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Preface	
  

Chris	
  Dede,	
  Harvard	
  University	
  

We’ve	
  all	
  attended	
  workshops	
  where	
  all	
  the	
  right	
  people	
  were	
  in	
  the	
  room	
  to	
  have	
  really	
  interesting	
  and	
  
important	
  discussions,	
  but	
  the	
  meeting	
  was	
  disappointing	
  because	
  presentations	
  used	
  up	
  almost	
  the	
  
time	
  for	
  dialogue.	
  This	
  workshop	
  is	
  designed	
  to	
  avoid	
  this	
  problem,	
  in	
  part	
  through	
  this	
  briefing	
  book.	
  

All	
  participants	
  are	
  asked	
  to	
  read	
  these	
  think-­‐pieces	
  in	
  advance.	
  This	
  provides	
  each	
  presenter	
  with	
  the	
  
opportunity	
  to	
  get	
  their	
  ideas	
  on	
  the	
  table	
  without	
  using	
  time	
  at	
  the	
  workshop	
  to	
  do	
  that.	
  The	
  collective	
  
think-­‐pieces	
  also	
  provide	
  a	
  way	
  to	
  sketch	
  the	
  multiple	
  dimensions	
  of	
  data-­‐intensive	
  research	
  in	
  
education.	
  “Big	
  data”	
  reminds	
  me	
  of	
  the	
  fable	
  about	
  the	
  blind	
  men	
  and	
  the	
  elephant.	
  Each	
  of	
  us	
  has	
  part	
  
of	
  the	
  beast:	
  the	
  trunk,	
  an	
  ear,	
  a	
  leg.	
  At	
  the	
  workshop,	
  we’ll	
  put	
  the	
  puzzle	
  together,	
  and	
  the	
  briefing	
  
book	
  is	
  the	
  first	
  step	
  in	
  the	
  process	
  of	
  “seeing	
  the	
  elephant.”	
  

Presenters	
  have	
  been	
  asked	
  to	
  “start	
  in	
  the	
  middle,”	
  to	
  assume	
  that	
  participants	
  have	
  read	
  their	
  
thought-­‐piece	
  so	
  they	
  can	
  build	
  on	
  those	
  ideas.	
  In	
  this	
  way,	
  we	
  can	
  get	
  deeper	
  in	
  our	
  dialogues.	
  Plus,	
  
even	
  before	
  their	
  session	
  you	
  can	
  approach	
  presenters	
  to	
  discuss	
  the	
  ideas	
  in	
  their	
  think-­‐piece.	
  	
  

So,	
  please	
  read	
  these	
  in	
  advance.	
  Enjoy…	
  



	
  

	
  

Advancing	
  Data-­‐Intensive	
  Research	
  in	
  Education	
  

Waterview	
  Conference	
  Center	
  
1919	
  North	
  Lynn	
  St.	
  	
  
Arlington,	
  VA,	
  22209	
  

http://www.executiveboard.com/exbd/waterview/local-­‐area/directions/index.page	
  
	
  

Sunday,	
  May	
  31,	
  2015	
  

5:30-­‐7:00	
  	
   Opening	
  reception	
  at	
  Le	
  Meridian	
  Hotel,	
  Arlington	
  

Monday,	
  June	
  1,	
  2015	
  

7:30-­‐8:30	
   Breakfast	
  

8:30-­‐8:50	
  	
  	
   Welcome	
  from	
  Joan	
  Ferrini-­‐Mundy,	
  Assistant	
  Director,	
  Directorate	
  for	
  Education	
  and	
  
Human	
  Resources	
  (EHR)	
  	
  

8:50-­‐9:00	
   Purposes	
  and	
  Processes	
  of	
  the	
  Workshop	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Susan	
  Singer,	
  Division	
  Director,	
  Division	
  of	
  Undergraduate	
  Education	
  (EHR/DUE)	
  	
  
Chris	
  Dede,	
  Timothy	
  E.	
  Wirth	
  Professor	
  in	
  Learning	
  Technologies,	
  Harvard	
  University	
  

9:00-­‐10:00	
  	
  	
  	
  	
   NSF’s	
  Role	
  in	
  Advancing	
  Data	
  Science	
  
Susan	
  Singer	
  (DUE);	
  Taylor	
  Martin,	
  Program	
  Officer,	
  Division	
  of	
  Research	
  on	
  Learning	
  
(EHR/DRL);	
  Gül	
  Kremer,	
  Program	
  Officer,	
  Division	
  of	
  Undergraduate	
  Education	
  
(EHR/DUE);	
  Elizabeth	
  Burrows,	
  NSF	
  AAAS	
  Fellow,	
  Division	
  of	
  Mathematical	
  Sciences	
  
(MPS/DMS)	
  

10:00-­‐10:15	
   Break	
  

10:15-­‐11:15	
   Predictive	
  Models	
  based	
  on	
  Behavioral	
  Patterns	
  in	
  Higher	
  Education	
  	
  
Ellen	
  Wagner	
  (PAR	
  Framework);	
  David	
  Yaskin	
  (Hobsons)	
  
Chair:	
  Chris	
  Dede,	
  Harvard	
  

11:15-­‐12:30	
   Dialogue	
  on	
  Privacy,	
  Security,	
  and	
  Ethics	
  
Elizabeth	
  Buchanan	
  (U.W.	
  Stout);	
  Ari	
  Gesher	
  (Palantir);	
  Patricia	
  Hammer	
  (PK	
  Legal);	
  Una	
  
May	
  O’Reilly	
  (MIT)	
  
Chair:	
  Anthony	
  E.	
  Kelly	
  (Office	
  of	
  the	
  Assistant	
  Director,	
  EHR/OAD)	
  

12:30-­‐1:30	
   Working	
  Lunch	
  	
  
(“birds	
  of	
  a	
  feather”	
  groups	
  to	
  discuss	
  analytics,	
  infrastructure,	
  data	
  sharing,	
  data	
  
standards/interoperability,	
  privacy/security/ethics,	
  producer/consumer	
  relationships,	
  
building	
  human	
  capacity,	
  visualization…)	
  

	
   	
  



	
  

	
  

1:30-­‐2:45	
  	
   Integrating	
  Data	
  Repositories	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Ken	
  Koedinger	
  (LearnLab	
  Datashop);	
  Rick	
  Gilmore	
  (Databrary);	
  Edith	
  Gummer	
  (Kauffman	
  
Foundation)	
  
Chair:	
  Gül	
  Kremer,	
  Program	
  Officer	
  DUE	
  

2:45-­‐3:00	
   Break	
  

3:00-­‐4:15	
  	
   MOOCs	
  
Diana	
  Oblinger	
  (EDUCAUSE);	
  Piotr	
  Mitros	
  (edX);	
  Andrew	
  Ho	
  (Harvard)	
  
Chair:	
  John	
  Cherniavsky,	
  Senior	
  Advisor,	
  EHR	
  
	
  

4:15-­‐5:15	
   Plenary	
  Discussion	
  –	
  Synthesis	
  of	
  the	
  Day	
  

Dinner	
  on	
  your	
  own	
  –	
  please	
  form	
  groups	
  around	
  topics	
  of	
  interest	
  

Tuesday,	
  June	
  2,	
  2015	
  

7:30-­‐8:30	
   Breakfast	
  

8:30-­‐8:45	
   Summary	
  of	
  yesterday;	
  framing	
  of	
  today	
  

	
   	
   Susan	
  Singer	
  and	
  Chris	
  Dede	
  	
  

8:45-­‐10:00	
  	
   Games	
  and	
  simulations	
  for	
  training,	
  informal	
  post-­‐secondary	
  learning	
  
Matthew	
  Berland	
  (UW);	
  Eric	
  Klopfer	
  (MIT);	
  Valerie	
  Shute	
  (Florida	
  State)	
  
Chair:	
  Dexter	
  Fletcher	
  (IDA)	
  

10:00-­‐10:15	
  	
   Break	
  

10:30-­‐12:00	
   Breakout	
  Groups	
  

a. New	
  forms	
  of	
  teaching	
  and	
  learning	
  based	
  on	
  data-­‐rich	
  environments,	
  visualization,	
  
and	
  analytics	
  
Moderator:	
  Susan	
  Singer	
  

b. Infrastructure	
  
Moderator:	
  Taylor	
  Martin	
  

c. Producer/consumer	
  relationships	
  and	
  partnerships	
  
Moderator:	
  Chris	
  Dede	
  

d. Building	
  human	
  capacity	
  
Moderators:	
  Earnestine	
  Easter,	
  Program	
  Officer,	
  Division	
  of	
  Graduate	
  Education	
  
(EHR/DGE)	
  and	
  Michelle	
  Dunn,	
  Senior	
  Advisor	
  for	
  Data	
  Science	
  Training,	
  Diversity,	
  
and	
  Outreach	
  (NIH)	
  

12:00-­‐1:00	
  	
   Working	
  Lunch	
  –	
  Sharing	
  insights	
  from	
  Breakouts	
  



	
  

	
  

1:00-­‐2:15	
   The	
  Way	
  Forward:	
  Integrating	
  Insights	
  	
  
Vijay	
  Kumar	
  (MIT);	
  Jere	
  Confrey	
  (NCSU);	
  George	
  Siemens	
  (UT-­‐Arlington)	
  	
  
Chair:	
  Chris	
  Dede	
  

	
  
2:15-­‐2:30	
   Funding	
  Opportunities	
  

	
  
2:30-­‐3:00	
   Plenary	
  Discussion:	
  Closing	
  Thoughts	
  and	
  Next	
  Steps	
  

Susan	
  Singer	
  and	
  Chris	
  Dede	
  



How	
  Big	
  is	
  “Big	
  Data”	
  Across	
  Disciplines:	
  A	
  Preliminary	
  Analysis	
  of	
  Workshop	
  Presentations	
  on	
  Model	
  
Projects	
  Funded	
  by	
  Five	
  NSF	
  Directorates	
  

Elizabeth	
  H.	
  Burrows1	
  

1. AAAS	
  S&T	
  Policy	
  Fellow,	
  Big	
  Data	
  track,	
  placed	
  at	
  National	
  Science	
  Foundation,	
  Division	
  of	
  Mathematical	
  
Sciences	
  	
  	
  

Abstract	
  

The	
  increase	
  in	
  capacity	
  of	
  and	
  cost	
  reduction	
  in	
  computing	
  technologies	
  has	
  enabled	
  unprecedented	
  
efficiencies	
  in	
  scientific	
  discovery	
  through	
  curation,	
  analyses	
  and	
  interpretation	
  of	
  massive	
  datasets.	
  
However,	
  it	
  is	
  observed	
  that	
  the	
  uptake	
  level	
  and	
  concentration	
  on	
  “Big	
  Data”	
  opportunities	
  for	
  
scientific	
  purposes	
  are	
  varied	
  across	
  disciplines.	
  We	
  assert	
  that	
  this	
  variation	
  is	
  caused	
  by	
  the	
  nature	
  of	
  
the	
  data	
  needed	
  within	
  disciplinary	
  communities,	
  and	
  can	
  be	
  characterized	
  using	
  the	
  Velocity-­‐Variety-­‐
Veracity-­‐Volume	
  typology.	
  Using	
  National	
  Science	
  Foundation	
  sponsored	
  exemplary	
  projects	
  from	
  
geological,	
  engineering,	
  biological,	
  computational,	
  and	
  atmospheric	
  sciences,	
  we	
  plan	
  to	
  analyze	
  data	
  
characteristics	
  within	
  these	
  projects	
  and	
  compile	
  salient	
  lessons	
  learned	
  to	
  inform	
  the	
  scientific	
  
community	
  at	
  large,	
  with	
  specific	
  attention	
  to	
  education	
  research.	
  	
  Presented	
  within	
  is	
  an	
  example	
  
analysis	
  from	
  a	
  project	
  in	
  Biology,	
  the	
  National	
  Plant	
  Genome	
  Initiative	
  (NPGI).	
  

Introduction	
  

In	
  January	
  2015,	
  the	
  first	
  workshop	
  in	
  this	
  series	
  was	
  held,	
  titled,	
  “Towards	
  Big	
  Steps	
  Enabled	
  by	
  Big	
  
Data	
  Science”,	
  and	
  its	
  focus	
  was	
  on	
  case	
  studies	
  of	
  effective	
  partnerships	
  outside	
  of	
  education	
  between	
  
big	
  data	
  producers	
  and	
  consumers.	
  	
  The	
  agenda,	
  presentations,	
  and	
  rationale	
  for	
  the	
  connection	
  
between	
  the	
  first	
  workshop	
  and	
  the	
  current	
  one	
  described	
  in	
  this	
  briefing	
  book,	
  are	
  available	
  online	
  at	
  
http://cra.org/events/big-­‐data-­‐initiative.	
  	
  Prior	
  to	
  delving	
  into	
  the	
  content	
  of	
  the	
  second	
  workshop,	
  
focused	
  on	
  education,	
  it	
  is	
  worthwhile	
  to	
  conduct	
  a	
  comparative	
  analysis	
  of	
  the	
  status	
  of	
  “Big	
  Data”	
  in	
  
the	
  projects	
  presented	
  in	
  the	
  first	
  workshop.	
  	
