as a more 

efficient and effective teacher. Much more empirical research is needed to determine how this 

pedagogical approach works relative to traditional pedagogies.  

4. Privacy/Security. The fourth hurdle involves figuring out a way to resolve privacy, security, and 

ownership issues regarding students’ information.  The privacy/security issue relates to the 

accumulation of student data from disparate sources. The recent failure of the $100 million 

inBloom initiative (see McCambridge, 2014) showcases the problem. That is, the main aim of 

inBloom was to store, clean, and aggregate a wide range of student information for states and 

districts, and then make the data available to district-approved third parties to develop tools and 

dashboards so the data could be easily used by classroom educators. The main issue boils down to 

this: information about individual students may be at risk of being shared far more broadly than is 

justifiable. And because of the often high-stakes consequences associated with tests, many 

parents and other stakeholders fear that the data collected could later be used against the students.  
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What would it take to implement the vision once the hurdles are surmounted? I’ll use ECD to illustrate. In 

addition to ECD’s ability to handle multivariate competency models (Mislevy et al., 2003), it is able to 

accumulate evidence across disparate sources (e.g., homework assignment, in-class quiz on an iPad, high 

score on a video game). This is possible as ECD provides assessment designers with processes that enable 

them to work through the design trade-offs that involve multiple competency variables—either within one 

assessment or across multiple assessments. The “alchemy” involves turning the raw data coming in from 

various sources into evidence.  Evidence models will need to be able to interpret the results of all 

incoming data for the purposes of updating the student model. The rules of evidence must describe which 

results can be used as evidence, as well as any transformation that needs to be done to those results (e.g., 

averaging, rescaling, setting cut scores) (see Almond, 2010 for more on this process). As sufficient data 

(i.e., outcomes from students’ interactions with a collection of tasks) become available, Bayesian 

inference can be used to replace the prior distributions for parameters with posterior distributions. This 

should improve the quality of inferences that come from the system.  

Despite the foregoing hurdles, constructing the envisioned ubiquitous and unobtrusive assessments across 

multiple learner dimensions, with data accessible by diverse stakeholders, could yield various educational 

benefits. First, the time spent administering tests, handling make-up exams, and going over test responses 

is not very conducive to learning. Given the importance of time on task as a predictor of learning, 

reallocating those test-preparation activities into ones that are more educationally productive would 

provide potentially large benefits to almost all students. Second, by having assessments that are 

continuous and ubiquitous, students are no longer able to “cram” for an exam. Although cramming can 

provide good short-term recall, it is a poor route to long-term retention and transfer of learning. Standard 

assessment practices in school can lead to assessing students in a manner that is in conflict with their 

long-term success. With a continuous assessment model in place, the best way for students to do well is to 

do well every day. The third direct benefit is that this shift in assessment mirrors the national shift toward 

evaluating students on the basis of acquired competencies. With increasing numbers of educators growing 

wary of pencil and paper, high-stakes tests for students, this shift toward ensuring students have acquired 

“essential” skills fits with the idea of my envisioned future of assessment.   

The time is now ripe for such assessments given the dire need for supporting new 21st century skills and 

the increased availability of computer technology. New technologies make it easy to capture the results of 

routine student work—in class, at home, or wherever. It could be that 21st century assessment will be so 

well integrated into students’ day-to-day lives that they don’t even know it’s there. This represents quite a 

contrast to our current testing contexts. However, while the benefits of using a seamless-and-ubiquitous 

model to run a business have been clear for more than four decades, applying this metaphor to education 

may require adjustments as we are dealing with humans, not goods. For instance, one risk associated with 

the vision is that students may come to feel like they are constantly being evaluated which could 

negatively affect their learning and possibly add stress to their lives. Another risk of a continuous 

assessment vision could result in teaching and learning turning into ways to “game the system” depending 

on how it is implemented and communicated. But the aforementioned hurdles and risks, being anticipated 

and researched in advance, can help to shape the vision for a richer, deeper, more authentic assessment (to 

support learning) of students in the future. How many current businesses would elect to return to pre-

barcode days?    
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On	  the	  Value	  of	  Post-‐Secondary	  School	  Training	  

J.	  D.	  Fletcher	  

Institute	  for	  Defense	  Analyses	  

These	  comments	  concern	  the	  assessment	  of	  training	  and	  training	  innovation,	  mostly	  in	  the	  
Department	  of	  Defense	  (DoD).	  The	  may	  or	  may	  not	  be	  relevant	  to	  this	  group,	  but,	  undaunted,	  
I’ll	  carry	  on.	  	  	  

By	  ‘training’	  I	  mean	  preparation	  to	  perform	  specific	  jobs	  and	  tasks.	  	  It	  is	  a	  means	  to	  an	  end	  that	  
is	  at	  least	  somewhat	  predictable.	  	  The	  requirements	  of	  jobs	  and	  tasks	  change,	  of	  course,	  and	  
transfer	  of	  learning	  is	  still	  as	  critical	  for	  training	  as	  for	  education.	  	  But	  training	  stands	  in	  contrast	  
to	  education,	  which	  is	  an	  end	  in	  its	  own	  right	  and	  preparation	  for	  life.	  	  Training	  seems	  
particularly	  useful	  in	  assessing	  the	  effectiveness	  of	  instructional	  approaches,	  old	  and	  new,	  
because	  we	  can	  determine	  relatively	  quickly	  how	  successful	  they	  are	  in	  producing	  necessary	  
learning.	  	  	  

Educators	  may	  assume	  that	  training	  is	  not	  relevant	  to	  education,	  but	  I	  contend	  that	  
instructional	  approaches	  are	  much	  the	  same	  for	  education	  and	  training.	  	  Both	  endeavors	  have	  
much	  to	  learn	  from	  each	  other,	  and	  the	  list	  of	  training	  approaches	  and	  techniques,	  especially	  
those	  of	  the	  DoD,	  that	  have	  made	  their	  way	  into	  K-‐12	  education	  is	  long.	  	  These	  comments	  focus	  
on	  DoD	  results	  and	  data	  from	  post-‐secondary	  training,	  but	  they	  may	  be	  relevant	  to	  most	  if	  not	  
all	  training	  and	  education.	  

‘Value’	  in	  the	  above	  title	  is	  central	  to	  these	  comments.	  Budget	  battles	  for	  training	  in	  DoD,	  
especially	  training	  of	  individuals	  in	  residence	  (i.e.,	  schoolhouses),	  fare	  as	  poorly	  as	  they	  often	  do	  
in	  K-‐12	  education.	  	  That	  may	  be	  partly	  due	  to	  our	  focus	  on	  training	  effectiveness	  and	  neglect	  of	  
the	  “so	  what”	  question.	  	  To	  say	  that	  we	  find	  superior	  learning	  from	  a	  training	  approach	  is	  only	  
part	  of	  the	  issue	  for	  decision	  makers	  and	  check	  writers	  in	  Defense	  and	  industry.	  	  They	  need	  to	  
know	  what	  effectiveness	  means	  for	  success	  of	  the	  missions	  they	  must	  pursue.	  	  What,	  for	  
instance,	  is	  the	  priority	  for	  training	  compared	  to	  other	  approaches	  that	  contribute	  to	  mission	  
success?	  	  What	  is	  a	  pound	  of	  training	  worth?	  The	  same	  balance	  and	  priority	  determination	  
must	  be	  found	  for	  public	  service	  expenditures	  where	  the	  question	  is	  to	  determine	  what	  a	  
pound	  of	  education	  is	  worth.	  	  Over	  the	  years,	  I	  have	  been	  concerned	  with	  answering	  this	  
question	  in	  both	  venues.	  

The	  issue	  is	  not	  cost	  -‐-‐	  for	  either	  civilian	  or	  military	  budgets.	  	  If	  it	  were,	  we	  might	  arm	  the	  U.S.	  
Ari	  Force	  with	  Piper	  Cubs.	  	  Concluding	  that	  an	  instructional	  approach	  is	  unaffordable	  because	  of	  
cost	  is	  insufficient.	  	  	  A	  full	  answer	  to	  the	  question	  must	  address	  both	  cost	  and	  what	  we	  get	  for	  it	  
–	  i.e.,	  return	  on	  investment.	  	  This	  issue	  is	  rarely	  addressed	  in	  either	  education	  or	  training	  
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assessments	  as	  we	  compete	  for	  funds	  with	  other,	  perfectly	  respectable	  alternatives.	  	  In	  the	  
military,	  the	  issue	  can	  be	  whether	  to	  buy	  jet	  propulsion	  fuel	  or	  improved	  training.	  	  We	  know	  
how	  many	  sorties	  the	  fuel	  will	  bring	  and	  how	  that	  affects	  mission	  success.	  	  How	  does	  that	  
compete	  with	  training	  outcomes?	  	  Similar	  balances	  must	  be	  determined	  for	  profit	  and	  loss	  in	  
business	  and	  for	  public	  funds	  used	  to	  support	  local	  and	  national	  well-‐being.	  	  	  What,	  again,	  is	  a	  
pound	  of	  training	  worth?	  	  There	  are	  ROI	  studies	  for	  education	  and	  training,	  but	  I	  suggest	  they	  
are	  too	  few	  and	  too	  rare.	  

Measuring	  the	  cost	  of	  an	  investment	  is	  easier	  than	  measuring	  its	  return.	  	  Assessing	  operational	  
return	  (e.g.,	  mission	  effectiveness)	  is	  far	  too	  messy	  to	  discuss	  in	  this	  short	  note.	  	  It	  is	  difficult	  
and	  wildly	  uncertain.	  	  However,	  three	  assessments	  of	  monetary	  return	  can	  be	  briefly	  
mentioned	  here.	  	  	  In	  all	  three	  cases	  the	  investment	  is	  in	  computer	  technology	  for	  training.	  

As	  a	  first	  example,	  we	  find	  from	  data	  that	  the	  rate	  at	  which	  students	  in	  a	  classroom	  (civilian	  or	  
military,	  children	  or	  adults)	  is	  at	  least	  4:1.	  	  Other	  data	  have	  found	  that	  the	  use	  of	  computer	  
technology	  to	  individualize	  (people	  are	  saying	  ‘personalize’	  these	  days)	  instruction	  so	  that	  the	  
slowest	  students	  can	  receive	  the	  time	  they	  need	  to	  reach	  basic	  learning	  levels	  and	  the	  fastest	  
students	  can	  be	  all	  they	  can	  be	  (to	  coin	  a	  phrase).	  	  This	  capability	  has	  been	  found	  to	  reduce	  
overall	  time	  to	  learn	  by	  at	  least	  30	  percent.	  	  	  Suppose	  we	  were	  to	  reduce	  the	  time	  for	  60%	  of	  
military	  technicians	  to	  complete	  entry	  level	  specialized	  training,	  which	  cost	  about	  $9B	  in	  2014,	  
by	  30%.	  	  The	  savings	  would	  amount	  to	  about	  $1.8B.	  Cost	  of	  the	  computer	  software	  and	  
hardware	  to	  accomplish	  this	  needs	  to	  be	  determined,	  but	  it	  is	  likely	  to	  be	  considerably	  less	  than	  
$1.8B.	  

Second,	  we	  have	  found	  a	  recently	  developed,	  digital	  tutoring	  system	  for	  training	  Information	  
Systems	  Technology	  (IT)	  technicians	  can,	  after	  16	  weeks,	  produce	  US	  Navy	  sailors	  who	  outscore	  
in	  IT	  knowledge	  and	  troubleshooting	  skill	  other	  sailors	  with	  more	  than	  9	  years	  of	  Fleet	  IT	  
experience.	  	  The	  effect	  sizes	  in	  this	  assessment	  exceed	  3	  standard	  deviations	  for	  the	  Fleet	  ITs	  
(and	  for	  newly	  graduated	  sailors	  who	  received	  35	  weeks	  of	  training).	  	  Comparing	  this	  ability	  to	  
accelerate	  the	  development	  of	  expertise	  to	  that	  required	  by	  9	  years	  of	  on-‐job	  experience	  and	  
training	  and	  assuming	  the	  current	  training	  pipeline	  of	  2,000	  Navy	  ITs	  a	  year	  suggests	  annual	  
savings	  to	  the	  Fleet	  of	  about	  $300M	  per	  year.	  

Third,	  we	  found	  that	  the	  same	  system	  used	  to	  train	  post-‐Gulf	  War	  veterans,	  most	  of	  whom	  
were	  unemployed,	  for	  18	  weeks	  provided	  them	  civilian	  job	  offers	  with	  a	  median	  salary	  of	  
$73,000,	  which	  is	  roughly	  equivalent	  to	  that	  earned	  by	  industry	  network	  administrators	  with	  3-‐
5	  years	  of	  experience.	  	  Aside	  from	  the	  impact	  on	  these	  veterans’	  lives,	  the	  monetary	  return	  to	  
the	  government	  for	  supporting	  veterans	  in	  this	  course	  (tuition,	  lodging,	  and	  meals)	  was	  about	  
twice	  the	  return	  in	  revenue	  (i.e.,	  taxes	  paid)	  received	  from	  other,	  more	  typical	  approaches	  
providing	  similar	  support	  for	  two-‐	  and	  four-‐year	  academic	  institutions.	  
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These	  examples	  approach	  cost-‐effectiveness	  and	  return	  on	  investment	  in	  different	  ways.	  	  The	  
first	  holds	  effectiveness/return	  constant	  and	  minimizes	  cost/investment	  by	  releasing	  students	  
as	  soon	  as	  they	  reach	  a	  threshold	  of	  learning.	  	  The	  second	  and	  third	  examples	  hold	  
costs/investment	  constant	  while	  maximizing	  effectiveness/return.	  	  The	  latter	  approach	  may	  be	  
much	  preferred	  because	  it	  is	  more	  compatible	  with	  established	  personnel	  practices,	  which	  have	  
difficulty	  dealing	  with	  different	  learners	  finishing	  courses	  of	  instruction	  at	  different	  times.	  

The	  data	  reported	  in	  these	  examples	  may	  change	  with	  additional	  scrutiny	  and	  replication,	  
although	  substantial	  change	  in	  their	  overall	  findings	  seems	  unlikely.	  	  However,	  the	  point	  of	  
these	  examples	  is	  to	  suggest	  how	  the	  value	  –	  the	  “so	  what”	  –	  question	  might	  be	  addressed	  in	  
similar	  assessments	  and	  research.	  	  It	  is	  to	  further	  suggest	  that	  return	  on	  investment	  can	  and	  
should	  become	  a	  routine	  element	  in	  education	  and	  training	  assessments.	  	  Researchers	  may	  
complain	  (as	  they	  have)	  about	  becoming	  accountants,	  but	  the	  nature	  of	  our	  business	  is	  
changing	  and	  so	  should	  we	  if	  we	  are	  to	  defend	  investments	  in	  education	  and	  training	  and	  
compete	  more	  successfully	  with	  other	  demands	  for	  public	  support	  and	  budget	  allocation.	  
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The Data deluge is affecting all disciplines requiring new computational capabilities (tools, 
technologies, and platforms) and skills to capture, manipulate, visualize, integrate and manage 
(including preservation) large amounts of data. At the same time, it is presenting great 
opportunities in the field of educational research (Koedinger, McLaughlin & Stamper, 20141,  
Breslow et al. 20132). Massive Open Online Courses(MOOCs)  such as edX, have added 
legitimacy and even, perhaps, urgency to the field of educational research at MIT and 
elsewhere.   
 
HarvardX and MITx research units are also following the recipe for advancing MOOC research 
recommended by Reich (2015): improving assessments, conducting experiments, and sharing 
data” (Ho et. al. 2015)3.  
 
Indeed, there are high expectations all around for massive open online courses to not 
only bring the best education in the world to the most remote corners of the planet,  but 
also that the large data sets generated by users numbering in the hundreds of 
thousands will provide insights into education. These insights will inform faculty on how 
to use technology in their teaching, and will enhance the experience of learners 
everywhere. Large data sets will help legitimize some of the existing theories and 
methods of learning, and help establish new insights and theories of how people learn 
online, how communities emerge and interact, etc.    
 
This “thought-paper” sets out to identify opportunities for data-intensive research in education to 
improve practice and policy. It draws from a set of research themes and associated 
issues/questions that were identified as part of an MIT exercise to frame a research agenda on 
MOOCs. 
   
The paper also draws on activities underway at MIT with which the author and his associates 
are engaged that address issues related to developing technological considerations and 
                                                
1 Koedinger, Kenneth R., Elizabeth A. McLaughlin, and John C. Stamper. “Data-Driven Learner Modeling 
to Understand and Improve Online (2014).  
2 Breslow, L., Pritchard, D. E., DeBoer, J., Stump, G. S., Ho, A. D., and Seaton, D. T. Studying Learning 
in the Worldwide Classroom Research into edX's First MOOC. Research and Practice in Assessment 8, 
19 (2013), 13–25. 
3 Andrew Dean, et al. "HarvardX and MITx: Two Years of Open Online Courses Fall 2012-Summer 2014." 
Available at SSRN 2586847 (2015) 



capabilities for delivering quality learning opportunities at scale. The activities are in the area of 
Distributed Assessments and Mapping Courses to Skills development4. Interoperability 
considerations are central to the approaches. 
  

The Data Dividend 
 
The document identifies 3 Opportunity Areas for Big Data/ data-intensive research in education 
to improve practice and policy: 
  

1:  Distributed, Embedded Assessment  
2:  Competency and Skill based Learning 
3:  Strategic Scaffolding 
 

 
1. Distributed, Embedded Assessment 
 

Creating Repositories and Recommenders  
A substantial body of research has been compiled on the best practices in structuring and using 
feedback in traditional educational settings. One of the most exciting features of online learning, 
as demonstrated amply in edX, is the platform’s ability to ask students to apply the concepts 
they have just encountered and test them to provide timely feedback leading to mastery or 
different pathways (Embedding assessments frequently for formative testing). An enormous 
investment is currently being made at MIT and elsewhere to design and develop effective 
assessments, for the rapidly expanding roster of MOOC offerings from colleges and universities 
worldwide. 
  

How can we make this process scalable and cost effective? If the power of technology can 
be pressed into service for direct assessment, education would benefit enormously. 
  
To date, no technology exists to effectively manage and share this content or to support re-use 
of assessment items across courses, departments, institutions—or more importantly, across 
educational platforms and technologies. In addition, no approach to managing and authoring 
assessments has yet to effectively map them to learning objectives or track item response 
analytics and other valuable use [and user?] data. As we move forward in developing a robust 
digital learning infrastructure, the need for a new set of tools to facilitate and improve 
assessments is critical. 
  
To address this need, we propose the creation of the Digital Learning Assessment Bank, a 
global federation of assessment tools that will facilitate the availability of online assessments. A 
secure and interoperable Federated Assessment Service would support the creation of such an 
assessment bank where users will be able to create and update assessment offerings and 
perform assessment authorizing, reporting, learning objectives mapping and analytics. 

                                                
4 Core Concept Catalog: MC3 (http://oeit.mit.edu/gallery/projects/core-concept-catalog-mc3) 



  
Big Data capability can allow us to study the effectiveness of assessments drawn from these 
assessments banks for different learning outcomes/ in different contexts and make this 
information available along with these assessments. We can imagine Assessment 
Recommenders that facilitate the identification and selection of assessments from the digital 
learning assessment bank for use by course authors. As such Digital Learning/MOOC 
environments can provide more opportunity to personalize learning (through analytics), more 
opportunity to provide interactivity with content and more opportunity for asynchronous 
interaction. 
 

Finally, research into digital assessment—its use and its results—can feed into our 
understanding of learning itself.  As students interact with online materials, the data generated 
will give researchers insight into how learners struggle to master concepts, how they deal with 
misconceptions and skills, and how they ultimately succeed.  

Questions:  
- What are the alternative methods for understanding and making learning visible? 
- Would Digital Learning Assessment Banks result in better learning objectives? Or vice 

versa? 

  
2. Competency and Skill based Learning  
  

Keys measures of educational effectiveness, from the perspective of the community colleges, 
Department of Labor (DOL), Department of Education (DOE) and the Trade Adjustment 
Assistance Community College Career Training (TAACCCT) grant program, are data that 
indicates the numbers of graduates of degree or certificate programs that go on to get jobs, and 
most importantly, the “growth in the wage premium associated with higher education and 
cognitive ability"(Autor, 2014)5. The data required for these measures are captured in various 
institutional and state systems, educational SIS, labor and wage reporting, departments of 
revenue, and cross-organizational agreements. The techniques for sharing this data for the 
purposes of research and reporting grant effectiveness are just beginning to emerge, largely, 
from what we can tell, driven by the requirements for these organizations to report results of 
recent federal grants.  A robust, well design system that integrates real data would inform policy 
makers and at the same time, help create well-informed policy. 
  
A missing component of this data train is where the mapping occurs between educational 
courses/programs and job skills. As we know, from our own design efforts around learning 
objective models, we cannot get an adequate end-to-end picture across the entire path from 
educational program to job placement and make sense of it without modeling educational goals 
related to course and programs. Without goal modeling, this mapping is done by hand, by 

                                                
5 Autor, David. "Skills, education, and the rise of earnings inequality among the" other 99 percent" 2014 



people who make educated decisions regarding which programs of study map to a particular job 
classification6. 
  
We can imagine a number of activities that could help with this: 
 
One, of course, being the learning objective cataloging systems we are building at MIT. In fact, 
for the TAACCCT Round 4 Data Bus project, we are planning to leverage this work, standing up 
services to manage and map data on educational goals. We are hopeful that one or more of the 
Mass Community Colleges might be willing to run an experiment for curricular mapping and 
linkages to job skills. 
  
Another is semantic analysis. Starting with knowledge models, developed by domain experts, 
we are currently exploring ways to auto-generate learning outcomes from available data. For 
instance, given what we know about the content that our faculty are relating to their authored 
learning goals, we can infer other related content or requisite relationships or even identify 
missing learning goals that are evidenced by the data. In the same way we could consider 
analysis of expert-authored crosswalks to begin automatically identifying additional educational 
opportunities available for a particular job code, or conversely, we can better identify job 
opportunities that may be available to students that were not initially conceived. 
 

Question: 
- Which models can be implemented under current conditions (e.g. social, political, 

technological, and structural within education) and which will require change? 

 

3.  Strategic Scaffolding (Help for the Networked Learner/) 
 

Scaffolding, an instructional strategy designed to promote deeper level of understanding and 
autonomous learning, is of particular relevance for online learning. It recognizes diverse 
pathways and forms of knowledge and expertise, and it takes into account learning 
experience, concept, and abilities. In an ideal MOOC, students should be presented with a 
great variety of content and activities, as well as feedback and support strategies that:  

- illustrate concepts, problems, and processes in multiple ways to ensure understanding 
- model a process before students are asked to complete their own 
- allow connections to previous knowledge and experience 
- provide instant feedback about level of understanding  
- enable deeper level of absorption, understanding and application of knowledge 
- offer a network of support comprised of peers and experts. 