  	
  
	
  
Although	
  writing	
  and	
  talking	
  about	
  big	
  data	
  is	
  popular,	
  interdisciplinary	
  discussions	
  on	
  this	
  subject	
  are	
  
challenging.	
  One	
  of	
  the	
  reasons	
  for	
  this	
  might	
  be	
  that	
  our	
  mental	
  model	
  on	
  the	
  meaning	
  of	
  “big”	
  data	
  is	
  
informed	
  by	
  our	
  disciplinary	
  boundaries.	
  In	
  other	
  words,	
  the	
  volume	
  of	
  data	
  in	
  one	
  discipline	
  may	
  be	
  the	
  
defining	
  factor	
  that	
  deems	
  it	
  “big”	
  data,	
  while	
  the	
  complexity	
  of	
  dealing	
  with	
  “big”	
  data	
  may	
  not	
  be	
  as	
  
fruitful	
  or	
  important	
  compared	
  to	
  other	
  disciplines.	
  Attesting	
  to	
  this,	
  in	
  their	
  survey	
  of	
  the	
  definitions	
  of	
  
Big	
  Data,	
  Stuart	
  and	
  Barker	
  (2013)	
  indicated	
  that	
  the	
  literature	
  using	
  the	
  term	
  Big	
  Data	
  came	
  from	
  many	
  
disciplines,	
  and	
  yielded	
  “multiple,	
  ambiguous	
  and	
  often	
  contradictory	
  definitions.”	
  (pg.	
  1).	
  They	
  then	
  
compiled	
  definitions,	
  ranging	
  from	
  more	
  abstract	
  in	
  nature	
  to	
  the	
  ones	
  utilizing	
  facets	
  that	
  induce	
  
complexity	
  in	
  handling	
  and	
  analyzing	
  data.	
  These	
  definitions	
  included	
  industry’s	
  (e.g.,	
  Microsoft,	
  Intel,	
  
Oracle)	
  input	
  as	
  well	
  as	
  other	
  organizations’,	
  such	
  as	
  National	
  Institute	
  of	
  Standards	
  and	
  Technology	
  
(NIST).	
  	
  
	
  
Stuart	
  and	
  Barker’s	
  (2013)	
  review	
  of	
  big	
  data	
  definitions	
  converged	
  on	
  the	
  criticality	
  of	
  the	
  following:	
  a)	
  
Size:	
  the	
  volume	
  of	
  the	
  datasets;	
  b)	
  Complexity:	
  the	
  structure,	
  behavior	
  and	
  permutations	
  of	
  the	
  
datasets;	
  and	
  c)	
  Technologies:	
  the	
  tools	
  and	
  techniques	
  that	
  are	
  used	
  to	
  process	
  high	
  volume	
  and	
  
complex	
  datasets.	
  Indeed,	
  these	
  critical	
  factors	
  are	
  reflected	
  in	
  one	
  of	
  the	
  most	
  recent	
  definitions	
  put	
  



forth	
  by	
  NIST’s	
  Big	
  Data	
  Public	
  Working	
  Group	
  (2015,	
  pg.	
  5):	
  “Big	
  Data	
  consists	
  of	
  extensive	
  datasets	
  
primarily	
  in	
  the	
  characteristics	
  of	
  volume,	
  variety,	
  velocity,	
  and/or	
  variability	
  that	
  require	
  a	
  scalable	
  
architecture	
  for	
  efficient	
  storage,	
  manipulation,	
  and	
  analysis.”	
  The	
  volume,	
  velocity	
  and	
  variety	
  factors	
  
are	
  similar	
  to	
  those	
  presented	
  as	
  early	
  as	
  in	
  2001	
  within	
  the	
  Gartner	
  Report,	
  where	
  complexities	
  due	
  to	
  
(1)	
  the	
  increasing	
  size	
  of	
  data	
  (volume),	
  (2)	
  the	
  increasing	
  rate	
  at	
  which	
  it	
  is	
  produced	
  (velocity),	
  and	
  (3)	
  
its	
  increasing	
  range	
  of	
  formats	
  and	
  representations	
  (variety).	
  	
  Veracity	
  is	
  added	
  to	
  the	
  factors	
  describing	
  
complexities	
  of	
  big	
  data,	
  encompassing	
  widely	
  differing	
  qualities	
  of	
  data	
  sources,	
  with	
  significant	
  
differences	
  in	
  the	
  coverage,	
  accuracy	
  and	
  timeliness	
  of	
  data	
  (Dong	
  and	
  Srivasta,	
  2013).	
  
	
  
We	
  opine	
  that	
  a	
  preliminary	
  analysis	
  of	
  sample	
  big	
  data	
  implementations	
  across	
  disciplinary	
  boundaries	
  
using	
  the	
  Velocity-­‐Variety-­‐Veracity-­‐Volume	
  typology	
  will	
  support	
  the	
  discussions	
  on	
  interdisciplinary	
  
research	
  and	
  development	
  in	
  this	
  domain,	
  and	
  cross-­‐fertilize	
  further	
  development	
  with	
  the	
  benefit	
  of	
  
lessons	
  learned	
  informing	
  all	
  disciplines.	
  With	
  this	
  intent,	
  below	
  we	
  first	
  describe	
  the	
  methodology	
  we	
  
have	
  adopted	
  for	
  the	
  preliminary	
  analysis,	
  and	
  then	
  present	
  the	
  results.	
  Salient	
  lessons	
  learned	
  from	
  
various	
  disciplines	
  are	
  also	
  summarized	
  to	
  further	
  inform	
  all	
  disciplines,	
  including	
  education.	
  

Methodology	
  

Our	
  goal	
  is	
  to	
  conduct	
  a	
  preliminary	
  analysis,	
  using	
  the	
  Velocity-­‐Variety-­‐Veracity-­‐Volume	
  typology,	
  to	
  
understand	
  the	
  current	
  levels	
  of	
  exposure	
  and	
  needs	
  in	
  data	
  storage,	
  manipulation	
  and	
  analysis	
  in	
  
representative	
  case	
  studies	
  from	
  various	
  disciplines,	
  in	
  order	
  to	
  uncover	
  potentials	
  for	
  sharing	
  lessons	
  
learned.	
  	
  In	
  order	
  to	
  choose	
  model	
  case	
  studies,	
  NSF	
  program	
  officers	
  from	
  different	
  directorates	
  were	
  
contacted	
  to	
  identify	
  exemplary	
  big	
  data	
  projects.	
  Nominees	
  were	
  then	
  contacted	
  to	
  attend	
  a	
  workshop	
  
where	
  they	
  introduced	
  their	
  projects	
  discussing	
  challenges	
  and	
  opportunities.	
  Data	
  for	
  our	
  analysis	
  is	
  
comprised	
  of	
  the	
  presentations	
  by	
  these	
  speakers	
  (project	
  principle	
  investigators),	
  supplemented	
  by	
  the	
  
notes	
  taken	
  during	
  the	
  presentation	
  and	
  Q&A	
  sessions	
  and	
  related	
  literature.	
  The	
  remaining	
  steps	
  of	
  the	
  
analysis	
  methodology	
  can	
  be	
  summarized	
  as	
  follows.	
  

1. Mine	
  PowerPoints,	
  notes,	
  and	
  related	
  publications	
  from	
  the	
  workshop	
  and	
  fill	
  out	
  a	
  table	
  
with	
  each	
  speaker	
  in	
  the	
  rows	
  and	
  the	
  4	
  Vs	
  in	
  the	
  columns	
  

2. Cross-­‐validate	
  classifications	
  
3. Ask	
  speakers	
  for	
  corroboration	
  	
  
4. Seek	
  additional	
  literature	
  to	
  support/	
  reject	
  conclusions	
  
5. Conduct	
  a	
  broader	
  literature	
  review	
  of	
  the	
  current	
  status	
  and	
  evolution	
  (including	
  profile	
  

and	
  trajectory)	
  of	
  data-­‐intensive	
  research	
  in	
  each	
  discipline	
  	
  
	
  

Results	
  and	
  Discussion	
  

Preliminary	
  assessments	
  of	
  the	
  case	
  studies	
  are	
  presented,	
  followed	
  by	
  a	
  deeper	
  examination	
  of	
  a	
  case	
  
study	
  in	
  biology.	
  	
  Further	
  quantitative	
  detail	
  and	
  a	
  thorough	
  literature	
  review	
  will	
  be	
  conducted	
  for	
  each	
  
project	
  presented	
  at	
  the	
  workshop.	
  

High-­‐level	
  Reflections	
  	
  

The	
  structure	
  of	
  the	
  first	
  workshop	
  proved	
  very	
  productive	
  in	
  revealing	
  the	
  differential	
  nature	
  of	
  data-­‐
intensive	
  research	
  challenges.	
  



	
  
The	
  first	
  of	
  the	
  two	
  earth	
  science	
  presentations	
  focused	
  on	
  Big	
  Data	
  in	
  open	
  topography,	
  which	
  is	
  a	
  
mature	
  area	
  in	
  which	
  data	
  is	
  easily	
  and	
  unobtrusively	
  obtained	
  via	
  LIDAR	
  (light	
  detection	
  and	
  ranging)	
  
measurements	
  from	
  laser	
  sensors.	
  A	
  large	
  user	
  community	
  draws	
  on	
  this	
  data,	
  which	
  is	
  collected,	
  
transformed,	
  optimized,	
  and	
  organized	
  in	
  a	
  central	
  repository.	
  The	
  development	
  of	
  tools	
  for	
  analyzing	
  
this	
  data	
  is	
  an	
  important	
  part	
  of	
  the	
  cyberinfrastructure.	
  Exponential	
  growth	
  in	
  data	
  and	
  rapidly	
  evolving	
  
scientific	
  findings	
  are	
  emerging	
  challenges	
  in	
  this	
  field,	
  but	
  at	
  present	
  there	
  are	
  no	
  major	
  issues.	
  Models	
  
from	
  this	
  type	
  of	
  data-­‐intensive	
  research	
  may	
  be	
  of	
  value	
  for	
  comparable	
  types	
  of	
  big	
  data	
  in	
  education,	
  
such	
  as	
  student	
  behavior	
  data	
  in	
  higher	
  education	
  and	
  the	
  growing	
  use	
  of	
  predictive	
  model	
  to	
  derive	
  
insights	
  from	
  this	
  for	
  issues	
  such	
  as	
  student	
  retention.	
  Another	
  parallel	
  in	
  education	
  is	
  multi-­‐modal	
  data	
  
about	
  student	
  learning	
  behaviors	
  such	
  as	
  that	
  available	
  from	
  sensors,	
  video	
  gesture	
  recognition,	
  and	
  
logfiles.	
  
	
  
Also	
  in	
  the	
  earth	
  sciences,	
  but	
  facing	
  much	
  more	
  immediate	
  challenges	
  is	
  Big	
  Data	
  in	
  climate	
  modeling.	
  
The	
  amount	
  of	
  data	
  now	
  available	
  is	
  pushing	
  both	
  computational	
  and	
  storage	
  capability	
  to	
  its	
  limits,	
  and	
  
the	
  important	
  next	
  step	
  of	
  improving	
  the	
  fidelity	
  of	
  climate	
  models	
  will	
  necessitate	
  a	
  million-­‐fold	
  
increase	
  in	
  computing	
  capability,	
  with	
  comparable	
  impacts	
  on	
  data	
  storage,	
  transfer,	
  and	
  other	
  parts	
  of	
  
cyberinfrastructure.	
  Models	
  from	
  this	
  type	
  of	
  data-­‐intensive	
  research	
  may	
  be	
  of	
  value	
  for	
  comparable	
  
types	
  of	
  big	
  data	
  in	
  education,	
  such	
  as	
  the	
  massive	
  amounts	
  of	
  learning	
  data	
  that	
  could	
  be	
  collected	
  
outside	
  of	
  formal	
  educational	
  settings	
  via	
  games,	
  social	
  media,	
  and	
  informal	
  learning	
  activities	
  such	
  as	
  
makerspaces.	
  
	
  
In	
  biology,	
  data-­‐intensive	
  research	
  in	
  plant	
  genomics	
  required	
  a	
  multi-­‐decade	
  series	
  of	
  five	
  year	
  plans,	
  
developed	
  and	
  actualized	
  across	
  the	
  entire	
  scholarly	
  community	
  in	
  this	
  field.	
  These	
  coordinated	
  
activities	
  focused	
  on	
  translating	
  basic	
  knowledge	
  into	
  a	
  comprehensive	
  understanding	
  of	
  plant	
  
performance,	
  studying	
  the	
  effects	
  of	
  local	
  climate	
  variations,	
  and	
  accelerating	
  the	
  field’s	
  processes	
  of	
  
discovery.	
  The	
  evolution	
  of	
  systems	
  and	
  data	
  interoperability	
  and	
  standards	
  was	
  crucial	
  to	
  success,	
  and	
  
substantial	
  cyberinfrastructure	
  challenges	
  remain	
  in	
  data	
  aggregation,	
  computational	
  power,	
  and	
  
analytic	
  methods.	
  Models	
  from	
  this	
  type	
  of	
  data-­‐intensive	
  research	
  may	
  be	
  of	
  value	
  for	
  comparable	
  
types	
  of	
  big	
  data	
  in	
  education,	
  such	
  as	
  the	
  massive	
  amounts	
  of	
  learning	
  data	
  that	
  could	
  be	
  collected	
  
from	
  MOOCs,	
  intelligent	
  tutoring	
  systems,	
  and	
  digital	
  teaching	
  platforms.	
  
	
  
In	
  health	
  informatics,	
  data-­‐intensive	
  research	
  requires	
  collecting	
  and	
  integrating	
  data	
  from	
  a	
  wide	
  
variety	
  of	
  sources,	
  posing	
  considerable	
  challenges	
  of	
  interoperability	
  and	
  standardization.	
  Further,	
  
unlike	
  the	
  types	
  of	
  scientific	
  data	
  discussed	
  thus	
  far,	
  issues	
  of	
  privacy	
  and	
  security	
  are	
  paramount	
  in	
  
medicine	
  and	
  wellness,	
  greatly	
  complicating	
  the	
  processes	
  of	
  collection,	
  storage,	
  and	
  analysis.	
  Models	
  
from	
  this	
  type	
  of	
  data-­‐intensive	
  research	
  may	
  be	
  of	
  value	
  for	
  comparable	
  challenges	
  of	
  big	
  data	
  in	
  
education,	
  such	
  the	
  development	
  and	
  management	
  of	
  repositories	
  containing	
  all	
  the	
  types	
  of	
  behavioral	
  
and	
  learning	
  data	
  discussed	
  above.	
  
	
  
Both	
  engineering	
  and	
  astronomy	
  confront	
  challenges	
  of	
  needing	
  more	
  human	
  capacity	
  in	
  data	
  sciences	
  
to	
  cope	
  with	
  the	
  amount	
  of	
  data	
  being	
  collected	
  and	
  stored.	
  In	
  engineering,	
  the	
  development	
  for	
  
centers	
  that	
  specialize	
  in	
  access	
  to	
  big	
  data,	
  the	
  creation	
  of	
  specialized	
  analytical	
  tools,	
  and	
  the	
  use	
  of	
  
visualization	
  are	
  aiding	
  with	
  many	
  of	
  these	
  problems.	
  In	
  astronomy,	
  the	
  recruitment,	
  training,	
  and	
  usage	
  
of	
  citizen	
  scientists	
  to	
  aid	
  in	
  data	
  analysis	
  is	
  essential	
  to	
  advancing	
  the	
  field,	
  given	
  the	
  enormous	
  and	
  
growing	
  amounts	
  of	
  data	
  being	
  collected.	
  Models	
  from	
  these	
  types	
  of	
  data-­‐intensive	
  research	
  may	
  be	
  of	
  
value	
  for	
  comparable	
  challenges	
  of	
  big	
  data	
  in	
  education,	
  such	
  the	
  involvement	
  of	
  educational	
  scholars,	
  



practitioners,	
  and	
  policymakers	
  in	
  understanding	
  and	
  utilizing	
  findings	
  from	
  the	
  data	
  repositories	
  
discussed	
  above.	
  
	
  
Developing	
  new	
  types	
  of	
  analytic	
  methods	
  tailored	
  to	
  the	
  unique	
  characteristics	
  of	
  big	
  data	
  is	
  an	
  
important,	
  cross-­‐cutting	
  issue	
  across	
  all	
  fields	
  of	
  research.	
  In	
  the	
  sciences	
  and	
  engineering,	
  new	
  
approaches	
  to	
  statistical	
  inference	
  are	
  developing,	
  and	
  machine	
  learning	
  is	
  making	
  advances	
  on	
  handling	
  
types	
  of	
  information	
  outside	
  the	
  kinds	
  of	
  quantitative	
  data	
  for	
  which	
  statistical	
  methods	
  are	
  
appropriate.	
  Advances	
  in	
  these	
  and	
  other	
  types	
  of	
  analytics	
  may	
  be	
  of	
  value	
  for	
  comparable	
  challenges	
  
of	
  big	
  data	
  in	
  education.	
  
	
  
Overall,	
  these	
  insights	
  from	
  the	
  first	
  workshop	
  illustrate	
  emphases,	
  issues,	
  and	
  structures	
  for	
  the	
  
subsequent	
  workshop	
  on	
  data-­‐intensive	
  research	
  in	
  education.	
  
	
  
Biological	
  Sciences	
  Case	
  Study	
  

Research	
  Challenges	
  and	
  Resource	
  Needs	
  in	
  Cyberinfrastructure	
  &	
  Bioinformatics:	
  BIG	
  DATA	
  in	
  Plant	
  
Genomics,	
  Diane	
  Okamuro	
  

Current	
  Big	
  Data	
  Boundary.	
  	
  While	
  the	
  National	
  Plant	
  Genome	
  Initiative	
  (NPGI)	
  is	
  advancing	
  capabilities	
  
in	
  Big	
  Data	
  science	
  with	
  relation	
  to	
  all	
  four	
  V’s,	
  variability	
  is	
  perhaps	
  their	
  greatest	
  challenge.	
  	
  
Particularly	
  with	
  their	
  current	
  five-­‐year	
  objectives	
  of	
  increasing	
  open-­‐source	
  resources	
  that	
  span	
  the	
  
data	
  to	
  knowledge	
  to	
  action	
  continuum,	
  their	
  goal	
  is	
  to	
  enable	
  translation	
  of	
  all	
  types	
  of	
  plant	
  data	
  
ranging	
  from	
  genomic	
  and	
  proteomic	
  to	
  phenotypic	
  data.	
  	
  NPGI	
  has	
  over	
  16	
  partners	
  in	
  providing	
  open	
  
access	
  resources,	
  including	
  NSF’s	
  iPlant	
  Collaborative,	
  which	
  in	
  itself	
  houses	
  bioinformatics	
  databases,	
  
high	
  performance	
  computing	
  platforms,	
  and	
  image	
  storage	
  and	
  analysis	
  capabilities,	
  and	
  has	
  a	
  data	
  
storage	
  capacity	
  of	
  427	
  TB.	
  	
  In	
  addition,	
  iPlant	
  alone	
  provides	
  new	
  registrations	
  at	
  a	
  velocity	
  of	
  almost	
  
500	
  per	
  month.	
  	
  Data	
  created	
  through	
  NPGI	
  comes	
  from	
  industry,	
  academia,	
  government,	
  and	
  NGOs,	
  
and	
  comes	
  in	
  many	
  different	
  forms	
  at	
  different,	
  but	
  ever-­‐increasing	
  velocities.	
  

	
  
Lessons	
  Learned.	
  	
  Stressing	
  the	
  importance	
  of	
  standards	
  and	
  ontologies	
  from	
  the	
  beginning	
  is	
  critical.	
  	
  
Even	
  though	
  it	
  is	
  tedious	
  and	
  takes	
  time	
  away	
  from	
  making	
  immediate	
  “progress”,	
  funding	
  agencies	
  and	
  
reviewers	
  should	
  understand	
  that	
  the	
  long-­‐term	
  benefit	
  is	
  enormous.	
  	
  In	
  addition,	
  it	
  is	
  highly	
  beneficial	
  
when	
  companies	
  have	
  incentive	
  to	
  make	
  their	
  data	
  available	
  and	
  collaborate	
  with	
  academics.	
  	
  In	
  
genomics,	
  this	
  incentive	
  came	
  about	
  when	
  patent	
  laws	
  changed	
  so	
  that	
  proof	
  of	
  gene	
  function,	
  and	
  not	
  
simply	
  gene	
  sequence,	
  is	
  required	
  for	
  patents,	
  which	
  requires	
  a	
  much	
  larger,	
  often	
  collaborative	
  effort.	
  

Echoing	
  the	
  importance	
  of	
  data-­‐intensive	
  work	
  in	
  this	
  field,	
  Howe	
  et	
  al.	
  (2008)	
  direct	
  attention	
  to	
  the	
  
need	
  for	
  structure,	
  recognition	
  and	
  support	
  for	
  biocuration	
  —	
  “the	
  activity	
  of	
  organizing,	
  representing	
  
and	
  making	
  biological	
  information	
  accessible	
  to	
  both	
  humans	
  and	
  computers”	
  —	
  Further,	
  they	
  urge	
  
scientific	
  community	
  to	
  (1)	
  facilitate	
  the	
  exchange	
  of	
  journal	
  publications	
  and	
  the	
  databases,	
  (2)	
  develop	
  
a	
  recognition	
  structure	
  for	
  community-­‐based	
  curation	
  efforts,	
  and	
  (3)	
  increase	
  the	
  visibility	
  and	
  support	
  
of	
  scientific	
  curation	
  as	
  a	
  professional	
  career.	
  The	
  importance	
  of	
  biocuration	
  is	
  evident	
  in	
  the	
  urgency	
  
and	
  complexity	
  in	
  researchers’	
  need	
  to	
  locate,	
  access	
  and	
  integrate	
  data.	
  Howe	
  et	
  al.	
  (2008)	
  provide	
  
examples	
  of	
  such	
  complexities.	
  For	
  example,	
  papers	
  often	
  report	
  newly	
  cloned	
  genes	
  without	
  providing	
  
GenBank	
  IDs,	
  the	
  human	
  gene	
  CDKN2A	
  has	
  ten	
  literature-­‐based	
  synonyms,	
  etc.	
  Indeed,	
  efforts	
  in	
  



interoperability	
  and	
  standards-­‐based	
  curation	
  exemplified	
  in	
  the	
  NSF	
  investments	
  in	
  this	
  field	
  could	
  be	
  
modeled	
  by	
  others.	
  
	
  

Conclusion	
  

Once	
  all	
  of	
  the	
  presentations	
  from	
  the	
  first	
  workshop	
  are	
  analyzed,	
  conclusions	
  will	
  summarize	
  salient	
  
common	
  and	
  uncommon	
  lessons	
  learned	
  across	
  disciplines.	
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Strategies for Scaling Student Success: 
The PAR (Predictive Analytics Reporting) Framework 

	
  
Ellen	
  Wagner	
  

PAR	
  Framework	
  	
  
	
  

	
  
Metrics currently used to describe and compare the performance of higher 
education institutions in the United States do not reflect the post-traditional 
students, instructional methods, business models, and data resources that 
distinguish contemporary higher education.  This paper describes the 
evolution of a massive data research project using predictive analytics to 
gain a multi-institutional perspective on patterns of student loss and 
momentum for all types of students in the US post-secondary system.  This 
project, named the Predictive Analytics Reporting Framework, and known 
as PAR, is now informing the development of institutionally specific 
predictive models and national outcomes benchmarks for the 
postsecondary community, providing insight into the performance of for-
profit and alternative delivery models, including online learning. PAR has 
also started to identify potential improvements to federal data collections, 
statutory disclosure and reporting requirements, especially with regards to 
transfer students and adult learners. Perhaps of greatest potential value is 
PAR’s current work on intervention measurement. 
. 
PAR began as big audacious idea, when members of the Western Interstate 
Commission for Higher Education’s Cooperative for Educational 
Technology (WCET) proposed using predictive analytics to address the 
ongoing problem of student loss in US post-secondary education. PAR 
originally intended to pay attention to improving the retention and 
completion rates of online students. Despite much investment and myriad 
solutions for improving student success, postsecondary education 
completion rates have generally remained unchanged for the past forty 
years. Of all students who enroll in postsecondary education, less than half 
(46.1 percent) complete a degree within 150 percent of "normal time" to 
degree. (Knapp, Kelly-Reid and Ginder, 2012)1. While online learning offers 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 1 Knapp, L.G.; Kelly-Reid, J.E. and Ginder, S.A. (2012), "Enrollment in Postsecondary Institutions, 
Fall 2010; Financial Statistics, Fiscal Year 2010; and "Graduation Rates, Selected Cohorts, 2002–
2007," NCES 2012-280 (Washington, D.C.: National Center for Education Statistics, 2012); U.S. 
Department of Education, National Center for Education Statistics, Integrated Postsecondary 
Education Data System (IPEDS), Spring 2009, Graduation Rates component (Table 33) 



a legitimate path for pursuing a college education and provides students 
with a convenient alternative to face-to-face instruction, it, too, is laden 
with retention-related concerns,2 with even lower rates of completion and 
retention than in their on-the-ground counterpart courses and programs. 
 
As described by Ice et al (2012)3, PAR commenced by working with six 
forward-thinking post-secondary institutional partners who contributed 
student and course data into one dataset, and a managing partner that 
built predictive models, managed the data and managed all project 
operations. These collaborators worked together to determine factors 
contributing to retention, progression, and completion of online learners 
with specific purposes of (1) reaching consensus on a common set of 
variables that inform student retention, progression and completion; and 
(2) exploring advantages and/or disadvantages of particular statistical and 
methodological approaches to assessing factors related to retention, 
progression and completion.  