 
MOOCs bring together a diversity of participants with different levels of preparation and 
backgrounds and a variety of motivations, interests and needs. Understanding how these 
conditions inform the different pathways and levels of success is of critical to the goal of 

                                                
6 Standard Occupational Classification (SOC) systeml (http://www.bls.gov/soc/).  



increasing equitable access to high-quality online learning opportunities at scale. Big Data 
driven research can help us understand the interaction among students, pedagogy, curricular 
material, support networks and the circumstances under which successful learning occur. 
More importantly, it would help create automatic support and scaffolding strategies for a wide 
variety of learners. It would provide the “temporary” learning structures that can enhance 
students’ performance during a particular learning situation, gradually increasing the level of 
complexity needed to achieve mastery and higher levels of sophistication.  

 
Both the MOOC learning experience as well as the characteristics/needs of the networked 
learner 7(such as their help seeking behavior) present added dimensionality that impact how 
and when help (timely, appropriate) can be provided or for that matter how best key aspects 
of quality such as “personalization” can be realized. They also suggest moving beyond the 
expert driven model of identifying misconception to a data driven model of understanding the 
learning strategies and behaviors of Networked Open Learners.  
  
For example, an important consideration in the MOOC/online environment revolves around 
the possibility that scale is an essential “input” (i.e. more students participating in a course 
would actually improve the experience) which is the opposite of what we believe for face-to-
face settings. The quality and diversity of interactions might actually improve in a large online 
course due to the level of participation in forums. Related is the fact that the MOOC learning 
experience – implies the ability to navigate an online experience – is one that involves 
forming and interacting with communities. 

Questions: 
- What models of digital scaffolding exist already? How is their success measured? 
- In what ways do underserved communities currently benefit from access to online 

education? What are the conditions in which that happens?  
- How can we create successful communities of practice? Is a “critical mass” of learners 

prerequisite for community engagement? 
- How can we ensure the privacy of students and other participants? 

  
 

  
 

 

                                                
7 Drexler, Wendy. "The networked student model for construction of personal learning environments: 
Balancing teacher control and student autonomy." Australasian Journal of Educational Technology 26.3 
(2010). http://www.ascilite.org.au/ajet/ajet26/drexler.html 
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Numerous	  efforts	  are	  underway	  to	  build	  digital	  learning	  systems	  and	  the	  designs	  of	  
such	  systems	  vary	  in	  critical	  aspects:	  	  components,	  organization,	  extensibility,	  
adaptability,	  data	  intensity,	  and	  use.	  With	  support	  from	  the	  Bill	  and	  Melinda	  Gates	  
Foundation,	  one	  set	  of	  researchers	  is	  linking	  learning	  maps	  to	  systems	  of	  
assessment	  and	  analytics	  in	  order	  to	  define	  and	  examine	  progress	  in	  learning	  across	  
large	  numbers	  of	  students	  (	  projects	  include:	  Next	  Generation	  Schools,	  Glass	  Labs,	  
Enlearn,	  CRESST,	  Dynamic	  Maps,	  SUDDS).	  	  In	  this	  paper,	  I	  describe	  one	  of	  the	  
projects,	  Scaling	  Up	  Digital	  Design	  Studies(SUDDS)	  at	  North	  Carolina	  State	  
University,	  highlighting	  how	  its	  structure	  and	  design	  can	  inform	  efforts	  at	  applying	  
big	  data	  in	  mathematics	  education.	  	  I	  propose	  that	  articulating	  an	  explicit	  theory	  of	  
student-‐centered	  learning	  can	  help	  in	  leveraging	  “big	  data”	  to	  improve	  the	  depth	  of	  
learning	  and	  not	  simply	  leverage	  performance	  from	  users	  of	  digital	  learning	  systems	  
at	  a	  possible	  cost	  to	  understanding.	  	  It	  is	  a	  conjecture	  that	  remains	  to	  be	  tested.	  
	  
A	  Student-‐Centered	  Digital	  Learning	  System	  (DLS)	  
	  
	  A	  representation	  of	  a	  digital	  learning	  system	  is	  shown	  below.	  	  It	  consists	  of	  a	  
learning	  map,	  which	  delineates	  the	  topics	  	  to	  be	  learned	  as	  big	  ideas	  and	  their	  
underlying	  learning	  structure,.	  	  The	  constructs	  in	  the	  map	  are	  connected	  to	  	  a	  set	  of	  
internet	  resources	  that	  can	  be	  deployed	  as	  curricular	  materials,	  and	  a	  means	  of	  
lesson	  delivery	  combined	  with	  a	  workspace	  and	  access	  to	  a	  set	  of	  math-‐specific	  
tools.	  	  	  The	  map	  is	  also	  linked	  to	  multiple	  forms	  of	  assessments	  and	  reporting.	  The	  
whole	  system	  will	  be	  undergirded	  with	  an	  analytic	  system	  to	  monitor,	  study,	  and	  
modify	  	  the	  use	  of	  the	  DLS.	  	  	  Supports	  for	  teaching	  refer	  to	  activities	  around	  
professional	  development	  materials	  and	  means	  for	  teachers	  to	  manage	  the	  system.	  	  
The	  arrows	  along	  the	  bottom	  indicate	  from	  where	  feedback	  comes	  and	  to	  where	  it	  is	  
delivered.	  
	  



	  
	  
A	  DLS	  is	  student-‐centered	  when	  each	  of	  these	  components	  is	  designed	  to	  strengthen	  
students’	  movement	  within	  the	  digitally-‐enabled	  space.	  	  A	  student-‐centered	  DLS:	  
● 	  increases	  students’	  ability	  to	  understand	  what	  they	  are	  learning,	  
● supports	  appropriate	  levels	  of	  choice	  in	  	  sequencing	  or	  making	  decisions	  

about	  materials	  (with	  guidance	  of	  teachers	  or	  knowledgeable	  adults)	  
● supports	  genuine	  mathematical	  work	  including	  an	  authentic	  use	  of	  the	  tools	  

(not	  just	  filling	  in	  answers),	  	  
● affords	  peer	  collaboration,	  	  discussing	  and	  sharing	  results,	  
● allows	  students	  to	  create,	  store	  and	  curate	  products,	  and	  
● provides	  students’	  diagnostic	  feedback	  allowing	  them	  to	  self-‐monitor	  and	  set	  

goals.	  
	  
Student-‐centeredness	  does	  not	  imply	  individualization,	  working	  largely	  alone	  at	  
one’s	  own	  speed,	  but	  it	  does	  support	  personalization,	  making	  choices	  and	  self-‐
regulation	  (Confrey,	  2014).	  	  The	  DLS	  can	  be	  used	  by	  classes	  using	  predefined	  scope	  
and	  sequences	  to	  coordinate	  activities.	  	  
	  
Introducing	  	  the	  SUDDS	  Grades	  6-‐8	  Learning	  Map	  
	  
A	  learning	  map	  is	  a	  configuration	  in	  space	  of	  the	  primary	  concepts	  to	  be	  learned.	  
Our	  middle	  school	  version	  is	  organized	  hierarchically	  to	  show	  the	  major	  fields	  in	  
mathematics	  (number,	  statistics	  and	  probability,	  measurement	  and	  geometry,	  and	  
algebra)	  and	  nine	  big	  ideas	  from	  across	  those	  fields.	  	  These	  nine	  big	  ideas,	  called	  
regions,	  span	  all	  grades	  	  (6-‐8)	  and	  include	  such	  topics	  as	  “	  Compare	  quantities	  to	  
operate	  and	  compose	  with	  ratio,	  rate	  and	  percent”	  or	  “display	  data	  and	  use	  statistics	  
to	  measure	  center	  and	  variation	  in	  distributions”.	  	  Big	  ideas,	  rather	  than	  relying	  on	  
individual	  standards,	  have	  the	  advantage	  of	  providing	  focus	  both	  at	  and	  across	  
grades.	  	  Too	  many	  systems	  attempt	  to	  map	  standard	  by	  standard	  which	  is	  
problematic	  since	  standards	  vary	  in	  size	  and	  often	  apply	  to	  multiple	  big	  ideas.	  	  
	  



	  
	  
	  
The	  level	  below	  the	  regions	  is	  comprised	  of	  related	  learning	  clusters	  (RLCs).	  	  At	  this	  
level,	  the	  research	  on	  student	  learning	  has	  a	  significant	  impact	  on	  the	  map.	  	  RLCs	  are	  
sets	  of	  constructs	  that	  are	  learned	  in	  relation	  to	  each	  other	  and	  their	  spatial	  
configurations	  on	  the	  map	  convey	  to	  the	  user	  information	  about	  those	  relationships.	  	  	  	  
For	  instance,	  within	  the	  big	  idea	  of	  ratio,	  rate,	  and	  percent,	  there	  are	  five	  RLCs:	  1)	  
key	  ratio	  relationships,	  2)	  comparing	  and	  finding	  missing	  values,	  3)	  percents,	  4)	  
calculating	  with	  percents	  and	  5)	  rational	  number	  operators.	  	  	  In	  a	  region	  or	  big	  idea,	  
the	  RLC’s	  organization	  from	  bottom	  left	  to	  upper	  right	  conveys	  to	  the	  users	  to	  
address	  the	  first	  cluster,	  key	  ratio	  relationships,	  before	  trying	  to	  compare	  ratios	  or	  
build	  up	  to	  meeting	  values.	  The	  shape	  of	  a	  particular	  RLC,	  for	  example,	  key	  ratio	  
relationships,	  also	  conveys	  suggested	  sequencing.	  	  Its	  shape	  as	  an	  inverted	  triangle,	  
conveys	  that	  users	  should	  begin	  with	  what	  it	  means	  for	  the	  ratio	  of	  two	  quantities	  to	  
be	  equal,	  when	  there	  is	  more	  or	  less	  or	  both	  quantities.	  	  The	  parallel	  structure	  of	  the	  
upper	  two	  vertices	  of	  the	  inverted	  triangle	  conveys	  that	  base	  ratio	  (lowest	  pair	  of	  
relatively	  prime	  whole	  numbers)	  and	  unit	  ratio	  can	  be	  learned	  in	  either	  order.	  	  	  By	  
learning	  the	  ideas	  of	  equivalence,	  base	  ratio,	  and	  unit	  ratio	  before	  moving	  to	  
comparing	  and	  finding	  missing	  values	  ensures	  more	  success	  as	  student	  learn	  to	  
build	  up	  in	  a	  table	  or	  graph	  to	  find	  	  a	  missing	  value	  using	  the	  base	  or	  unit	  ratio,	  and	  
eventually	  they	  learn	  to	  find	  a	  missing	  value	  directly	  through	  the	  application	  of	  a	  
combination	  of	  multiplication	  and	  division.	  	  With	  this	  example	  of	  organization,	  one	  
can	  see	  how	  the	  student-‐centered	  design	  of	  the	  map	  differs	  from	  a	  solely	  content-‐
based	  logical	  analysis	  of	  mathematics,	  in	  that	  it	  is	  based	  on	  leveraging	  the	  research	  
on	  student	  learning	  patterns.	  
	  