 
Using the results of this initial study as evidence, the PAR team continued 
to develop predictive modeling and descriptive benchmarking, adding an 
additional sixteen colleges and universities to the collaborative and an 
additional 44 variables in the dataset in the three years that followed. From 
these data, PAR continued to develop and refine institutional predictive 
models for finding students at risk, national benchmarks showing 
comparative outcomes data and an intervention insight platform for 
inventorying, tracking, measuring and managing interventions. 
 
After receiving four research grants from the Bill & Melinda Gates 
Foundation between 2011 and 2014 to conduct rigorous testing and 
evaluation of the predictive models, benchmarks and intervention ROI 
tools, PAR launched as a non-profit provider of analytics-as-a-service in 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 Wagner, E.D. and Davis B.B. (2013) The Predictive Analytics Reporting (PAR) Framework, WCET 
(December 6, 2013) http://www.educause.edu/ero/article/predictive-analytics-reporting-par-
framework-wcet 
 
3 Ice, P., Diaz, S., Swan, K., Burgess, M., Sherrill, J., Huston, D., Okimoto, H. (2012).  The PAR 
Framework Proof Of Concept: Initial Findings From A Multi-Institutional Analysis Of Federated 
Postsecondary Data   Vol 16, n.3 (2012) 
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January 2015. PAR has further differentiated itself from other analytics 
providers in the post-secondary educational ecosystem by actively 
leveraging its common, and openly published student success data 
definitions. PAR then further differentiates itself by connecting predictions 
of risk to solutions that mitigate risk as measured by improved retention. 
PAR predictions of student risk are linked to information about 
interventions shown to work with specific risks with specific students at 
specific points in the college completion life cycle. For example, Bloemer 
et al, (2014)4 note that predictions of students at risk are of greater value 
when tied to interventions that have been empirically shown to mitigate 
risks for “students like them” at specific point of need. 
 
PAR Framework Current Status 

PAR currently holds over 2,600,000 anonymized student records and 

24,000,000 institutionally de-identified course level records, working with 

more than 350 unique member campuses. PAR provides actionable 

institutional-specific insight to member institutions from 2 year, 4 year, 

public, proprietary, traditional, and progressive institutions.  Participating 

institutions, each one committed to student success, actively engage in the 

collaborative by voluntarily their assets and experience and benefitting 

from the member insight tools and exchange of best practices, all in the 

service of measurably improving student outcomes. PAR is included among 

the Institute for Higher Education Policy (IHEP)’s PostsecData Collaborative 

national Voluntary Data Projects5.  Gartner Research6 notes that PAR is 

distinguished among the many data analytics solutions emerging in the 

education domain by its common, openly published data definitions and 

student success frameworks. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4Bloemer, B., Swan, K., Cook, V., Wagner, E.D., Davis, B. (2014) The Predictive Analytics Reporting 

Framework: Mitigating Academic Risk Through Predictive Modeling, Benchmarking, and Intervention 

Tracking, Illinois Education Research Conference, Bloomington IL, Oct 7, 2014. 

5 http://www.ihep.org/research/initiatives/postsecondary-data-collaborative-postsecdata 
 
6 Lowendahl, J.M (2014). The Education Hype Cycle, 2014. Gartner Research. 
https://www.gartner.com/doc/2806424/hype-cycle-education-  

	
  



How PAR Works 

The PAR Framework identifies factors that affect success and loss among 
undergraduate students, with a focus on at-risk, first-time, new, and 
nontraditional students. While attention had initially been paid only to 
online students, the sample now includes records of all students from on-
the-ground, blended, and online programs attending partner institutions.  
PAR focuses on 77 student variables that are available for each student in 
the massive data set. Viewing normalized data through a multi-institutional 
lens and using complete sets of undergraduate data based on a common 
set of measures with common data definitions provides insights that are 
not available when looking at records from a single institution. 

 
 
 
PAR works with institutional partners to gather data according to the PAR 
Framework common data definitions and a detailed file specification.  As a 
last step before data submission, institutions remove any personally 
identifiable data, including date of birth, social security number and local 
student ID number and replace those items with a PAR student ID. 
Institutions maintain a translation table of their internal ID to PAR Student 

© PAR Framework - 2015 

Common Data Elements  

Student 
Demographics  & 

Descriptive!

• Gender 
• Race 
• Prior Credits 
• Perm Res Zip Code 
• HS Information 
• Transfer GPA 
• Student Type 

Student Course 
Information!

• Course Location 
• Subject 
• Course Number 
• Section 
• Start/End Dates 
• Initial/Final Grade 
• Delivery Mode 
• Instructor Status 
• Course Credit 

Course Catalog 

• Subject 
• Course Number 
• Subject Long 
• Course Title 
• Course Description 
• Credit Range 

Lookup Tables 

• Credential Types 
Offered 

• Course Enrollment 
Periods 

• Student Types 
• Instructor Status 
• Delivery Modes 
• Grade Codes 
• Institution 
Characteristics 

Student Financial 
Information 

• FAFSA on File – 
Date 

• Pell Received/
Awarded – Date 

Student Academic 
Progress 

• Current Major/CIP 
• Earned Credential/
CIP 

Difficult!to!define!data!variables!

• What!is!a!passing!grade?!!
• What!is!a!term!
• What!is!reten:on?!!

New!Elements!Planned!for!2015D16!

• Placement Tests                            !  LMS Data !
• Admission/Application Data        !  Satisfaction Surveys 
• College Readiness Surveys           !  Intervention Measures 



ID which is used to easily re-identify those students after the data has been 
analyzed by PAR.  PAR puts the data through more than 600 quality 
assurance tests as it is prepared for inclusion in PAR’s Amazon Web 
Services-hosted data warehouse. Data are then analyzed to develop 
institutional-, program-, course- and student-level descriptive analytics and 
predictive insights contained in predictive analytic dashboards and in 
national benchmark reports built using SAS Visual Analytics, a choice made 
thanks to unlimited institutional visualization software licenses at PAR 
partner institutions. PAR members provide incremental data updates at the 
end of each term/course enrollment period to measure changes over time, 
evaluate the impact of student success interventions, and enable the PAR 
predictive models to be adjusted and tuned for current data. 
 
PAR data experts work hand-in-hand with member institutions, providing 
individualized support for understanding, gathering and delivering 
longitudinal student-level data from across institutional systems using a well 
validated and market-adopted set of data definitions and file specifications. 
The PAR processes and support, combined with scalable, automated 
Quality Assurance tools, guide member institutions in crafting and 
delivering accurate and meaningful student level record sets. Throughout 
the process PAR data representatives help college and university staff 
diagnose and correct cumbersome and potentially costly institutional data 
issues that can impede correct reporting, insight, and availability of funds 
based on performance funding, student financial and veteran aid. PAR’s 
framework for gathering student-level data based on common definitions 
helps member institutions: 
 
•  Understand their local data issues and challenges. 
•  Develop capacity for reaching across systems and silos to create 

meaningful longitudinal student level record sets. 
•  Organize data across campuses consistently using common 

definitions and data types, making campus level comparisons 
possible. 

•  Uncover gaps, errors and overlaps in student data elements across 
institutional systems. 

•  Isolate and remedy anomalies in student cohort reporting generated 
by student exception handling. 

•  Improve the capture and reporting of student military and veteran 
statuses across the multiple systems where that data is recorded. 



	
  
	
  
Linking Predictions to Action: The PAR Framework Student Success 
Matrix 
	
  
Most institutions have more than 100 student success services in effect at 
any one time. PAR’s student success framework and Student Success Matrix 
(SSMx) application use a validated mechanism to inventory those student 
success activities across the institution. PAR SSMx gives users the tools to 
capture, measure and compare ROI at the individual intervention level. 
 

 
 
The PAR SSMx helps institutional members: 
 

•  Eliminate duplicate or redundant programs. Most campuses find that 
at least 10% and as many as 30% of intervention programs are 
serving the same audience and the same goal. 

 
•  Understand the scale of their student success programs. Many 

student success initiatives are upside-down in terms of the 

Knowing what to do next  
PAR!Student!Success Matrix (SSMx)  
Research-based tool for applying 

and benchmarking student services 
and interventions 

!  600+ interventions  
!  >80 known predictors  
!  Basis for field tests  
!  Publically available, 

over 1,900 downloads 
since June 2013 

h#ps://par.datacookbook.com/public/ins6tu6ons/par!

PREDICTORS/+
TIME+ CONNECTION+ ENTRY+ PROGRESS+ COMPLETION+

Learner!
Characteris6cs!

Learner!Behaviors!

Fit/Learners!
Percep6ons!of!
Belonging!

Other!Learner!
Supports!

Course/Program!
Characteris6cs!

Instructor!
Behaviors/!

Characteris6cs!!



institutional resources attached to the program relative to the 
students served. The SSMx helps institutions right-size their 
investments to the student need and potential impact on retention 
and graduation. 

 
•  Match interventions with causes of student academic risk. Together 

with PAR predictive models that identify which students are at-risk 
and why, the SSMx identifies which key risk factors lack any success 
program counterparts. For example, while low GPA and student 
withdrawals often contribute to student risk for course success and 
retention, many campuses lack initiatives that flag for and address 
those behaviors. 

 
•  Measure the impact of student success programs. Even among the 

most data-driven institutions, only about 10% of the many 
intervention programs are properly evaluated for effectiveness — 
millions are invested campus-wide with limited understanding of 
returns. Using the PAR SSMx enables institutions to measure the 
investment and number of students reached for every intervention. 
More importantly, PAR analysis statistically measures intervention 
effectiveness enabling ROI comparison of impact to students at the 
intervention level. 

 
•  Respond to budget cuts with informed decisions about the fat vs. 

bone. With a comprehensive understanding of programs and their 
impact, institutions can make informed decisions on how to 
eliminate waste and redundancy during times of budget contraction 
without worrying they are cutting the wrong programs. 

	
  
Reflections after Four Years in the Data Trenches 
	
  

• Scale requires reliable, generalizable outcomes and measures that 
can be replicated in a variety of settings with a minimal amount of 
customization. In the case of PAR, common definitions and look-up 
tables served as a “Rosetta Stone” of student success data, making 
it possible for project to talk to one another between and within 
projects. 
 

• Common data definitions are a game changer for scalable, 



generalizable, repeatable learner analytics.  
 

• Predictions are of greater institutional value when tied to treatments 
and interventions for improvement, and intervention measurement 
to make sure results are being delivered. 

 
• Change happens when fueled by collaboration, transparency and 

trust. 
 

• Data needs to matter to everyone on campus. While data 
professionals will be needed to help construct new modeling 
techniques, ALL members of the higher education community are 
going to need to “up their game” when it come to being fluent with 
data-driven decision-making, from advisors to faculty to 
administrative staff to students. 
 

• Using commercial software stacks already in place on campuses and 
data exchanges to extend interoperability with other IPAS systems 
extends value and utility of tech investments. 

 
• It takes all of us working together toward the same goal in our own 

unique ways to make the difference. 
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Using Predictive Analytics to Drive Student Success 
  

David Yaskin, Senior Vice President for Student Success, Hobsons 
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Amanda Mason-Singh, Research Analyst, Hobsons 

 
Although 90 percent of students enter college with the intention of completing a degree 

or certificate (Ruffalo Noel-Levitz, 2013), only 59 percent of full-time students earn their 

bachelor’s degrees within six years and only 31 percent of community college students earn 

their degrees or certificates within 150 percent of the time allotted to do so (National Center for 

Education Statistics, 2014). Thus, it is not surprising that higher education institutions are being 

pressured, either by regulation or law, to submit “student success1” data to state, regional, or 

federal agencies in order to receive funding (Hayes, 2014).  Currently, 34 states are either using 

or in the process of implementing performance-based funding (National Conference of State 

Legislatures, 2015). In addition, the Federal Postsecondary Institutional Rating System seeks to 

link college performance, via retention, completion, and loan default rates, to financial aid (U.S. 

Department of Education, 2013). 

Habley and Randy (2004) located more than 80 programs and practices that institutions 

have implemented to help students, including supplemental learning, academic advising, 

tutoring, and first-year experience programs. Even so, student completion rates have not 

significantly changed, leading Tinto and Pusser (2006) to suggest that higher education 

institutions must shift their attention from simply responding to students’ attributes to evaluating 

how institutional policies and structures affect student success. 

Creating a Digital Engagement Strategy for Student Success 

Hayes (2014) argues that digital engagement—defined as the “use of technology and 

channels to find and mobilize a community around an issue and take action” (Visser & 
                                                
1 Kuh, Kinzie, Buckley, Bridges, & Hayek (2006) define student success as persistence, satisfaction, 
academic achievement, education and skills/knowledge/competency attainment, education engagement, 
and performance post-college. 
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Richardson, 2013)—is the “logical extension” of Tinto and Pusser’s (2006) suggestion.  Hayes 

(2014) continues to state that “[i]n this context, digital engagement involves using data and 

online tools to inform and motivate the entire campus community in order to underscore its 

student success efforts and drive change in completion outcomes.”  We also argue that a digital 

engagement strategy for student success will improve student outcomes by giving institutions 

greater insight into how students are performing and how the institution is responding. 

To facilitate a digital engagement strategy, institutions can: (1) leverage an enterprise 

success platform (e.g., the Starfish® platform) to analyze student performance data using 

predictive analytics, (2) solicit feedback from key members of a student’s success network, (3) 

deliver information to the right people who can help the student, and (4) collectively keep track 

of their efforts along the way—all of which leads to a continuous data-informed process-

improvement cycle. 

We will discuss a specific example of such an enterprise success platform that uses 

predictive analytics later in this paper. However, first a discussion of system-centered versus 

student-centered data is warranted. 

Using Student-Centered Data Versus System-Centered Data 

Institutions collect vast amounts of data about their students, and the most important 

aspect of an enterprise success platform is making better use of the data they already have. 

The data lives in disparate data stores, such as the student information system (SIS) and the 

learning management system (LMS). Data is also being captured through tutoring centers, 

attendance records, and student self-assessments—among many other sources. As Hayes 

(2014) argues, this “system-centered approach makes it difficult to uncover the relationships 

among the data that, taken together, provide critical insight into the plans, progress, and needs 

of individual students.”   

Thus, Hayes (2014) recommends a student-centered approach for institutional data use.  

By focusing on the student instead of the systems that generated the data, stakeholders see a 
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comprehensive view of a student’s experience.  According to Conrad and colleagues (Conrad, 

Gaston, Lundberg, Commodore, & Samayoa, 2013), a student-centered approach facilitates 

greater understanding of the relations between students, their college experiences, and 

outcomes. To make data collection and integration straightforward, an enterprise success 

platform can be utilized. Such a platform will leverage the time and money that the institution 

has invested to implement and maintain its existing technology systems.   

Valuable Drivers for Employing Predictive Analytics 

Even with a student-centered approach in place, there are still some issues that need to 

be addressed when using an enterprise success platform. These include: 

1. Student Data Permissions. Inadequate attention to who requires access to student 

data can expose inappropriate student information to staff. Thus, robust permissions 

schemas must exist that allow permissions to be tailored to the campus, college, and 

departmental levels per their policies.  

2. Data Overload. Access to too much data can overwhelm staff. While it is useful to gain 

access to rich data for a single student, it can be difficult for staff to determine how to 

prioritize their time with students based on this data. 

3. When to Act? Software applications and predictive analytics are needed to triage 

mountains of student data into actionable to-do items for staff members. Staff need to 

know when they should act. Should it be as soon as a student misses a class? Or when 

a student receives a mid-term grade below a D? By analyzing historical data, a 

predictive model can be created to determine which characteristics and behaviors 

require the most urgent action. 

We believe the answer to these three issues requires the use of predictive analytics based on 

historical data, instead of “snapshot” reports of student data at any single point in time. To 

illustrate this point, we will provide an example of how we are using predictive analytics within 

the Starfish Enterprise Success Platform. 
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Example: Predictive Analytics and the Starfish Platform 

Starfish Retention Solutions, which became part of Hobsons in early 2015, began 

developing its predictive analytics solution in mid-2014. During development, Starfish worked 

with two existing clients to build models from their data and provide predictive success scores 

for their students. To extend this work, in December 2014 at the White House College 

Opportunity Day of Action, Starfish committed to offer complimentary predictive analytics 

services to Davidson County Community College, Northeast Wisconsin Technical College, and 

Morgan State University in Baltimore. 

Starfish’s first predictive model was designed to answer the question, “Which students 

are most at risk of leaving the institution before the next term without completing their degrees?” 

The model produces a success probability for each student, where success means continuing at 

the institution in a future term. Registered students are scored against the model once per term, 

early in the term, and these predictive scores appear to advisors in the Starfish Platform. Each 

individual student gets a score (e.g., 80% chance of continuing). 

Starfish employs machine-learning techniques and random forest models, a type of 

nonlinear, nonparametric regression model, which are known for their versatility, performance, 

and ability to scale to large amounts of data (Breiman, 2001). Because these models are 

nonlinear, they find patterns such as discontinuities, threshold effects, break points in predictor 

variables, and interaction effects. These effects are nonlinear and therefore cannot be 

discovered automatically by generalized linear models (GLMs) such as linear regression or 

logistic regression. 

The predictive model is built from data contained within the Starfish database, which 

includes data from the institution’s SIS, the LMS, and the Starfish application itself. For new 

clients who do not have historical Starfish data, an initial model is constructed from an initial 

load of historical SIS data. Data available from the SIS includes admissions data, GPAs (term 
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and cumulative), credit hours attempted, credit hours earned (term and cumulative), credit hours 

attempted but not completed (term and cumulative), age, gender, ethnicity, program, time in 

program, financial aid and tuition data, and term GPA relative to past performance.  Some of the 

strongest predictors come from the SIS data.   

Once students have scores, the Starfish platform provides a variety of options for follow-

up.  For example, students may be flagged based on their predictive scores. The Starfish 

platform tracks these flags and records follow-up actions taken. The platform can define cohorts 

that represent students with predictive scores in a certain range, and follow-up for students in 

these cohorts can be managed as a group within the Starfish Platform. 

As the Starfish Platform is used to advise and monitor students, it records additional 

behavioral data that can define or refine future models. These data can include appointment 

types, reasons for making appointments (e.g., tutoring or advisement), topics discussed in 

meetings (as documented by Starfish “speed notes”), instructor-raised flags for attendance or 

other concerns, and system-raised flags (e.g., low assignment grades in LMS). We have begun 

to incorporate some of these behavioral data into the models.  

Behavioral metrics are difficult to standardize and interpret when moving from the 

context of one institution to another. Our models, therefore, do not use behavioral data from one 

institution to build models for use at a different institution. Just because making appointments of 

type X is predictive of persistence at one institution, we do not assume that appointments of 

type X will necessarily have predictive value at another institution. As we go forward, we will 

continue to explore the use of additional behavioral data. 

In addition to providing predictive scores, we are working to provide more visibility into 

the reasons that certain students received certain scores. Having the ability to cluster or group 

students who received low scores for similar reasons can help guide different intervention 

strategies for different groups. For example, one identified group might be “non-traditional 

students (part-time with an above-average age) who are experiencing below-average progress 
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toward completion.” These students might need a different type of intervention than, for 

example, traditional students who have received an academic warning. 

Summary 

Arguably, there is no more important issue to engage the campus community in than 

student success. As Hayes (2014) mentions, switching to a student-centered approach for 

improving student outcomes will require a paradigm shift (Vuong & Hairston, 2012). 

Hayes (2014) also argues that “the right” enterprise success platform offers tools “to 

identify at-risk students, offer academic advising and planning, and facilitate connections to 

campus support” using this student-centered data. Taylor and McAleese (2012) found that such 

an approach can contribute to significant gains in grades, persistence, and graduation rates. 

Such capabilities can also affect student success, support student needs, and promote student 

persistence outcomes (Center for Community College Student Engagement, 2013; Kuh et al., 

2006; Tinto & Pusser, 2006; Vuong & Hairston, 2012).  

We argue that the use of an enterprise success platform combined with predictive 

analytics that are based on historical student data can make institutional staff more effective at 

helping students succeed. 
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In this brief report, I’d like to focus on the relationships between and among privacy, big 
data, algorithms and the concept of harms. I will use a context of applied ethics and 
professional ethics to frame issues and controversies, and hope to encourage reflection and 
reasoned debate about the ethical realities of big data. 
 
Ethics is about what’s possible and what’s “good,” what’s “just.” However, in our 
professional literatures and educational discourses, there tends to be more focus on 
compliance and restriction: What are the legal, technological, economic constraints to our 
actions and decisions? Compliance is not ethics, and the goal of this thought paper is to 
encourage readers to move away from a prescribed and regulatory way of thinking about 
ethics and towards a more humanistic understanding of the ethics of technologies, or more 
specifically, the ethics of big data and the ethics of algorithms.  I am concerned with the 
larger issue of harms that may result from algorithmic manipulation and the uses of big data. 
Redefining and appreciating the depth and variety of emotive harms is critical to the fields of 
big data science and analytics. Focusing on emotive harms allows us to talk about such 
complex issues as technological determinism, values in design, anticipatory ethics, and 
predictive design, among other ethical concerns.  
 
As a relatively new field, data science is still in its infancy in terms of its values and ethical 
stances. As a profession matures, its values become more solidified for its professionals and 
evident to others influenced by the profession. Thus, a simple question arises: Where do data 
scientists, or those responsible for the creation, analysis, use, and disposal of big data, learn 
their professional ethics? The first Code of Conduct (not ethics), for Data Scientists2 was 
released in 2013.  It is unclear how many data science programs include any reference to the 
code of conduct, but a cursory review of the major big data analytics programs reveals few 
include ethics content.3 Big data education focuses more on the technical, statistical, and 
analytic processes over the emotive, contextual, or values-based considerations with data. 
When do we consider the neutrality or bias of data? In the act of algorithmic processing, or 
manipulation, do data lose their neutrality and take on bias? And ultimately, can data, or an 
algorithm, do harm?  
 
Technology and information ethics considerations have long included such topics as access 
to information, ownership of information, copyright protections, intellectual freedom, 
accountability, anonymity, confidentiality, privacy, and security of information and data.  



Fields such as information studies, computer science, and engineering have grappled with 
these ethical concerns, and data science is now experiencing its own cadre of ethical 
concerns. Gradually, more attention is being paid to explicit and implicit bias embedded in 
big data and algorithms and the subsequent harms that arise. To this end, big data analytics 
should include methodologies of: 
 

• Values-sensitive design,  
• Community-based participatory design,  
• Anticipatory ethics,  
• Ethical algorithms,  
• Action research.   

 
These approaches situate our participants, actors, users as central and informed, as 
empowered decision makers. Friedman states that “central to a value sensitive design 
approach are analyses of both direct and indirect stakeholders; distinctions among designer 
values, values explicitly supported by the technology, and stakeholder values; individual, 
group, and societal levels of analysis; the integrative and iterative conceptual, technical, and 
empirical investigations; and a commitment to progress (not perfection).”4  
 
These approaches allow us to stimulate our moral imaginations and experience ethical 
opportunities in big data work while pushing the boundaries of our computational powers. 
The era of big data has been upon us for a number of years, and we’ve accepted the core 
characteristics of big data: velocity, veracity, volume, and variety as the norm. We’ve 
accepted the ways in which we are targeted and identified through our big data streams and 
the ways algorithms silently (or not so silently in many cases) operate in the background of 
our daily technology-mediated experiences.  Within these newfound strengths, algorithms, 
those processes or sets of rules followed in calculations or other problem-solving operations, 
seem smarter and faster, and more intentional.  Big data and algorithms now tell us who is 
eligible for welfare, what political affiliations we have, and where are children will go to 
college. Today, “an algorithm is a set of instructions designed to produce an output: a recipe 
for decision-making, for finding solutions. In computerized form, algorithms are increasingly 
important to our political lives….algorithms …become primary decision-makers in public policy”5.  
 
 
Are we confident with big data and the ways in which algorithms make decisions?  Are there 
decisions we would not defer to them? Recall the uproar over the Facebook Emotional 
Contagion study, when algorithms manipulated what news was seen by individuals on their 
news feeds.  Using that experiment as an example, we can consider the differences between 
machine and human-based decision making. “Our brains appear wired in ways that enable 
us, often unconsciously, to make the best decisions possible with the information we’re 
given. In simplest terms, the process is organized like a court trial. Sights, sounds, and other 
sensory evidence are entered and registered in sensory circuits in the brain. Other brain cells 
act as the brain’s “jury,” compiling and weighing each piece of evidence. When the 
accumulated evidence reaches a critical threshold, a judgment — a decision — is 
made.”6 Consideration of risks and harms are part of the decision-making process, and we 
have an ability to readjust and change our decision if the risk-benefit ration is out of 
alignment. “Scientists have found that when a decision goes wrong and things turn out 



differently than expected, the orbitofrontal cortex, located at the front of the brain behind 
the eyes, responds to the mistake and helps us alter our behavior.”7 But, our human 
decisions are also affected by implicit and explicit biases, and to a great degree, “We are 
ruined by our own biases. When making decisions, we see what we want, ignore 
probabilities, and minimize risks that uproot our hopes.”8 When we consider big data 
analytics, we rely on probabilities, and we correlate data. The ethics of correlation and 
causation must be addressed in big data analytics. We can make the best and the worst out of 
data; algorithms can solve problems, just as they can cause them: “You probably hate the 
idea that human judgment can be improved or even replaced by machines, but you probably 
hate hurricanes and earthquakes too. The rise of machines is just as inevitable and just as 
indifferent to your hatred.”9 
 
To return to the concepts of harms generated out of big data analytics, take a few examples: 
A widow is continually reminded of her deceased spouse, on birthdays, anniversaries, special 
occasions; she does not want to change his Facebook status as it will disrupt past their 
shared experiences on Facebook. A young man is greeted by pictures of his burning 
apartment burning down, as one of the features in his “Year in Review.” And, perhaps most 
well quoted, Erik Meyer has described his response to an algorithmically generated 
experience, calling it “inadvertent algorithmic cruelty”:  
 

A picture of my daughter, who is dead.  Who died this year. 
Yes, my year looked like that.  True enough.  My year looked like the now-
absent face of my little girl.  It was still unkind to remind me so forcefully. 
 