	  
	  
At	  the	  next	  level	  of	  detail,	  the	  construct	  level,	  a	  user	  have	  access	  to	  what	  is	  called	  the	  
“learning	  trajectory	  stack.”	  	  	  	  The	  stack	  details	  the	  typical	  behaviors,	  conceptions,	  
and	  language	  of	  children	  as	  they	  learn	  and	  revise	  ideas	  from	  naive	  to	  more	  
sophisticated.	  	  In	  the	  figure	  below,	  the	  first	  levels	  of	  the	  stack	  for	  unit	  ratio	  are	  
shown.	  	  	  For	  a	  ratio	  where	  one	  number	  is	  a	  multiple	  of	  the	  other	  (12:3),	  one	  of	  the	  
two	  unit	  ratios	  is	  (4:1)	  and	  these	  are	  the	  easiest	  for	  students	  to	  understand,	  for	  
instance,	  in	  a	  recipe,	  4	  cups	  of	  flour	  per	  one	  cup	  of	  milk.	  	  At	  the	  second	  level,	  from	  a	  
4:1	  ratio,	  they	  can	  reason	  to	  find	  the	  other	  ratio	  of	  (1:	  ¼)	  or	  one	  cup	  of	  flour	  per	  one	  
quarter	  cup	  of	  milk.	  	  	  	  At	  the	  next	  level,	  students	  can	  find	  unit	  ratios	  from	  base	  ratios,	  
such	  as	  going	  from	  (2:3)	  to	  (1,	  3/2)	  or	  (2/3:1).	  	  It	  is	  important	  for	  students	  to	  realize	  
that	  either	  quantity	  in	  the	  ratio	  can	  become	  the	  “per	  one	  quantity”.	  	  The	  next	  level	  is	  
finding	  a	  unit	  ratio	  for	  a	  decimal	  or	  fractional	  value	  of	  one	  of	  the	  quantities	  (2.3:	  5)	  
to	  become	  (23:5)	  and	  then,	  for	  instance	  (1,	  5/23).	  	  Finally	  (non	  visible	  in	  picture),	  a	  
student	  can	  find	  the	  unit	  ratio	  for	  any	  ratio	  (a:	  b)	  as	  	  (a/b:1)	  or	  (1:	  b/a).	  	  



	  
	  
Tapping	  on	  the	  symbol	  CCSS-‐M,	  shows	  the	  standards	  that	  are	  related	  to	  this	  
construct.	  	  	  	  Associating	  the	  standards	  with	  the	  constructs	  assures	  teachers	  that	  they	  
are	  addressing	  the	  proper	  material,	  but	  as	  one	  can	  clearly	  see,	  the	  learning	  
trajectory	  information	  is	  far	  more	  informative	  in	  terms	  of	  pedagogical	  content	  
knowledge	  than	  are	  the	  standards,	  as	  should	  be	  expected.	  	  
	  

	  
	  
	  
	  
	  



	  Also	  choosing	  any	  particular	  standard,	  one	  sees	  flags	  in	  the	  places	  in	  the	  map	  where	  
it	  plays	  a	  major	  role	  (in	  ratio,	  rate	  and	  percent)	  and	  a	  minor	  role,	  (in	  functions	  and	  
relations).	  	  This	  way	  of	  creating	  a	  learning	  map,	  using	  a	  hierarchical	  structure	  and	  
tying	  into	  big	  ideas	  permits	  a	  user,	  whether	  it	  is	  a	  teacher	  or	  a	  student,	  to	  
comprehend	  the	  structure	  within	  which	  they	  are	  learning.	  	  It	  is	  in	  sharp	  contrast	  to	  
learning	  systems	  that	  attempt	  to	  connect	  materials	  standard-‐by-‐standard.	  	  We	  claim	  
that	  a	  standard-‐by	  –standard	  approach	  is	  ineffective	  due	  to	  the	  fact	  that	  standards	  
can	  be	  mapped	  to	  multiple	  places	  on	  the	  map	  and	  they	  vary	  in	  grain	  size.	  	  Their	  
systematic	  connection	  to	  big	  ideas	  is	  not	  sufficiently	  articulated	  in	  that	  the	  
progressions	  remain	  implicit.	  	  We	  seek	  to	  make	  those	  relationships	  explicit	  and	  the	  
basis	  of	  our	  assessment	  models.	  
	  
	  

	  
	  
	  
The	  map	  offers	  other	  features	  to	  users.	  	  First	  of	  all,	  a	  single	  or	  multiple	  grade	  levels	  
can	  be	  selected	  to	  allow	  its	  flexible	  use	  across	  different	  grade	  configurations.	  	  Also,	  
in	  construction,	  is	  a	  scope	  and	  sequence	  generator,	  so	  a	  school	  can	  map	  the	  regions	  
to	  the	  days	  of	  instruction	  and	  can	  sequence	  down	  to	  the	  cluster	  level.	  	  	  	  Finally,	  also	  
under	  construction,	  is	  a	  means	  to	  take	  short	  journeys	  from	  one	  cluster	  or	  construct	  
to	  another,	  so	  that	  topics	  across	  the	  fields	  can	  be	  connected.	  	  	  The	  map	  provides	  
insight	  into	  the	  underlying	  theory	  of	  learning	  and,	  as	  such,	  provides	  critical	  features	  
that	  could	  be	  leveraged	  in	  the	  process	  of	  data	  mining.	  
	  
Diagnostic	  Assessment	  and	  Reporting	  
	  
Our	  map	  connects	  to	  a	  diagnostic	  assessment	  system	  at	  the	  level	  of	  the	  RLCs.	  	  When	  
students	  complete	  the	  study	  of	  materials	  assigned	  at	  each	  of	  the	  constructs	  in	  a	  
cluster,	  they	  take	  a	  diagnostic	  assessment	  of	  the	  RLC.	  	  	  By	  assessing	  at	  the	  cluster	  



level,	  testing	  is	  given	  periodically	  yet	  with	  sufficient	  frequency	  to	  provide	  useful	  
diagnostic	  information	  and	  check	  connections	  and	  retention.	  	  
	  
A	  unique	  quality	  of	  our	  assessment	  system	  is	  that	  the	  assessments	  are	  often	  
designed	  to	  show	  the	  process	  of	  solving	  the	  problem	  and	  evaluated	  to	  reveal	  the	  
students’	  preferred	  method	  of	  solving	  a	  problem.	  For	  example,	  if	  a	  student	  
represents	  univariate	  data	  in	  sixth	  grade	  statistics	  using	  the	  increasingly	  
sophisticated	  elements	  of	  ordering,	  grouping,	  scale	  and	  intervals,	  their	  progress	  to	  
proficiency	  on	  this	  skill	  can	  be	  mapped.	  	  	  Many	  of	  our	  items	  use	  “item	  generation	  
environments”	  which	  allow	  the	  systematic	  variation	  of	  the	  item	  parameters	  to	  show	  
variations	  in	  processes	  across	  task	  classes	  (Confrey	  and	  Maloney,	  ).	  	  
	  
	  The	  assessments	  are	  constructed	  through	  a	  process	  of	  “evidence-‐centered	  design”	  
(Mislevy	  and	  	  Riconscente,	  2005)	  	  The	  value	  of	  a	  clear	  description	  of	  the	  student	  
model	  in	  EDC	  was	  described	  by	  Mislevy,	  Behrens,	  Dicerbo,	  and	  Levy	  	  (2012)as:	  
	  

We	  note	  that	  the	  patterns	  in	  data	  transcend	  the	  particular	  in	  which	  they	  were	  
gathered	  in	  ways	  that	  we	  can	  talk	  about	  in	  terms	  of	  students’	  capabilities,	  which	  
we	  implement	  as	  student	  model	  variables	  and	  organize	  in	  ways	  tuned	  to	  their	  
purpose.	  	  Having	  the	  latent	  variables	  in	  student	  model	  as	  the	  organizing	  
framework	  allows	  us	  to	  carry	  out	  coherent	  interpretations	  of	  evidence	  from	  a	  
task	  with	  one	  set	  of	  surface	  features	  to	  other	  task	  that	  may	  be	  quite	  different	  on	  
the	  surface.	  The	  machinery	  of	  probability-‐based	  inference	  in	  the	  evidence	  
accumulation	  process	  is	  used	  to	  synthesize	  information	  from	  diverse	  tasks	  in	  the	  
form	  of	  evidence	  about	  student	  capabilities,	  and	  quantifies	  the	  strength	  of	  that	  
evidence.	  	  Psychometric	  models	  can	  do	  these	  things	  to	  the	  extent	  that	  the	  
different	  situations	  display	  the	  pervasive	  patterns	  at	  a	  more	  fundamental	  level	  
because	  they	  reflect	  fundamental	  aspects	  of	  the	  ways	  students	  think,	  learn,	  and	  
interact	  with	  the	  world.	  	  (p.	  30).	  

	  
In	  our	  application	  of	  ECD,	  the	  assessment	  is	  tied	  to	  the	  levels	  in	  the	  learning	  
trajectory	  stacks	  using	  an	  adaptive	  model.	  	  For	  each	  learning	  trajectory	  stack,	  the	  
learning	  scientists	  marks	  levels	  that	  introduce	  a	  qualitatively	  different	  aspect	  of	  the	  
big	  idea	  and	  writes	  an	  item	  to	  test	  for	  student	  understanding.	  	  When	  the	  levels	  
below	  it	  are	  encapsulated	  in	  the	  tested	  level,	  an	  adaptive	  protocol	  ensures	  that	  test	  
takers	  are	  correctly	  associated	  with	  levels.t	  Iems	  are	  carefully	  designed	  to	  be	  
generate	  diagnostic	  information.	  For	  instance,	  they	  capture	  evidence	  of	  commonly	  
held	  misconceptions	  and/or	  strategies	  used	  to	  solve	  problems.	  	  	  This	  ensures	  that	  
students	  and	  teachers	  are	  provided	  with	  appropriate	  feedback	  to	  inform	  next	  steps.	  
	  
A	  strength	  and	  challenge	  of	  the	  system	  is	  that	  a	  diagnostic	  assessment	  can	  span	  
across	  multiple	  grades	  of	  proficiency	  levels	  of	  the	  learning	  trajectories.	  	  Thus	  it	  can	  
allow	  students	  to	  move	  more	  rapidly	  or	  slowly	  and	  signal	  users	  (students	  and	  
teachers)	  whether	  they	  are	  on	  track,	  above	  or	  below	  grade	  level	  in	  their	  learning	  
levels.	  	  
	  



Assessments	  can	  be	  used	  for	  pre-‐testing,	  practice	  testing	  or	  as	  a	  diagnostic	  
assessment	  level.	  	  Results	  of	  the	  assessments,	  with	  the	  exception	  of	  justifications,	  
can	  be	  accessed	  immediately	  following	  the	  testing.	  	  	  Results	  are	  shown	  on	  the	  map	  
to	  display	  both	  information	  on	  where	  a	  student	  has	  worked	  on	  activities	  and	  where	  
they	  have	  shown	  proficiency	  with	  the	  materials.	  
	  
Students	  receive	  their	  individual	  data	  and	  can	  review	  their	  progress	  over	  time.	  	  
Teachers	  can	  review	  either	  individual	  or	  class	  level	  results,	  including	  analyzing	  
those	  results	  by	  subgroups.	  	  	  
	  
While	  the	  current	  system	  is	  limited	  to	  diagnostic	  assessments	  at	  the	  level	  of	  RLCs,	  a	  
standardized	  reporting	  system	  affords	  the	  use	  of	  other	  kinds	  of	  assessment	  
including,	  for	  instance,	  perceptions	  of	  learning	  success	  and	  satisfaction.	  
	  
An	  important	  characteristic	  of	  the	  assessment	  and	  reporting	  system	  in	  this	  DLS	  is	  
that	  it	  provides	  a	  variety	  of	  types	  of	  feedback	  to	  students	  and	  teachers	  in	  a	  timely	  
fashion.	  	  Feedback	  can	  be	  delivered	  as	  praise,	  as	  correctness,	  or	  as	  detailed	  evidence	  
on	  process.	  	  It	  can	  be	  delivered	  immediately	  or	  delayed.	  	  Researchers	  have	  
distinguished	  two	  broad	  classes:	  	  person-‐oriented	  and	  task-‐oriented	  (Lipnevich	  A.,	  
&	  	  Smith,	  J.	  2008).	  	  It	  appears	  that	  while	  both	  can	  be	  important,	  the	  task-‐oriented	  
feedback	  tends	  to	  show	  improved	  effects	  on	  performance	  on	  cognitive	  task.	  	  	  	  
However,	  person-‐oriented	  feedback	  can	  support	  self-‐efficacy	  and	  improve	  a	  
student’s	  perception	  of	  themselves	  as	  a	  motivated	  learner.	  	  	  An	  assessment	  system	  
can	  deploy	  feedback	  in	  a	  variety	  of	  ways	  in	  order	  to	  permit	  experimentation	  on	  
what	  produces	  the	  greatest	  gains	  in	  understanding.	  
	  