And I know, of course, that this is not a deliberate assault.  This inadvertent 
algorithmic cruelty is the result of code that works in the overwhelming 
majority of cases, reminding people of the awesomeness of their years, 
showing them selfies at a party or whale spouts from sailing boats or the 
marina outside their vacation house. 
 
But for those of us who lived through the death of loved ones, or spent 
extended time in the hospital, or were hit by divorce or losing a job or any 
one of a hundred crises, we might not want another look at this past year. 
 
To show me Rebecca’s face and say “Here’s what your year looked like!” is 
jarring.  It feels wrong, and coming from an actual person, it would be 
wrong.  Coming from code, it’s just unfortunate.  These are hard, hard 
problems.  It isn’t easy to programmatically figure out if a picture has a ton of 
Likes because it’s hilarious, astounding, or heartbreaking. 
Algorithms are essentially thoughtless.  They model certain decision flows, 
but once you run them, no more thought occurs.  To call a person 
“thoughtless” is usually considered a slight, or an outright insult; and yet, we 
unleash so many literally thoughtless processes on our users, on our lives, on 
ourselves.10 
 

Reputational harms, or informational harms, are often touted as the only real risks in 
big data analytics.  These examples are related to privacy invasions, but are different. 
These experiences are not of that quality. “These abstract formulas have real, 



material impacts.”11 They are emotive harms, and recognition of these types of harms 
must occur at the design and implementation stage of analytics and big data. 
 
What would ethical algorithms do differently? How can we ensure our work with big data is 
ethically informed?  Jeremy Pitt, Imperial College, is working on ethical algorithms: "One is 
about resource allocation, finding a way an algorithm can allocate scare resources to 
individuals fairly, based on what's happened in the past, what's happening now and what we 
might envisage for the future….Another aspect is around alternative dispute resolution, 
trying to find ways of automating the mediation process.….A third is in what we have called 
design contractualism, the idea that we make social, moral, legal and ethical judgements, then 
try to encode it in the software to make sure those judgements are visually perceptive to 
anyone who has to use our software."12  
 
From a harms perspective, the lack of transparency in big data analytics is concerning. 
“Computer algorithms can create distortions. They can become the ultimate hiding place for 
mischief, bias, and corruption. If an algorithm is so complicated that it can be subtly 
influenced without detection, then it can silently serve someone's agenda while appearing 
unbiased and trusted….Whether well or ill intentioned, simple computer algorithms create a 
tyranny of the majority because they always favour the middle of the bell curve. Only the 
most sophisticated algorithms work well in the tails."13 
 
To an ethical end, Eubank14 recently recommended four strategies:  
 
 1) We need to learn more about how policy algorithms work.  
 2) We need to address the political context of algorithms. 
 3) We need to address how cumulative disadvantage sediments in algorithms. 
 4) We need to respect constitutional principles, enforce legal rights, and strengthen 
 due process procedures. 
 
 
As we continue to explore the potential and boundlessness of big data, and increase our 
analytical and computation powers, ethics must be at the fore of our advances, not an 
inadvertent afterthought.  
 
 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 This briefing is a revised version of my keynote address, “Living in a Time of (Un) Ethical 
Algorithms, Information Architecture Summit, 25 April 2015, Minneapolis, Minnesota. 
2 http://www.datascienceassn.org/code-of-conduct.html 
3 Using two sources, http://www.mastersindatascience.org/schools/23-great-schools-with-masters-
programs-in-data-science/ and http://www.informationweek.com/big-data/big-data-analytics/big-
data-analytics-masters-degrees-20-top-programs/d/d-id/1108042?, curricular offerings were 
reviewed. Some, for example, Carnegie Mellon, includes an Ethics and Management course, or 
Maryland offers Business Ethics, while UC-Berkeley’s unique in its Legal, Policy, and Ethical 
Considerations for Data Scientists course. The overwhelming majority of programs had no ethics 
content. 
4 http://www.vsdesign.org/index.shtml 
5 The Policy Machine, 
http://www.slate.com/articles/technology/future_tense/2015/04/the_dangers_of_letting_algorith



	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
ms_enforce_policy.html?wpsrc=sh_all_tab_tw_top&utm_content=bufferbab23&utm_medium=soci
al&utm_source=twitter.com&utm_campaign=buffer 
6 http://www.brainfacts.org/sensing-thinking-behaving/awareness-and-
attention/articles/2009/decision-making/ 
7 http://www.brainfacts.org/sensing-thinking-behaving/awareness-and-
attention/articles/2009/decision-making/ 
8 http://www.wsj.com/articles/SB10001424052970203462304577138961342097348 
9 http://www.wsj.com/articles/SB10001424052970203462304577138961342097348 
10 http://meyerweb.com/eric/thoughts/2014/12/24/inadvertent-algorithmic-cruelty/ 
11 
http://www.slate.com/articles/technology/future_tense/2015/04/the_dangers_of_letting_algorith
ms_enforce_policy.html 
12 http://www.cio.co.uk/insight/compliance/quest-for-ethical-algorithms/ 
13 http://www.cio.co.uk/insight/compliance/quest-for-ethical-algorithms/ 
14 
http://www.slate.com/articles/technology/future_tense/2015/04/the_dangers_of_letting_algorith
ms_enforce_policy.html	
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PATRICIA HAMMER 

IMPLICATIONS OF AND APPROACHES TO PRIVACY IN EDUCATIONAL 

RESEARCH 

 Changes in research opportunities and independent review board (IRB) oversight have 

changed the way that social sciences research in general, and education research in specific, are 

being implemented.  Fear over privacy is leading to the stifling of public educations research and 

pushing research into corporate hands where transparency is less required and compliance is 

easier.  This poses risks to educational research, which is often the font of new ideas 

implemented in public institutions and across socioeconomic levels. 

Improved technologies now allow educators to conduct research in ways never before 

possible, such as use of big data, in-home or in-classroom audiovisual recordings, or biometric 

stress indicators, and data can be collected simultaneously from across the world and analyzed 

across hundreds of potential variables.  IRBs, parents, and subjects may be concerned with the 

risks posed by these technologies, but there are security approaches to address each of the risks 

posed.  By identifying concerns and risks, researchers can build safeguards into their research to 

minimize risks and more easily have research approved.  If the combination of research and 

safeguarding can be pre-approved by a reputable, knowledgeable, and accountable institution, 

such as Department of Education (DOE), will benefit IRBs by developing , clear guidelines to 

follow and standards they can rely upon.  Researchers will therefore have less difficulty having 

projects approved by IRBs.  Society also benefits by increasing the amount of research done in 

educational and research facilities vice through non-transparent commercial processes.   

Educational research is noninvasive, and the greatest perceived risk is often a privacy 

risk.  IRBs generally do not include a privacy or technology expert, and the IRB may perceive a 
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risk to be greater than it is because no member has expertise in the field.  Often this leads to 

delay, indecision, or overly conservative restrictions being placed on the researchers.  One 

solution, often proposed, is to include privacy experts and security technology experts as part of 

the IRB.  This solution can be difficult based on the limited number of experts available and, in 

my belief, dilutes the purpose of the IRB which is to evaluate the risk posed by the research.  

Instead of having one or two members be experts on privacy and/or technology, DOE or another 

third-party organization could develop a set of baselines standards for privacy and system 

protection in educational and/or other types of research.  A project could demonstrate that it met 

the minimum guidelines before IRB review, which would inherently expedite the process and 

limit or eliminate the institution’s liability in the case of a privacy breach. 

 Each new technology a researcher may want to use will present a unique combination of 

risks, most of which can be guarded against using available technologies and proper information 

policies.  Speaking generally, privacy can be adequately protected through encrypted servers and 

data, anonymized data, having controlled access to data, and by implementing and enforcing in-

office privacy policies to guard against unauthorized and exceeded data access.  

 A risk-based approach, similar to the approach taken by the National Institute of 

Standards and Technologies in guidelines for federal agencies, would allow for confidentiality, 

consent, and security concerns to be addressed commensurate with the consequences of a breach.  

A risk approach allows for changes in the types of research being done and the range of 

safeguarding solutions that could be applied.  This would provide a framework to allow the 

newest research into privacy practices, security approaches, and research methodologies to be 

evaluated for how they mitigate risk and reuse those evaluations across the research community.  

Standardization and reuse would minimize the cost of evaluation while increasing the quality of 
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evaluation.   The IRB could still be the organizations voice in determining acceptable risk but 

would be addressing these questions from a position of knowledge.   

 

Evolving Research Capabilities/Privacy Issues 

It is critical that any standard be developed with an ongoing evaluation function.  This 

function must allow for new research in privacy and new approaches to research.  In the field of 

privacy, continued research is identifying new threats, vulnerabilities and mitigation approaches.   

 

Data Aggregation and Maintaining Large Data Sets 

People’s ubiquitous use of the internet has led to an explosion in the amount of 

commercially available data concerning individuals.  Although this data is available for a cost, 

many research organizations have shied away from maintaining large, aggregating data sets.  The 

concerns over maintaining the data are often not weighed against the benefit to research that 

might be available through maintaining long-term, large population data sets (e.g., quicker access 

to the data for other, related studies, and the ability to execute longitudinal studies).  In the 

commercial environment, the cost benefit is often easier to understand and document than the 

societal benefits for the public researcher.  

 

Big Data 

Using and compiling Big Data can allow researchers to see trends or anomalies across a 

wide spectrum of individuals.  Researchers can take data trends from persons they have never 

met and analyze data to find trends based on age, race, income, geographic location, level of 

education, time of day, physical activity, physical traits, etc.   In education, researchers may be 
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able to correlate math scores with scores in other subjects, such as science and music, to identify 

a possible causation.  Or make determinations of how someone learns best in order to develop a 

more personalized learning plan. 

Big Data also brings in the possibility of “found data.” In contrast to researcher-designed 

data, which are data sets of information collected according to a defined protocol by private 

sector and government sector agencies, the big data collectors are not research organizations.  

They usually collect the data as an auxiliary function to their core business.  They use the data to 

improve business processes and to document organization activities.  Social scientists have 

become interested in these data because they are a) timely, often real-time documentation of 

behavior, b) collected on large sets of individuals, yielding massive data sets, c) relatively 

inexpensive to acquire, and d) relevant to behaviors that are of common interest to social 

scientists.  This data is growing based on social media, wearable technology, and other internet 

sensors that collect and store data.  The internet has spawned new businesses that actively collect 

detailed attributes about their customers.  Indeed, for many of these businesses the personal data 

resource is their business.   

However, these data are often limited in the attributes they describe.  Education research 

often uses these massive data, but lean, sets in combination with some other source of data (e.g., 

demographic data on geographical units based on census and other measurements), in order to 

enrich the set of attributes to be studied.  Indeed, companies that assemble these data sources into 

unified data sets are popular sources of marketing data on individuals and households. 
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Minimization/De-anonymization 

The trend in data privacy is to minimize the amount of data collected, which would then 

reduce the risks of de-anonymization to which subjects are exposed. However, with the growth 

of Big Data and associated analysis techniques, the validity of anonymization is being 

questioned. In light if this, there must be careful consideration, lest the data set suffer over-

minimization, which could actually expose more subjects than necessary to privacy risks.  Using 

Big Data as an example, hundreds of variables could be collected in one study over three years 

that tracks a student’s progress.  If the researcher is focused on math performance by geographic 

location, a later researcher may want to use the same data to correlate performance trends over 

the three years, or performance by gender, or math performance with music performance.  By 

being able to use the same data set with anonymized data, researchers have limited the risk to the 

10,000 students involved.  If an IRB told the researchers only to collect data absolutely necessary 

for the study, subsequent researchers may need to conduct the same type of testing using 

different subjects to collect a variable not collected the first time.  This would expose 20,000 

subjects to a risk instead of 10,000.  By not collecting a variable there could be a trend or 

correlation the researchers are missing which could otherwise innovate education. 

Minimization of data collection should exclude personally identifiable information not 

necessary to a study, while including information that may be helpful to that or future studies.  

Educational research probably does not need a student’s social security number, street address, 

or fingerprint, but ethnicity, age, and native language may be generally extremely useful.  By 

reducing the number of times similar studies must be conducted researchers can limit the overall 

risk to any group of students, not just the students involved in the original study.  Additionally, if 

the same research can be used repeatedly but analyzed in different ways, then subsequent studies 
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do not need IRB approval because the data collected does not affect any new subjects in a new 

way. 

 

Conclusion 

There are risks to society from making it difficult to study educational impact.  The delay in 

research, students opting out of research that may not be approved, and studies that never take 

place diminish our knowledge.  We lose the opportunity to obtain great strides in education that a 

more personalized learning program may allow.  We also push research into the hands of 

commercial entities that need not be transparent and compliant in their testing.   By developing a 

risk-based standard approach to privacy and information security in the social sciences, we create 

a community that can better leverage the available data, seize research opportunities, and share 

knowledge.   
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CASES:
The kinds of big data/data-intensive research in education you have experience with 

and the specific types of data collected

I founded and currently partner, with Dr Kalyan Veeramachaneni, the AnyScale Learning 
For All (ALFA) Group at MIT’s Computer Science and Artificial Intelligence Lab 
(CSAIL). ALFA’s research centers on elucidating the general design principles of data 
science workflows that enable rapid data transformation for analytic and predictive 
purposes.  We currently have a project called MOOCDB (url: MOOCdb). One of the 
project’s overarching goals is to identify and develop enabling technology for data-
intensive research into MOOCS. The project is intended to unite education researchers 
and technologists, computer science and machine learning researchers, and big data 
experts toward advancing MOOC data science.  It also supports our specific learning 
science research into MOOC student online problem solving, resource usage behavior 
and persistence prediction. One high-profile ambition of the project revolves around 
developing the means to efficiently study MOOC student behavior across multiple 
MOOCs released on different platforms (specifically Coursera and edX). This capability 
will allow cross platform comparisons of learning behavior across or within institutions. 
It will facilitate the detection of universal aspects of behavior as well as tease out the 
implications of important differences. Other project activities have goals such as enabling 
a collaborative, open-source, open-access data visualization framework, enabling crowd 
sourced feature discovery (featurefactory) and preserving the privacy of online student 
data. ALFA’s team is currently working to openly release a number of its tools and 
software frameworks. 

Specific Types of Data Collected:
A short description of the multiple raw data streams of MOOC edX platform data that are 
supplied for data science/analytics can be found in Section 2 of "Likely to Stop - 
Predicting Stopout in Massive Open Online Courses (arXiv#1408.3382). By far the 
largest is clickstream data.  To analyze this data at scale, as well as write reusable analysis 
scripts, it is first organized into a schema designed to capture pertinent information and 
make cross-references to the MOOC’s content. That schema is exhaustively described in 
the MOOCdb report. Chapter 2 of  Modeling Problem Solving in Massive Open Online 
Courses provides a very nice (friendly) summary. 

http://moocdb.csail.mit.edu/
http://moocdb.csail.mit.edu/
http://moocviz.csail.mit.edu/
http://moocviz.csail.mit.edu/
http://featurefactory.csail.mit.edu/
http://featurefactory.csail.mit.edu/
http://arxiv.org/abs/1408.3382
http://arxiv.org/abs/1408.3382
http://arxiv.org/abs/1408.3382
http://arxiv.org/abs/1408.3382
http://moocdb.csail.mit.edu/wiki/index.php?title=MOOCdb
http://moocdb.csail.mit.edu/wiki/index.php?title=MOOCdb
http://groups.csail.mit.edu/EVO-DesignOpt/groupWebSite/uploads/Site/FanProblemSolvingThesis.pdf
http://groups.csail.mit.edu/EVO-DesignOpt/groupWebSite/uploads/Site/FanProblemSolvingThesis.pdf
http://groups.csail.mit.edu/EVO-DesignOpt/groupWebSite/uploads/Site/FanProblemSolvingThesis.pdf
http://groups.csail.mit.edu/EVO-DesignOpt/groupWebSite/uploads/Site/FanProblemSolvingThesis.pdf


We create data: In the course of answering learning science questions, like “who is 
likely to stop?” we add interpretation and knowledge to transform and enhance the data 
that lies in MOOCdb tables. This data is of a higher-level nature or of a particular data 
abstraction and is stored in new tables. For example, we might efficiently express each 
learner’s trajectory of actions when solving each problem or a learner’s navigation 
sequence through material each module.  See Chapter 4 of  Modeling Problem Solving in 
Massive Open Online Courses for a clear example explaining the transformation of data 
to form student trajectories for every problem of a MOOC. 

When we develop predictive models of learner behavior, we use the transformed data 
directly, or with some logic, populate yet another table that consisting of predictive 
features and labels for each machine learning training or testing example. The training 
data is input to the machine learning algorithm where the label acts as a supervisory 
signal and the features as explanatory model variables. The testing data is used to gauge 
generalized model accuracy. 

Technologies, infrastructures, and tools you use, including mechanisms for 
collection, storage, analysis, and sharing

We are computer scientists so we fairly routinely develop software and use open source 
and/or commercial software.  Our software operates at every part of the data science 
workflow. We execute our analyses on workstations and the cloud and databases.  
Machine learning is, perhaps less frequently known outside academia

Issues with standards and interoperability
To achieve interoperability with MOOC data from different platform providers, we 
initiated the MOOCdb schema and the open source release of translation software. For 
more information see MOOCdb documentation.  We develop software that we intend to 
share once it is release-ready.

Methods and analytic approaches you use, including visualization
Machine learning: we largely use open source libraries situated within our own research 
frameworks that allow rapid scaling and result comparison.

REFLECTIONS
Strategies for building partnerships between big data producers and consumers
The ideal time for a partnership is before or during education technology design and 
implementation. If education technologists and instructors can explicitly communicate 
their learning goals and desired learning outcomes and articulate the intent of their 
assessments AHEAD OF IMPLEMENTATION, the “producers” will be able to 
instrument the technology in a way that captures the appropriate feedback to validate 
hypotheses and outcome success.  

http://groups.csail.mit.edu/EVO-DesignOpt/groupWebSite/uploads/Site/FanProblemSolvingThesis.pdf
http://groups.csail.mit.edu/EVO-DesignOpt/groupWebSite/uploads/Site/FanProblemSolvingThesis.pdf
http://groups.csail.mit.edu/EVO-DesignOpt/groupWebSite/uploads/Site/FanProblemSolvingThesis.pdf
http://groups.csail.mit.edu/EVO-DesignOpt/groupWebSite/uploads/Site/FanProblemSolvingThesis.pdf
http://moocdbdocs.readthedocs.org/en/latest/.
http://moocdbdocs.readthedocs.org/en/latest/.


One strategy is to encourage development projects where the stakeholders work together 
toward a deliverable rather than the consumers receiving the data after digital learning. 
One goal of such projects, from a software technology perspective, should be open source 
middleware that hides layers of functionality that are necessary but not central to the 
consumer’s mission. This is much as Amazon Web Services does with a lot of its 
services. AWS services always handle compute scalability, elasticity and reliability. This 
allows their “consumer” to focus on the tasks central to their business without attending 
to aspects (like scaling) that are not central to their mission.  The AWS services also 
provide convenient interface abstractions and design patterns that are very common to 
their consumers. AWS develops the patterns for their internal business, gets them “right” 
and then offers them externally where they really help save development time.

Another way to answer this question is to list explicit examples of producers and 
consumers. In the MOOC-sphere the producers are the platform providers: edX and 
Coursera. The consumers of data are stakeholders: students, instructors, education 
technologists, institutional registrars, learning scientists.  In the MOOC-sphere, 
relationship building has been driven by the platform providers because they have the 
data.

Issues of privacy and security 
MOOC learners will require privacy during personalized learning interventions. We need 
to deeply explore different positive and negative scenarios in this context so we can 
inform and keep policy up to date, then define policy-dictated boundaries to inform 
capabilities and, finally develop the required privacy technology. One technology 
question would be: how do we design the algorithms and personalization technology to 
be accountable to policy?
MOOC learners also require privacy protection long after their learning interaction is 
completed and logged. In the digital learning enterprise multiple stakeholders have 
legitimate reasons to retrospectively access logged data and analyze it. In the current 
context of digital learner data being shared the concerns for learner privacy must be 
respected. Even when personally identifiable records within the data are removed and the 
learner’s identity is replaced with a randomized value, there remains risk of re-
identification, i.e. the recovery of a specific learner’s identity. 
From the learner’s perspective, despite contributing MOOC data, they do not directly 
receive or control it. The learner acknowledges this arrangement by accepting a terms of 
use agreement in return for using the site. They are briefed of the reasonable protections 
that will be afforded to their personally identifiable information via a site privacy policy. 
As a result of the learner’s activity, the data passes to the platform and content providers. 
From this perspective, their responsibility is to oversee and control its further 
transmission. They are entrusted, by the learner, to respect relevant parts of the terms of 
use and privacy policy. In transmitting the data, their current practice is essentially to 
ensure the receiver is trustworthy while transmitting the minimum data required in order 
to minimize potential privacy loss. They further bind the parties to whom they transfer 
data with some form of data use agreement.1 



Finally, from the perspective of those who receive learner data from platform or content 
providers, they agree to the data use agreement that commits them to fundamental 
measures that protect the learner. These include not ever attempting to re-identify anyone 
from the data, not contacting a learner they might recognize, and not transmitting the data 
onwards. 
In its entirety, the process is based upon trust that is granted based on direct verification 
of people and institutions. The process culminates, indirectly, in trust that the best efforts 
of the parties involved to honor their commitments will be sufficient. This endpoint 
exposes vulnerability: it assumes the data won’t fall into the wrong hands inadvertently, 
when, in fact, it may. This problem could happen when the data is held by any of the data 
controllers.  This implies a need for the development of new, practical, scalable privacy 
protection technology to mitigate the risk arising should the data fall into the wrong 
hands. This need is arguable because to date there is only one MOOC-related dataset in 
general open release.  It is the HarvardX-MITx Person-Course Academic Year 2013 De-
Identified dataset. It holds aggregate records, one per individual per single edX course 
for 5 MOOCs offered by Harvard X and 8 by MITx. The dataset is ”sanitized” for release 
by two complementary privacy protection technologies. It achieves k-anonymity (for k = 
5), a measure of degree of de-identification, by a means called “generalization of quasi-
identifiers” (see [Daries 2014] for more details). Using a second mechanism, it checks for 
L-diversity along sensitive variables and if all values of a variable are the same, redacts 
the value. In fact, the release is not completely open because a terms of use agreement is 
required to download the dataset, however it provides a solid starting point for future 
open releases. The k-anonymity measures and L-diversity redaction don’t provide a 
quantitative tradeoff measuring risk of re-identification and utility. One option that does 
offer this tradeoff measure is differential privacy. While research in differential privacy is 
largely theoretical, advances in practical aspects could address how to support the content 
and platform providers who transmit the data when they want to choose a tradeoff 
between risk of re-identification and utility. Subsequently, effort would be required to 
mature the demonstrations for regular use by development of prototypes that have user-
friendly interfaces to inform controller decisions. Controller acceptance will require a set 
of technology demonstrations that in turn require major effort and resources. 
Demonstrations would be feasible if a “safety zone” could be set up where technology 
can be explored and validated against (friendly) re-identification adversaries who try 
to“crack” identities without any threat of real harm to the learners’ data. Data scientists in 
the MOOC analytics sphere who develop variables and analytic models should be 
encouraged and supported to explore differential privacy mechanisms and bring them to 
practice. 

Una-May O’Reilly’s Author Bio:
I founded and currently partner the AnyScale Learning For All (ALFA) group at CSAIL. 
ALFA focuses on scalable machine learning, evolutionary algorithms, and frameworks 
for large-scale knowledge mining, prediction and analytics.  The group has data science 
projects in MOOC technology: MoocDB, student persistence and resource usage 
analysis, data privacy protection technology; clinical medicine knowledge discovery: 
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arterial blood pressure forecasting and pattern recognition, diuretics in the ICU; wind 
energy: turbine layout optimization, resource prediction, cable layout.
My research is in the design of scalable data science systems that execute on a range of 
hardware systems: clouds, GPUs, grids, clusters, and volunteer compute networks. I am 
interested in agile and rapid intelligent data analytics capability and apply unsupervised, 
semi-supervised, and supervised learning algorithms for similarity search, classification, 
non-linear regression, and forecasting. I consider end-to-end systems, i.e. ones that start 
with raw data, move to data organization and information transformation, next   on to 
inferential analysis on conditioned exemplars, and finally to the deployment and 
evaluation of learned “algorithmic machines” in the original application context.  

[Daries 2014] Daries, Reich, Waldo, Young, Whittinghill, Seaton, Ho, and Chuang] 
Daries, Jon P, Reich, Justin, Waldo, Jim, Young, Elise M, Whittinghill, Jonathan, Seaton, 
Daniel Thomas, Ho, Andrew Dean, and Chuang, Isaac. Quality social science research 
and the privacy of human subjects requires trust. acmqueue, 2014. 