Links	  to	  Curriculum	  Use	  
	  
The	  map	  can	  be	  linked	  to	  a	  curriculum	  by	  one	  of	  two	  methods.	  	  At	  the	  level	  of	  the	  
RLC,	  one	  can	  select	  the	  relevant	  construct	  or	  constructs	  and	  then	  have	  a	  set	  of	  
possible	  links	  addressing	  those	  topics	  become	  visible.	  	  Teachers	  and	  schools	  can	  add	  
links	  locally	  ,	  but	  the	  overall	  map	  has	  links	  that	  are	  curated	  by	  the	  team.	  	  	  	  
Contributions	  to	  the	  general	  map	  can	  be	  made	  on	  the	  basis	  of	  enough	  internal	  
support	  via	  a	  teacher-‐to-‐teacher	  rating	  system.	  
	  
In	  addition,	  materials	  can	  be	  tagged	  based	  on	  a	  taxonomy	  of	  curricular	  features	  
including	  whether	  the	  materials	  are	  problem/project-‐oriented,	  practice-‐oriented,	  
involve	  problem	  solving,	  group	  work,	  individualized	  activity,	  include	  or	  don’t	  
include	  formative	  assessment	  etc.	  	  	  
	  
Another	  means	  of	  accessing	  curricula	  is	  through	  a	  tool	  that	  permits	  a	  district	  to	  
develop	  a	  scope	  and	  sequence.	  	  There	  are	  restrictions	  on	  those	  scope	  and	  sequences,	  
to	  avoid	  over-‐fragmentation	  of	  the	  curricula.	  	  	  It	  requires	  the	  curricula	  designer	  to	  
work	  across	  the	  year	  sequencing	  first	  at	  the	  regional	  or	  “big	  idea”	  level	  and	  then	  
within	  that,	  to	  sequence	  at	  the	  RLC	  level.	  	  Within	  a	  particular	  cluster,	  a	  curriculum	  
designer	  can	  then	  assign	  web	  resources	  and	  students	  can	  work	  at	  the	  cluster	  level	  



among	  those	  resources.	  	  	  In	  this	  scenario,	  a	  student	  can	  sign	  into	  the	  DLS	  by	  name	  
and	  class	  and	  receive	  information	  about	  their	  assignments,	  expectations,	  and	  
results.	  
	  
A	  major	  challenge	  in	  the	  current	  instantiation	  of	  the	  digital	  learning	  system	  is	  how	  
to	  get	  more	  substantive	  information	  from	  the	  students’	  experience	  with	  the	  
curricular	  materials.	  	  At	  this	  time,	  it	  is	  relatively	  easy	  to	  measure	  “time	  on	  task”,	  and	  
sequence,	  but	  to	  know	  whether	  the	  student	  completed	  the	  assignment	  and	  how	  well	  
is	  beyond	  the	  capability	  of	  the	  current	  system.	  	  One	  way	  to	  approach	  this	  problem	  is	  
to	  set	  up	  a	  standardized	  means	  that	  designers	  of	  curricular	  materials	  could	  
formatively	  assess	  student	  performance	  on	  their	  materials	  and	  pass	  these	  data	  back	  
to	  the	  DLS’s	  assessment	  system	  in	  a	  standardized	  way.	  
	  
Tools	  and	  Workspace	  
	  
Some	  DLS	  are	  comprised	  of	  only	  lesson	  tasks	  with	  problems	  asked	  and	  solutions	  
submitted.	  	  However,	  to	  become	  a	  proficient	  mathematician,	  the	  CCSS-‐M	  recognize	  
the	  importance	  of	  developing	  a	  set	  of	  practices	  that	  describe	  how	  mathematics	  is	  
done.	  	  One	  element	  of	  a	  sophisticated	  DLS	  is	  then	  to	  offer	  a	  workspace	  with	  a	  variety	  
of	  tools	  that	  can	  be	  a	  performance	  space	  for	  students,	  a	  canvas	  on	  which	  they	  can	  
carry	  out	  and	  share	  their	  mathematical	  pieces	  of	  work	  and	  then	  store	  and	  curate	  the	  
resources	  from	  those	  experiences.	  	  To	  date,	  a	  number	  of	  exceptional	  tools	  exist	  
(DESMOS,	  Geometer’s	  Sketchpad,	  Cabri,	  Fathom,	  Geogebra,	  Tinker	  Plots).	  	  In	  
addition,	  some	  tools	  exist	  for	  carrying	  out	  mathematical	  work	  and	  even	  for	  creating	  
screen	  capture	  of	  it.	  	  Few	  integrate	  the	  elements	  of	  a	  collaborative	  workspace,	  a	  tool	  
set	  and	  a	  means	  to	  create	  a	  portfolio	  or	  notebook,	  much	  less	  link	  them	  successfully	  
to	  access	  to	  a	  database	  of	  tasks	  (see	  Confrey,	  2014	  for	  a	  description	  of	  these	  design	  
elements.).	  
	  
Analytics	  
	  
An	  analytic	  engine	  for	  our	  	  DLS	  	  will	  capture	  all	  the	  data	  about	  system	  use	  including,	  
but	  not	  limited	  to,	  where	  a	  student	  has	  gone	  in	  the	  map,	  how	  long	  he	  or	  she	  has	  
spent	  there	  during	  a	  session,	  what	  links	  were	  accessed	  and	  in	  what	  order,	  when	  a	  
DA	  was	  taken,	  how	  many	  times,	  percent	  correct	  and	  incorrect,	  strategies	  used	  and	  
results	  on	  an	  item	  by	  item	  basis.	  	  	  Users	  can	  also	  see	  at	  what	  level	  of	  the	  stacks	  a	  
learner	  is	  on	  and	  how	  quickly	  she	  or	  he	  is	  progressing	  relative	  to	  time	  in	  the	  system.	  	  	  
Because	  our	  current	  design	  does	  not	  capture	  the	  actual	  work	  a	  student	  does	  in	  a	  
linked	  set	  of	  materials	  and	  we	  do	  not	  have	  the	  workspace	  or	  tools	  	  embedded	  in	  the	  
system,	  limited	  information	  can	  be	  obtained	  on	  students’	  use	  of	  materials.	  	  	  Two	  
variables	  that	  will	  be	  of	  prime	  importance	  will	  be	  those	  of”	  time	  on	  task”	  (ToT)	  and	  
“opportunity	  to	  learn”	  (OTL).	  	  We	  hope	  in	  the	  future	  to	  gather	  richer	  data	  on	  student	  
activity	  either	  from	  what	  is	  done	  using	  the	  digital	  materials	  or	  adding	  more	  
opportunities	  for	  the	  capture	  of	  samples	  of	  student	  work	  or	  behavior	  from	  teacher	  
observations	  of	  classroom	  activity.	  	  Until	  these	  are	  available,connecting	  ToT	  and	  
OTL	  measures	  with	  performance	  on	  the	  diagnostic	  assessments	  may	  prove	  



insightful	  especially	  as	  concerns	  the	  navigational	  elements	  of	  the	  system.	  	  The	  
harder	  problems	  of	  providing	  expert	  advice	  to	  the	  user	  of	  what	  to	  do	  following	  
particular	  results	  on	  the	  assessments	  will	  likely	  be	  the	  most	  significant	  and	  essential	  
challenge.	  
	  
Mislevy	  et	  al,	  warn	  that	  educational	  data	  mining	  (EDM)	  would	  benefit	  from	  
considering	  how	  it	  links	  to	  the	  underlying	  cognitive	  models	  of	  the	  system	  it	  is	  
mining,	  	  as	  they	  write,	  “It	  is	  easy	  to	  amass	  rich	  and	  voluminous	  bodies	  of	  low-‐level	  
data,	  mouse	  clicks,	  cursor	  moves,	  sense-‐pad	  movements,	  and	  so	  on,	  and	  choices	  and	  
actions	  in	  simulated	  environments.	  Each	  of	  these	  bits	  of	  data,	  however,	  is	  bound	  to	  
the	  conditions	  under	  which	  it	  was	  produced,	  and	  does	  not	  by	  itself	  convey	  its	  
meaning	  in	  any	  larger	  sense.	  We	  seek	  relevance	  to	  knowledge,	  skill,	  strategy,	  
reaction	  to	  a	  situation,	  or	  some	  other	  situatively	  and	  psychologically	  relevant	  
understanding	  of	  the	  action.	  We	  want	  to	  be	  able	  to	  identify	  data	  patterns	  that	  recur	  
across	  unique	  situations,	  as	  they	  arise	  from	  patterns	  of	  thinking	  or	  acting	  that	  
students	  assemble	  to	  act	  in	  situations.	  It	  is	  this	  level	  of	  patterns	  of	  thinking	  and	  
acting	  we	  want	  to	  address	  in	  instruction	  and	  evaluation,	  and	  therefore	  want	  to	  
express	  in	  terms	  of	  student	  model	  variables.”	  	  P35-‐6	  
	  
With	  respect	  to	  the	  cognitive	  student	  model	  underlying	  the	  SUDDS	  DLS,	  our	  analytic	  
model	  would	  be	  helpful	  if	  it	  could	  inform	  us	  on	  the	  degree	  to	  which	  we	  are	  able	  to	  
achieve	  student-‐centered	  instruction.	  	  While	  the	  primary	  purpose	  of	  our	  work	  is	  to	  
see	  students	  make	  progress	  on	  learning	  the	  big	  ideas	  successfully	  as	  demonstrated	  
by	  successful	  movement	  in	  the	  learning	  trajectory	  stacks	  and	  within	  the	  RLCs,	  a	  
secondary	  purpose	  is	  for	  students	  to	  become	  self-‐regulating	  learners	  who	  are	  aware	  
of	  their	  progress	  and	  able	  to	  make	  successful	  choices	  and	  collaborations	  towards	  
learning	  and	  pursuing	  mathematics.	  	  	  
	  
With	  this	  interpretation	  of	  their	  challenge	  set	  in	  the	  context	  of	  our	  work,	  I	  hope	  to	  
have	  provided	  an	  example	  of	  future	  learning	  environments	  and	  how	  they	  can	  be	  
understood	  as	  more	  than	  a	  delineation	  of	  a	  domain	  to	  be	  learned.	  	  Such	  student-‐
centered	  models	  can	  hopefully	  be	  considered	  	  and	  discussed	  at	  the	  upcoming	  
conference.	  	  The	  iterative	  nature	  of	  the	  work	  supports	  the	  ability	  to	  get	  smarter	  as	  
the	  system	  is	  built,	  but	  like	  an	  iterative	  function,	  converging	  to	  robust	  solutions	  also	  
depends	  on	  beginning	  with	  a	  strong	  “seed”.	  	  A	  student-‐centered	  DLS	  may	  provide	  
such	  a	  seed.	  	  	  The	  question	  is:	  how	  can	  the	  empirical	  techniques	  of	  mining	  large	  
scale	  data	  provide	  insights	  into	  digital	  learning	  systems,	  and	  in	  particular,	  how	  can	  
they	  inform	  models	  of	  those	  systems	  with	  specific	  student	  models	  and	  an	  explicit	  
purpose	  of	  strengthening	  student	  –centered	  learning?	  
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Overview	  
While	  learning	  analytics	  as	  a	  field	  has	  developed	  quickly,	  it	  has	  largely	  borrowed	  
expertise	  from	  other	  disciplines	  and	  has	  failed	  to	  develop	  analytics	  products	  and	  
platforms	  specifically	  for	  the	  education	  sector.	  Toolsets	  are	  being	  developed	  
piecemeal	  and	  often	  have	  little	  interoperability	  with	  other	  tools	  or	  datasets.	  To	  
create	  a	  new	  science	  of	  learning,	  personal	  knowledge	  graphs	  and	  open	  learning	  
analytics	  platforms	  are	  required.	  This	  paper	  introduces	  these	  concepts	  and	  details	  
the	  structure	  of	  both	  and	  the	  importance	  of	  funding	  to	  support	  their	  advancement.	  
	  
Introduction	  
Learning	  analytics	  have	  to	  date	  primarily	  imported	  concepts	  from	  big	  data,	  
computer	  science,	  some	  machine	  learning,	  and	  related	  fields.	  As	  a	  result,	  many	  of	  
the	  methods	  of	  experimentation	  and	  research	  are	  not	  native	  to	  the	  learning	  space,	  
but	  rather	  applications	  from	  sociology	  (social	  network	  analysis),	  language	  studies	  
(discourse	  analysis),	  computer	  science	  (data	  mining,	  artificial	  intelligence	  and	  
machine	  learning),	  and	  statistics	  (analytic	  methods).	  While	  this	  has	  enabled	  LA	  to	  
develop	  in	  influence	  and	  impact,	  it	  has	  not	  produced	  the	  types	  of	  insight	  that	  can	  be	  
expected	  from	  a	  new	  knowledge	  domain	  that	  synthesizes	  and	  integrates	  insight	  
from	  numerous	  fields	  while	  developing	  its	  own	  methodologies.	  
	  
With	  the	  broad	  aim	  of	  redefining	  educational	  research	  –	  where	  we	  move	  from	  “dead	  
data”	  to	  “live	  data”	  –	  two	  critical	  needs	  exist:	  	  
	  

1. Development	  of	  personal	  learning	  knowledge	  graphs	  (PLKG)	  to	  capture	  
learner	  profile,	  knowledge,	  learning	  patterns,	  and	  learning	  history	  

2. Creation	  of	  an	  open	  learning	  analytics	  architecture	  to	  enable	  academics	  to	  
collaboratively	  develop	  analytics	  products	  and	  evaluate	  LA	  algorithms	  and	  
test	  claims	  made	  by	  researchers	  and	  corporate	  providers.	  	  

	  
Personal	  Learning	  Knowledge	  Graph	  
Educators	  require	  a	  better	  profile	  of	  what	  a	  learner	  knows	  than	  currently	  exists.	  The	  
previous	  experiences	  and	  knowledge	  of	  individual	  learners	  are	  inconsistently	  
acknowledged	  in	  educational	  settings.	  Courses	  focus	  on	  what	  has	  been	  determined	  
to	  be	  important	  for	  learners	  to	  know,	  rather	  than	  personalizing	  to	  what	  an	  
individual	  learner	  already	  knows.	  As	  a	  result,	  limited	  progress	  has	  been	  made	  
around	  personalized	  and	  adaptive	  learning.	  Initiatives	  such	  as	  CMU/Stanford’s	  OLI2	  
and	  several	  corporate	  providers	  have	  gained	  attention,	  but	  are	  largely	  confined	  to	  
courses	  with	  a	  clear	  right/wrong	  answers	  (such	  as	  statistics	  and	  math	  courses).	  In	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  Thanks	  to	  previous	  publications:	  Siemens,	  G.,	  Gasevic,	  D.,	  Haythornthwaite,	  C.,	  Dawson,	  S.,	  Shum,	  S.	  
B.,	  Ferguson,	  R.,	  ...	  &	  Baker,	  R.	  S.	  J.	  D.	  (2011).	  Open	  Learning	  Analytics:	  an	  integrated	  &	  modularized	  
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these	  instances,	  the	  learner’s	  knowledge	  profile	  is	  kept	  within	  an	  existing	  software	  
system	  or	  within	  a	  corporate	  platform.	  	  In	  education	  a	  Personal	  
Learning/Knowledge	  Graph	  (PLKG)	  is	  needed	  where	  a	  profile	  of	  what	  a	  learner	  
knows	  exists.	  Where	  the	  learner	  has	  come	  to	  know	  particular	  concepts	  is	  irrelevant	  
–	  work,	  volunteering,	  hobbies,	  personal	  interest,	  formal	  schooling,	  or	  MOOCs.	  What	  
matters	  is	  that	  all	  members	  involved	  in	  an	  educational	  process,	  including	  learners,	  
faculty,	  administrators,	  are	  aware	  of	  what	  a	  learner	  knows	  and	  how	  this	  is	  related	  to	  
the	  course	  content,	  concepts,	  or	  curriculum	  in	  a	  particular	  knowledge	  space.	  PLKG	  
shares	  attributes	  of	  the	  semantic	  web	  or	  Google	  Knowledge	  Graph:	  a	  connected	  
model	  of	  learner	  knowledge	  that	  can	  be	  navigated	  and	  assessed	  and	  ultimately	  
“verified”	  by	  some	  organization	  in	  order	  to	  give	  a	  degree	  or	  designation	  (see	  figure	  
1).	  
	  

	  
Figure	  1:	  Matching	  Knowledge	  Domains	  to	  Learner	  Knowledge	  
	  
As	  education	  systems	  continue	  to	  diversify,	  offering	  a	  greater	  set	  of	  educational	  
products	  and	  engaging	  with	  a	  broader	  range	  of	  students	  than	  in	  the	  past,	  the	  
transition	  to	  learner	  knowledge	  graphs,	  instead	  of	  focusing	  on	  the	  content	  within	  a	  
program,	  can	  enable	  the	  system	  to	  be	  far	  more	  intelligent	  than	  it	  currently	  is.	  For	  
example,	  in	  a	  learning	  system	  based	  on	  a	  learner	  knowledge	  graph,	  the	  career	  path	  
alone	  would	  be	  greatly	  enhanced	  –	  a	  learner	  could	  know	  where	  she	  is	  in	  relation	  to	  
a	  variety	  of	  other	  fields	  based	  on	  the	  totality	  of	  her	  learning	  i.e.	  “this	  is	  your	  
progress	  toward	  a	  range	  of	  careers”	  –	  see	  Figure	  2.	  A	  student	  returning	  to	  university	  
would	  have	  a	  range	  of	  course	  options,	  each	  personalized	  to	  her	  knowledge	  and	  
skills,	  rather	  than	  be	  pushed	  through	  a	  pre-‐established	  curriculum	  without	  regard	  
for	  existing	  knowledge.	  With	  PLKG,	  returning	  to	  university	  to	  up-‐skill	  and	  enter	  new	  
fields	  –	  an	  increasing	  requirement	  as	  entire	  fields	  of	  work	  risk	  automation	  –	  will	  
create	  a	  transition	  from	  a	  learner	  having	  a	  four-‐year	  relationship	  with	  a	  university	  
to	  one	  where	  a	  learner	  has	  a	  forty-‐year	  relationship	  with	  a	  university.	  In	  this	  model,	  



learners	  continue	  to	  learn	  in	  online	  or	  blended	  settings	  while	  employed	  and	  move	  to	  
intensive	  on-‐campus	  learning	  when	  transitioning	  to	  a	  new	  career.	  
	  

	  
Figure	  2:	  Returning	  and	  Advancing	  Degrees	  
	  
Pedagogically,	  PLKG	  affords	  new	  opportunities	  for	  individuals	  to	  take	  personal	  
control	  of	  their	  learning	  (see	  Figure	  3).	  In	  this	  model,	  a	  learner	  can	  simultaneously	  
engage	  with	  structured	  course	  content	  and	  create	  networked,	  connective,	  
knowledge	  structures3.	  This	  approach	  is	  reflective	  of	  the	  networked	  world	  of	  
learning	  and	  the	  personal	  lives	  of	  individuals	  as	  mobiles	  and	  wearable	  computing	  
develop	  as	  critical	  technologies	  for	  knowledge	  work.	  In	  addition	  to	  algorithmically	  
guided	  personalized	  learning,	  socially	  navigated	  personal	  learning	  provides	  
opportunities	  for	  serendipity	  and	  creative	  learning.	  Learning	  pathways,	  within	  
PLKG,	  are	  established	  by	  machine	  learning/algorithmic	  models	  and	  by	  personal	  
learning	  networks	  and	  social	  interactions.	  
	  
In	  order	  for	  PLKG	  to	  be	  effective,	  it	  needs	  to	  be	  developed	  as	  an	  open	  platform	  
where	  learners	  are	  able	  to	  share	  knowledge,	  personal	  profiles,	  and	  learning	  
practices	  with	  universities	  and	  corporations.	  The	  model	  is	  envisioned	  to	  be	  similar	  
to	  the	  IMS	  Learning	  Tools	  Interoperability4	  protocol	  where	  API	  access	  to	  certain	  
types	  of	  information	  are	  brokered	  in	  a	  trusted	  environment.	  Essentially,	  learners	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3	  Siemens,	  G.	  (2007)	  “Connectivism:	  Creating	  a	  Learning	  Ecology	  in	  Distributed	  Environment,”	  in	  
Didactics	  of	  Microlearning:	  Concepts,	  discourses,	  and	  examples,	  in	  T.	  Hug,	  (ed.),Waxmann	  Verlag,	  
New	  York,	  pp.	  53-‐68	  
4	  http://www.imsglobal.org/toolsinteroperability2.cfm	  	  



would	  own	  their	  PLKG	  and	  standards	  would	  be	  established	  that	  permits	  trusted	  
sharing	  with	  education	  providers.	  	  

	  
Figure	  3:	  Flexible	  and	  Variable	  learning	  Pathways	  
	  
Open	  Learning	  Analytics	  Platform	  
	  
The	  open	  learning	  analytics	  platform	  addresses	  the	  need	  for	  integrated	  toolsets	  
through	  the	  development	  of	  four	  specific	  tools	  and	  resources	  (see	  figure	  4	  for	  visual	  
representation):	  
	  

1. Learning	  analytics	  engine	  
2. Adaptive/personalization	  engine	  
3. Intervention	  engine:	  recommendations,	  automated	  support	  
4. Dashboard,	  reporting,	  and	  visualization	  tools	  

	  
Learning	  Analytics	  Engine	  
The	  analytics	  engine	  is	  the	  central	  component	  in	  the	  OLA	  system.	  The	  analytics	  
engine	  incorporates	  data	  from	  learning	  management	  systems,	  social	  web,	  and	  
physical	  world-‐data	  (such	  as	  classroom	  attendance,	  use	  of	  university	  resources,	  
GPS-‐data	  when	  completing	  activities	  such	  as	  surveying),	  mobile	  and	  wearable	  
technologies,	  and	  will	  leverage	  best	  practices	  from	  both	  the	  learning	  analytics	  and	  
educational	  data	  mining	  communities.	  This	  is	  essentially	  the	  “Apache”	  of	  learning	  
analytics	  –	  an	  open	  platform	  where	  researchers	  can	  build	  their	  products	  and	  share	  
as	  plugins	  with	  other	  researchers.	  Rather	  than	  engaging	  with	  a	  range	  of	  different	  
tools,	  each	  with	  a	  distinct	  interface,	  the	  analytics	  engine	  provides	  a	  consistent	  space	  
for	  interaction	  with	  data	  and	  various	  types	  of	  analysis.	  This	  is	  similar	  to	  libraries	  
within	  Python	  or	  as	  plugins	  in	  WordPress.	  The	  platform	  stays	  the	  same,	  but	  the	  
functionality	  is	  extended	  by	  plugins.	  This	  then	  serves	  as	  a	  framework	  for	  identifying	  



and	  then	  processing	  data	  based	  on	  various	  analysis	  modules	  (see	  Figure	  5).	  For	  
example,	  the	  analysis	  of	  a	  discussion	  forum	  in	  an	  LMS	  would	  involve	  identifying	  and	  
detailing	  the	  scope	  of	  the	  forums	  and	  then	  applying	  various	  techniques,	  such	  as	  
natural	  language	  processing,	  social	  network	  analysis,	  process	  mining	  (to	  consider	  
the	  degree	  of	  compliance	  between	  instructional	  design	  and	  the	  log	  data	  of	  learner	  
activities),	  trace	  analysis	  of	  self	  regulated	  learning,	  the	  development	  of	  prediction	  
models	  based	  on	  human	  assessment	  of	  interactions,	  identification	  of	  at-‐risk	  
students,	  or	  the	  process	  of	  concept	  development	  in	  small	  peer	  groups.	  	  
	  
As	  LA	  develops	  as	  a	  field,	  plugins	  developed	  by	  other	  researchers	  or	  software	  
vendors	  can	  be	  added	  as	  modules	  for	  additional	  analysis.	  Having	  a	  global	  research	  
community	  creating	  modules	  and	  toolsets,	  each	  compatible	  with	  the	  Analytics	  
Engine	  will	  prevent	  the	  fragmentation	  that	  makes	  research	  difficult	  in	  numerous	  
academic	  fields.	  If	  researchers	  share	  data,	  algorithms,	  and	  toolsets	  in	  a	  central	  
environment	  (Open	  Learning	  Analytics	  Platform),	  we	  expect	  to	  see	  the	  rapid	  growth	  
of	  educational	  dataming	  and	  learning	  analytics.	  This	  growth	  will	  in	  turn	  contribute	  
to	  the	  formation	  and	  development	  of	  a	  new	  science	  of	  learning	  research	  that	  
provides	  rapid	  feedback	  on	  realtime	  data	  to	  learners,	  academics,	  and	  institutions.	  	  
	  
	  

	  
Figure	  4:	  Conceptual	  Framework	  for	  Open	  Learning	  Analytics	  Platform	  



	  

	  
Figure	  5:	  OLA	  Function	  areas	  
	  
Adaptive/Personalization	  Engine	  
The	  learning	  adaptation	  and	  personalization	  will	  include	  adaptivity	  of	  the	  learning	  
process,	  instructional	  design,	  and	  learning	  content.	  For	  example	  this	  adaptation	  
engine	  could	  connect	  the	  analytics	  engine	  with	  content	  developers.	  Developers	  
could	  include	  existing	  publishers	  such	  as	  Pearson	  or	  McGraw-‐Hill	  as	  well	  as	  
institutional	  developers	  such	  as	  instructional	  designers	  and	  any	  implemented	  
curriculum	  documentation	  processes	  and	  tools.	  When	  learning	  materials	  are	  
designed	  to	  reflect	  the	  knowledge	  architecture	  of	  a	  domain,	  the	  content	  delivered	  to	  
individual	  learners	  can	  be	  customized	  and	  personalized.	  The	  personalization	  and	  
adaptation	  engine	  draws	  from	  the	  learner’s	  profile	  as	  defined	  in	  the	  learning	  
management	  system	  and	  social	  media	  sources	  (when	  permitted	  by	  the	  learner).	  
	  
Intervention	  Engine	  
The	  intervention	  engine	  will	  track	  learner	  progress	  and	  provide	  various	  automated	  
and	  educator	  interventions	  using	  prediction	  models	  developed	  in	  the	  analytics	  



engine.	  For	  example,	  a	  learner	  will	  receive	  recommendations	  for	  different	  content,	  
learning	  paths,	  tutors,	  or	  learning	  partners.	  These	  soft	  interventions	  are	  nudges	  
toward	  learner	  success	  by	  providing	  learners	  with	  resources,	  social	  connections,	  or	  
strategies	  that	  have	  been	  predictively	  modeled	  to	  assist	  others.	  Recommendations	  
have	  become	  an	  important	  part	  of	  finding	  resources	  online,	  as	  exemplified	  by	  
Amazon	  (books),	  Spotify	  (music),	  and	  Bing	  or	  Google	  (search).	  In	  education,	  
recommendations	  can	  help	  learners	  discover	  related,	  but	  important,	  learning	  
resources.	  Additionally,	  the	  intervention	  engine	  can	  assist	  learners	  by	  tracking	  
progress	  toward	  learning	  goals.	  
	  
Automated	  interventions	  also	  include	  emails	  and	  reminders	  about	  course	  work	  or	  
encouragement	  to	  log	  back	  in	  to	  the	  system	  when	  learners	  have	  been	  absent	  for	  a	  
period	  of	  time	  that	  might	  indicate	  “risky	  behavior”.	  
	  
Interventions	  will	  also	  be	  triggered	  for	  educators	  and	  tutors.	  When	  a	  learner	  has	  
been	  notified	  by	  automated	  email,	  but	  has	  failed	  to	  respond,	  the	  intervention	  engine	  
will	  escalate	  the	  situation	  by	  sending	  educators	  and	  tutors	  notices	  to	  directly	  
contact	  the	  student.	  The	  value	  of	  direct	  intervention	  by	  a	  teacher	  as	  a	  motivating	  
condition	  for	  return	  to	  learning	  tasks	  is	  well	  documented	  by	  existing	  education	  
research.	  
	  
Dashboard/Reporting	  
The	  dashboard	  is	  the	  sensemaking	  component	  of	  the	  LA	  system,	  presenting	  
visualized	  data	  to	  assist	  individuals	  in	  making	  decisions	  about	  teaching	  and	  
learning.	  The	  dashboard	  consists	  of	  four	  views:	  learner,	  educator,	  researcher,	  and	  
institutional.	  Learners	  will	  be	  able	  to	  see	  their	  progress	  against	  that	  of	  their	  peers	  
(names	  will	  be	  excluded	  where	  appropriate),	  against	  learners	  who	  have	  previously	  
taken	  the	  course,	  against	  what	  they	  themselves	  have	  done	  in	  the	  past,	  or	  against	  the	  
goals	  that	  the	  teacher	  or	  the	  learner	  herself	  has	  defined.	  Educators	  will	  be	  able	  to	  
see	  various	  representations	  of	  learner	  activity,	  including	  conceptual	  development	  of	  
individual	  learners,	  progress	  toward	  mastering	  core	  concepts	  of	  the	  course,	  and	  
social	  networks	  to	  identify	  learners	  who	  are	  not	  well	  connected	  with	  others.	  
Analytics	  for	  educators	  will,	  depending	  on	  the	  context,	  be	  generated	  real	  time	  as	  
well	  as	  hourly	  or	  daily	  snapshots.	  The	  dashboard	  will	  provide	  institution-‐level	  
analytics	  for	  senior	  administrators	  to	  track	  learner	  success	  and	  progress.	  When	  
combined	  with	  academic	  analytics,	  this	  module	  will	  be	  valuable	  for	  analyzing	  
institutional	  activities	  (business	  intelligence).	  
	  
Based	  on	  criteria	  established	  through	  research	  of	  the	  learning	  analytics	  system	  
(such	  as	  the	  impact	  of	  social	  connectivity	  on	  course	  completion,	  warning	  signals	  
such	  as	  changes	  in	  attendance	  patterns,	  predictive	  modeling),	  automated	  and	  
human	  interventions	  will	  be	  activated	  to	  provide	  early	  assistance	  to	  learners	  
demonstrating	  a)	  difficulty	  with	  course	  materials,	  b)	  strong	  competence	  and	  
needing	  more	  complex	  or	  different	  challenges,	  and	  c)	  at	  risk	  for	  drop	  out.	  
	  
Conclusion	  



All	  stakeholders	  in	  the	  education	  system	  today	  have	  access	  to	  more	  data	  than	  they	  
can	  possibly	  make	  sense	  of	  or	  manage.	  In	  spite	  of	  this	  abundance,	  however,	  learners,	  
educators,	  administrators,	  and	  policy	  makers	  are	  essentially	  driving	  blind,	  
borrowing	  heavily	  from	  techniques	  in	  other	  disciplines	  rather	  than	  creating	  
research	  models	  and	  algorithms	  native	  to	  the	  unique	  needs	  of	  education.	  New	  
technologies	  and	  methods	  are	  required	  to	  gain	  insight	  into	  the	  complex	  abundant	  
data	  encountered	  on	  a	  daily	  basis.	  This	  paper	  proposes	  the	  development	  of	  Personal	  
Learning	  Knowledge	  Graphs	  and	  an	  Open	  Learning	  Analytics	  Platform	  as	  critically	  
needed	  innovations	  to	  contribute	  to	  and	  foster	  a	  new	  culture	  of	  learning	  sciences	  
research.	  The	  proposed	  integrated	  learning	  analytics	  platform	  attempts	  to	  
circumvent	  the	  piecemeal	  process	  of	  educational	  innovation	  by	  provided	  an	  open	  
infrastructure	  for	  researchers,	  educators,	  and	  learners	  to	  develop	  new	  technologies	  
and	  methods.	  In	  today’s	  educational	  climate	  –	  greater	  accountability	  in	  a	  climate	  of	  
reduced	  funds	  –	  suggests	  new	  thinking	  and	  new	  approaches	  to	  change	  are	  required.	  
Analytics	  hold	  the	  prospect	  of	  serving	  as	  a	  sensemaking	  agent	  in	  navigating	  
uncertain	  change	  by	  offering	  leaders	  with	  insightful	  data	  and	  analysis,	  displayed	  
through	  user-‐controlled	  visualizations.	  
	  
	  



Data-Intensive Research on Immersive Simulations for Learning 

Chris Dede, Harvard University 

Multi-user virtual environments (MUVEs) and augmented realities (ARs) offer ways for students to 
experience richly situated learning experiences without leaving classrooms or traveling far from school 
(Dede, 2014). By immersing students in authentic simulations, MUVEs and AR can promote two deeper-
learning strategies, apprenticeship-based learning and learning for transfer, that are very important in 
developing cognitive, intrapersonal, and interpersonal skills for the 21st century (National Research 
Council, 2012). However, complex tasks in open-ended simulations and games cannot be adequately 
modeled using only classical test theory and item response theory (Quellmalz, Timms, & Schneider. 
2009). More appropriate measurement models for open-ended simulations and games include Bayes nets, 
artificial neural networks, and model tracing; new psychometric methods beyond these will be needed. 

Illustrative Cases 

EcoMUVE as an example of immersive authentic simulations in multi-user virtual environments 

The EcoMUVE middle grades curriculum teaches scientific concepts about ecosystems while engaging 
students in scientific inquiry (both collaborative and individual) and helping them learn complex causality 
(http://ecomuve.gse.harvard.edu). The curriculum consists of two MUVE-based modules, allowing 
students to explore realistic, 3-dimensional pond and forest ecosystems. Each module consists of ten 45-
minute lessons and includes a complex scenario in which ecological change is caused by the interplay of 
multiple factors (Metcalf et al., 2013). Students assume the role of scientists, investigating research 
questions by exploring the virtual environment and collecting and analyzing data from a variety of 
sources over time (Figures 1, 2). In the pond module, for example, students can explore the pond and the 
surrounding area, even venturing under the water; see realistic organisms in their natural habitats; and 
collect water, weather, and population data. Students visit the pond over a number of virtual "days" and 
eventually make the surprising discovery that, on a day in late summer, many fish in the pond have died. 
Students are then challenged to figure out what happened—they travel backward and forward in time to 
gather information to solve the mystery and understand the complex causality of the pond ecosystem. 

  

Figure 1. Students can collect pond and weather data  Figure 2. Summarizing and interpreting data 
The EcoMUVE curriculum uses a “jigsaw” pedagogy, in which students have access to differing 
information and experiences; they must combine their knowledge in order to understand what is causing 
the changes they see. Working in teams of four, students are given roles that embody specific areas of 
expertise (naturalist, microscopic specialist, water chemist, private investigator) and that influence how 
they participate and solve problems. Using the differing methods of their roles, students collect data, share 
it with teammates via tables and graphs that they create within the simulation, and then work 



collaboratively to analyze the combined data and figure out how a variety of inter-connected parts come 
together to produce the larger ecosystem dynamics. The module culminates with each team creating an 
evidence-based concept map—representing their understanding of the causal relationships at work in the 
ecosystem—which they present to the class. 

The types of “big data” about motivation and learning for each student that EcoMUVE can generate 
include: time-stamped logfiles of movements and interactions in the virtual world (with artifacts, 
computer-based agents, data sources, guidance systems, other students), chat-logs of utterances, and 
tables of data collected and shared. Other digital tools can provide data from concept maps that chart the 
flow of energy through the ecosystem and, for each team of students, that document their group’s 
assertions about its systemic causal relationships, with adduced supporting evidence. Using Go-Pro 
cameras, students’ collaborative behaviors outside of digital media can be documented. Combined, these 
data are “big” in their collective volume, velocity, variety, and veracity. We would like to use this data to 
provide near-real time feedback to students and teacher, which requires various forms of visualization.  

This guidance about instruction and learning could include “low hanging fruit” types of feedback 
relatively easy to implement, such as: 

Paths and heat maps. The paths that a student takes in exploring a virtual world to determine the 
contextual situation, identify anomalies, and collect data related to a hypothesis for the causes of an 
anomaly are an important predictor of the student’s understanding of scientific inquiry. In our prior River 
City curriculum (Ketelhut, Nelson, Clarke, & Dede, 2010), we used log file data to generate event paths 
(Figure 3) for both individual students and their three person teams. Students and teachers found this a 
useful source of diagnostic feedback on the relative exploratory skills—and degree of team 
collaboration—that these performances exhibited.  

Dukas (2009) extended this research by developing an avatar log visualizer (ALV), which generates a 
series of slides depicting the relative frequency events of one or more subpopulations of students, 
aggregated by user-specified location and time bins. Figure 4 displays an ALV visualization that contrasts 
the search strategies of the high-performing and low-performing students in a class, displaying the top 10 
scores on the content post-test (in green) and the lowest 10 scores (in pink).  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  

Figure 3. Event paths in RC for a three-person team       Figure 4. A heat map showing high-performing 
                                                                                                         and low-performing students in RC. 



The high performing students’ preferred locations provide an expert model usable in diagnostic feedback, 
formative about their search strategies, to students in subsequent classes. The low performing students’ 
locations may offer insights into what types of understanding they lack.  

Path analysis is a potentially powerful form of unobtrusive assessment, although choosing the best way to 
display student paths through a learning environment is a complex type of visualization not well 
understood at present (Dukas, 2009). The utility of this diagnostic approach also depends on the degree to 
which exploration in the virtual world is an important component of learning. 

Accessing an individualized guidance system. Nelson (2007) developed a version of River City 
that contained an interwoven individualized guidance system (IGS). The guidance system utilized 
personalized interaction histories collected on each student’s activities to generate real-time, customized 
support. The IGS offered reflective prompts about each student’s learning in the world, with the content 
of the messages based on in-world events and basic event histories of that individual. As an example, if a 
student were to click on the admissions chart in the River City hospital, a predefined rule stated that, if the 
student had previously visited the tenement district and talked to a resident there, then a customized 
guidance message would be shown reminding the student that they had previously visited the tenement 
district, and asking the student how many patients listed on the chart came from that part of town.  

Multilevel multiple regression analysis findings showed that use of this guidance system with our 
MUVE-based curriculum had a statistically significant, positive impact (p < .05) on student learning 
(Nelson, 2007). In addition to using the log files to personalize the guidance provided to each student, we 
conducted analyses of guidance use. We knew when and if students first chose to use the guidance 
system, which messages they viewed, where they were in the virtual world when they viewed them, and 
what actions they took subsequent to viewing a given guidance message. This potentially provides 
diagnostic information that could guide instruction in immersive simulations. 

Asking and answering questions of an agent.  Animated pedagogical agents (APAs) are 
“lifelike autonomous characters [that] co-habit learning environments with students to create rich, face-to-
face learning interactions” (Johnson, Rickel, & Lester, 2000, p. 47). Beyond engaging students and 
providing a limited form of mentoring, APAs have advantages for interwoven diagnostic assessment in 
immersive authentic simulations in two respects: First, the questions students ask of an APA are 
themselves diagnostic—typically learners will ask for information they do not know, but see as having 
value. A single question asked by a student of an APA may reveal as much about what that learner does 
and does not know than a series of answers the student provides to a teacher’s diagnostic questions. Both 
EcoMUVE and EcoMOBILE can embed APAs of various types for eliciting a query trajectory over time 
that reveals aspects of students’ understanding and motivation, as well as aiding learning and engagement 
by the APA’s responses. 

Second, APAs scattered through an immersive authentic simulation can draw out student performances in 
various ways. In EcoMUVE and EcoMOBILE, a student can meet an APA who requests the student’s 
name and role. Even a simple pattern recognition system could determine if the student made a response 
indicating self-efficacy and motivation (“ecosystems scientist” or some variant) versus a response 
indicating lack of confidence or engagement (“sixth grader” or some other out-of-character reply). As 
another example, an APA can request a student to summarize what the student has found so far, and some 
form of latent semantic analysis could scan the response for key phrases indicating understanding of 
terminology and relevant concepts. The design heuristics of this method for evoking performances are 
that (a) the interaction is consistent with the overall narrative, so not disruptive of flow, (b) the 
measurement is relatively unobtrusive, and (c) the interactions themselves deepen immersion. 

But what about more complex types of feedback based on “big data” less easily analyzed? As examples, 
teachers and researchers would benefit from analyses of aggregated data that delineated learning 
trajectories of sophisticated skills (e.g., causal reasoning) in relation to which individual students’ 
progress could be diagnostically assessed. In turn, students would benefit from multi-modal data analysis 



that could be used to alter, in real time, the context and activities of the immersive simulation to make 
salient what each student needs to understand next in their learning trajectory. Further, over a series of 
learning experiences, students’ growth in intrapersonal and interpersonal skills (e.g., engagement, self-
efficacy, tenacity, collaboration) could be assessed. These functionalities are well beyond current 
capabilities, but are aspirational within the next decade. 

EcoMOBILE as an example of augmented realities 

Designed to complement EcoMUVE, the EcoMOBILE project explores the potential of augmented reality 
(as well as the use of data collection “probeware,” such as a digital tool that measures the amount of 
dissolved oxygen in water), to support learning in environmental science education 
(http://ecomobile.gse.harvard.edu). The EcoMOBILE curriculum is a blend of the EcoMUVE learning 
experiences with the use of geo-located digital experiences that enhance students’ real-world activities 
(Kamarainen et al., 2013). As an example of a three day curriculum, during the first class period, a group 
of middle school students participated in an EcoMUVE learning quest, completing a 5–10 minute on-line 
simulation in which they learned about dissolved oxygen, turbidity, and pH. The following day, the 
students went on a field trip to a nearby pond, in order to study the relationship between biological and 
non-biological factors in the ecosystem, practice data collection and interpretation, and learn about the 
functional roles (producer, consumer, decomposer) of organisms in the life of the pond. At a number of 
spots around the pond, students’ handheld devices showed them visual representations—overlaid onto the 
real environment—of the natural processes at work in the real environment, as well as interactive media 
including relevant text, images, audio, video, 3D models, and multiple-choice and open-ended questions. 
Students also collected water measurements using Vernier probes (Figures 5, 6).  

On the next school day after the field trip, back in the classroom, students compiled all of the 
measurements of temperature, dissolved oxygen, pH, and turbidity that had been taken during the field 
trip. They looked at the range, mean, and variations in the measurements and discussed the implications 
for whether the pond was healthy for fish and other organisms. They talked about potential reasons why 
variation may have occurred, how these measurements may have been affected by environmental 
conditions, and how to explain outliers in the data. Our research shows that virtual worlds and augmented 
realities are powerful complements to enable learning partnerships for real-world, authentic tasks. 

  

Figure 5. Handheld device delivering information      Figure 6. Collecting water data on turbidity  

Parallel to EcoMUVE, EcoMOBILE devices capture and store “big data” about motivation and learning 
for each student that includes time-stamped logfiles of paths through the real world and data collected in 
that ecosystem (e.g., images, sound-files, probeware), as well as geo-located interactions with digital 
augmentations (e.g., simulations, guidance systems, assessments). Using Go-Pro cameras, students’ 
collaborative behaviors outside of digital media can be documented. Other digital tools can provide data 
from concept maps charting the flow of energy through the ecosystem and, for each team of students, 



documenting their group’s assertions about its systemic causal relationships, with adduced supporting 
evidence. As with EcoMUVE, these data combined could support rich types of feedback to students, 
teachers, and researchers. 

The Challenge 

Quellmalz, Timms, and Schneider (2009) examined issues of embedding assessments into games and 
simulations in science education. Their analysis included both tightly-structured and open-ended learning 
experiences. After studying several immersive games and simulations related to learning science, 
including River City, they noted that the complex tasks in simulations and games cannot be adequately 
modeled using only classical test theory and item response theory. This shortfall arises because these 
complex tasks have four characteristics (Williamson, Bejar, & Mislevy, 2006). First, completion of the 
task requires the student to undergo multiple, nontrivial, domain-relevant steps and/or cognitive 
processes. Second, multiple elements, or features, of each task performance are captured and considered 
in the determination of summaries of ability and/or diagnostic feedback. Third, the data vectors for each 
task have a high degree of potential variability, reflecting relatively unconstrained work product 
production. Fourth and finally, evaluation of the adequacy of task solutions requires the task features to 
be considered as an interdependent set, for which assumptions of conditional independence do not hold.  

Quellmalz et al. (2009) concluded that, given the challenges of complex tasks, more appropriate 
measurement models for simulations and games—particularly those that are open-ended—include Bayes 
nets, artificial neural networks, and model tracing. They added that new psychometric methods beyond 
these will likely be needed. Beal and Stevens (2007) used various types of probabilistic models in 
studying students’ performance in simulations of scientific problem solving. Bennett, Persky, Weiss, and 
Jenkins (2010) described both progress in applying probabilistic models and the very difficult challenges 
involved. Behrens, Frezzo, Mislevy, Kroopnick, and Wise (2007) described ways of embedding 
assessments into structured simulations; and Shute, Ventura, Bauer, and Zapata-Rivera (2009) delineated 
a framework for incorporating stealth assessments into games. 

In summary, immersive learning experiences can collect an impressive array of evidence about what a 
learner knows (and does not know), what he or she can do (and cannot do), and whether he or she knows 
when and how to apply disciplinary frames and prior knowledge to a novel problem. Immersive 
environments—because of their situated nature and because they generate log files—make it easy to elicit 
performances, to collect continuous data, and to interpret structures of evidence. In a virtual world, the 
server documents and timestamps actions by each student: movements, interactions, utterances, saved 
data, and so on. In an AR, the mobile device can save moderately detailed information about movements 
and actions, and using Go-Pro cameras to record learners’ visual perspectives and verbal utterances as 
their team interacts can provide another resource for analysis. Given the engagement, evocation, and 
evidence immersive learning provides, these media are among the most powerful and valid 
instructional/assessment experiences available—but we can realize their full potential only via new 
methods for collecting, analyzing, and communicating findings from complex types of big data. 
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