1 I can provide detailed descriptions of how MOOC data is released at Stanford U and 
MIT if it would be helpful. 
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One concern to raise regarding data intensive research is the question of whether we are currently using 
data as effectively as possible? In education we sometimes seek data to confirm our intuitions rather than 
looking at data closely to try to determine what is really going on in student learning. It is a bit like looking 
around and deciding the world is flat and then seeking data to confirm that. We need to take the position 
that learning is not plainly visible and that we will not be able to gain insight by simply reflecting on our 
classroom experiences. We sometimes act as though we can easily observe learning.  For example, in 
response to data (e.g., Duckworth et al., 2011; Ericcsson et al., 1993) indicating that a substantial amount of 
deliberate practice is needed to acquire expertise, Hambrick et al. (2014) quote Gardner (1995) as 
suggesting “the deliberate practice view ‘requires a blindness to ordinary experience’ (p. 802).”  Instead of 
relying on our “ordinary experience”, we need to couple careful investigation of data along with theoretical 
interpretation to get at what is unseen and not immediately apparent. While ordinary experience suggests 
the world is flat, it took a combination of data and geometric theory to infer that the world is round and 
initially measure its circumference.  New data opportunities in education, especially ones afforded by 
technology use, will increasingly allow us to get beyond our ordinary experience and yield insights into 
what cognitive, situational, motivational, and social emotional factors cause the unseen changes in learners’ 
minds that lead to desired educational outcomes. 	
  
	
  
We have pursued this idea in LearnLab, an NSF funded Science of Learning Center (see learnlab.org; 
Koedinger, Perfetti, & Corbett, 2013).  A major output of LearnLab has been the creation of DataShop, the 
world’s largest open and free repository of educational technology data and analytic methods (Koedinger, 
Baker, Cunningham, Skogsholm, Leber, Stamper, 2011).  One of the many insights that can be drawn from 
the vast amount of data we have collected in DataShop is evidence on the rate at which learning occurs (see 
Figure 1). We see across many data sets that each opportunity to practice or learn a skill in the context of 
problem-solving reveals a rather small average improvement in student success (or, equivalently, drop in 
error rate as shown in Figure 1). These changes in student success across opportunities to practice or learn 
(get as-needed feedback or instruction on a skill) can be modeled as learning curves. DataShop provides a 
statistical modeling technique for estimating the shape of the learning curves which uses a logistic 
regression generalization of item-response theory, called AFM (cf., Koedinger, McLaughlin  & Stamper, 
2012).  The predictions of AFM are shown in blue (dotted) lines in Figure 1, with the actual data (average 
error) shown in red (solid) lines.	
  
	
  

	
  
	
  

	
  
	
  

Figure 1. Learning curves showing a decrease in error rate (y-axis) for each successive opportunity (x-axis) 
to demonstrate or learn a skill, averaged across students for different skills in the first row and averaged 
across skills for different students in the second row.  The variations in learning rate (how much the error 
changes for each opportunity) are much bigger for skills than for students (the curves in the first row have 
more variation in their slopes than the curves in the second row).  [Respective learning rates in log odds for 
the five skills shown are .07, .27 .15 .09 .03.]	
  

	
  
The average error rate increases about .15 in log odds (or “logit” scale used in item response theory and, 
more generally, logistic regression) for every opportunity to practice.  That means if a group of students are 



at about 50% correct on a skill, after one opportunity of practice they will now be at about 54% correct. 
This 4% increase diminishes as correctness increases toward 100%.  Thus, to get from 50% correct to 95% 
correct requires about 20 practice opportunities. 	
  
	
  
This learning rate estimated from educational technology data seems faster (indicating about 15 minutes of 
accumulated learning time per skill) than data from self-reports on expertise acquisition (e.g., Ericsson et 
al., 1993) that suggests it takes about 10,000 hours to become an expert.  Other estimates that expertise 
involves about 10,000 chunks of knowledge (or skills), yields a learning rate of about 1 hour per skill.   The 
faster learning rate apparent in educational technology data might be an indication that deliberate practice 
in the context of educational technology is more effective than it is in the typical real world learning 
environment.  These estimates are rough at this point, so more careful work would need to be done to make 
such a point firmly and rigorously. Nevertheless, it does open the possibility for interesting further 
research. Might it be possible to establish some baselines on which to compare learning rate achieved by 
different instructional approaches or learning supports?	
  
	
  
We do see large variations for different skills (see the first row in Figure 1). For example, in a unit on 
geometric area, learning rate for finding the area of triangles is .03 logits whereas the learning rate for the 
planning skill of identifying what regular shapes to use to find the area of a irregular shape is .15 
logits.  However, there is a relatively small variation across students (Liu & Koedinger, 2015). At least 
relative to skills, it seems that most students learn at about the same rate.  In contrast, some skills are much 
harder to learn than other things and these skill difficulty variations are common across all students.  We do 
find some variation in learning rate across students (Liu & Koedinger, 2015) and this variation is quite 
interesting. What accounts for these student differences in learning rate?  Is it innate ability, differences in 
domain-specific prior knowledge, or in general, but malleable, metacognitive learning skills, motivational 
dispositions, identity self attributions?  To the extent that student learning rate differences are not innate, 
might it be possible to increase the learning rate of some students through instruction that addresses one of 
these causes?  In other words, is there a data-driven path to helping students learn how to learn?	
  

Returning to the larger point, given the relatively consistent and, frankly, relatively slow rate, at which 
learning generally occurs across students, we can ask whether it might be better to focus attention on 
learning supports or instructional methods that increases learning for all. These methods may still be highly 
student adaptive to the large variations in student learning progress (how much sudents know), despite our 
observation above about the relatively small variations in student learning rate (how quickly they can 
change what they know). (Note: Large student variations in learning progress/achievement are clearly 
apparent in DataShop data sets even as only small variations in learning rate are seen.)  Which of the 
trillions of different combinations of learning supports (Koedinger, Booth, & Klahr, 2013) is best for what 
kinds of student learning outcomes?	
  

The increasing availability of large scale data, for instance, from Massively Open Online Courses 
(MOOCs) brings further opportunities to address these (and other) questions.  For example, a recent 
analysis of a Psychology MOOC data set explored how variations in students’ choices to use different 
learning resources was associated with learning outcomes.  Students who choose to do more interactive 
activities (tasks with as-needed feedback and instruction) had six times better learning outcomes (total quiz 
and final exam scores) than students who chose to watch more videos or read more web pages (Koedinger 
et al., 2015).  Many questions remain unanswered including: What particular patterns of learning resource 
use did students engage in?  Do significant differences in student learning rates emerge in this course due to 
their resource choices and/or strategies?  Do these results 
generalize to other online courses?	
  

With the help of NSF funding (Data Infrastructure Building 
Blocks), a team of researchers at Carnegie Mellon 
University, MIT, Stanford, and University of Memphis are 
building LearnSphere (see learnsphere.org) to help data 
researchers address these questions. 	
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Abstract

Video captures the complexity, richness, and diversity of behavior unlike any other

measure. As a result, large numbers of people who study teaching and learning employ

video. Video documents itself to a large degree. This presents significant potential for reuse

by others. The potential remains largely unrealized because videos are rarely shared. Video

contains information about personal identities. This poses challenges to sharing. The large

size of video files, diversity of formats, and incompatible software tools pose technical

challenges. We describe how the Databrary data library has overcome the most significant

barriers to sharing video within the developmental sciences community. Databrary has

developed solutions to maintaining participant privacy, storing, streaming, and sharing

video, and for managing video datasets and associated metadata. The Databrary

experience suggests ways that video and other identifiable data collected in the context of

education research might be shared. We envision a data intensive science of teaching and

learning, with video as its core, that allows educational experiences to be tailored to

students in ways that big data promises to personalize medicine. The creation and support

of repositories that enable the open sharing of dense, richly informative, high value, and

high impact data about teaching and learning will help realize this ambitious vision.
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Open Video Data Sharing Can Transform Education Research

Introduction

Open data sharing can help to translate insights from scientific research into

applications serving essential human needs. Open data sharing bolsters transparency and

peer oversight, encourages diversity of analysis and opinion, accelerates the education of

new researchers, and stimulates the exploration of new topics not envisioned by the original

investigators. Data sharing and reuse increases the impact of public investments in

research and leads to more effective public policy. Although many researchers in the

developmental, learning, and education sciences collect video as raw research data, most

research on human learning and development remains shrouded in a culture of isolation

(Adolph, Gilmore, Freeman, Sanderson, & Millman, 2012). Researchers share

interpretations of distilled, not raw data, almost exclusively through publications and

presentations. The path from raw video to research findings to conclusions cannot be

traced or validated by others. Other researchers cannot pose new questions that build on

the same raw materials. This paper describes how the Databrary data library has overcome

the most significant barriers to sharing video within the developmental sciences community.

It highlights how open video data sharing might improve scientific practice and advance

research on learning and development.

The Promise and Challenge of Video

Video is a uniquely rich, inexpensive, and adaptable medium for capturing the

complex dynamics of behavior. Researchers use video in home and laboratory contexts to

study how infants, children, and adults behave in natural or experimenter-imposed tasks

(Karasik, Tamis-LeMonda, & Adolph, 2014). Researchers record videos of students in

classrooms (Alibali & Nathan, 2012) to understand what teachers do and how students

respond. Because video closely mimics the multisensory experiences of live human

observers, recordings collected by one person for a particular purpose may be readily



VIDEO DATA SHARING 4

understood by another person and reused for a different purpose. Moreover, the success of

YouTube and other video-based social media demonstrates that web-based video storage

and streaming systems are now sufficiently well developed to satisfy large-scale demand.

The question for researchers and policymakers is how to capitalize on video’s potential to

improve teaching and learning.

The answer requires overcoming significant technical, ethical, practical, and cultural

challenges to sharing research video. File sizes and diverse formats present special

challenges for sharing. Video files are large (one hour of HD video can consume 10+ GB of

storage) and come in varied formats (from cell phones to high-speed video). Many studies

require multiple camera views to capture desired behaviors. Research video creates a data

explosion: A typical lab studying infant or child development collects 8-12 hours of

video/week (Gilmore & Adolph, 2012). Thus, sharing videos requires substantial storage

capacity and significant computational resources for transcoding videos into common,

preservable formats.

Technical challenges involved in searching the contents of videos present barriers to

sharing. Videos contain rich and diverse information that requires significant effort by

human observers to extract. Researchers make use of videos by watching them and, using

paper and pencil or more automated computerized coding software, translating

observations into ideas and numbers. In many cases, researchers assign codes to particular

portions of videos. These codes make the contents of videos searchable by others, in

principle. However, researchers focus on different questions from varied theoretical

perspectives and lack consensus on conceptual ontologies. So, in practice, most coded data

are not easily shared. Although human-centered video coding capitalizes on the unique

abilities of trained observers to capture important dimensions of behavior, machine

learning and computer vision tools may provide new avenues for tagging the contents of

videos for educational and developmental research (Amso, Haas, Tenenbaum, Markant, &

Sheinkopf, 2014; Yu & Smith, 2013; Fathi, Hodgins, & Rehg, 2012; Google Research, 2014;



VIDEO DATA SHARING 5

Raudies & Gilmore, 2014).

Open video sharing must overcome ethical challenges linked to sharing personally

identifiable data. Although policies exist for sharing de-identified data, video contains

easily identifiable data: faces, voices, names, interiors of homes and classrooms, and so on.

Removing identifiable information from video severely diminishes its reuse value and poses

additional burdens on researchers. So, open video sharing requires new policies that

protect the privacy of research participants while preserving the integrity of raw video for

reuse by others.

Open video sharing faces practical challenges of data management. Developmental

and education research is inundated by an explosion of data, most of which is inaccessible

to other researchers. Researchers lack time to find, label, clean, organize, and copy their

files into formats that can be used and understood by others (Ascoli, 2006a). Study designs

vary widely, and no two labs manage data in the same way. Idiosyncratic terms,

record-keeping, and data management practices are the norm. Few researchers document

workflows or data provenance. Although video requires minimal metadata to be useful,

video files must be electronically linked to what relevant metadata exist including

information whether participants have given permission to share.

Perhaps the most important challenge is cultural–community practices must change.

Most researchers in the education, learning, and developmental sciences do not reuse their

own videos or videos collected by other researchers; they neither recognize nor endorse the

value of open sharing. Contributing data is anathema and justifications against sharing are

many. Researchers cite intellectual property and privacy issues, the lack of data sharing

requirements from funding agencies, and fears about the misuse, misinterpretation, or

professional harm that might come from sharing (Ascoli, 2006b; Ferguson, 2014). Data

sharing diverts energy and resources from scholarly activities that are more heavily and

frequently rewarded. These barriers must be overcome to make data sharing a scientific

norm.
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Databrary.org

The Databrary project has built a digital data library (http://databrary.org)

specialized for open sharing of research videos. Databrary has overcome the most

significant barriers to sharing video, including solutions to maintaining participant privacy,

storing, streaming, and sharing video, and for managing video datasets and associated

metadata. Databrary’s technology and policies lay the groundwork for securely sharing

research videos on teaching and learning. In only a year of operation, Databrary has

collected more than 7,000 individual videos, representing 2,400 hours of recording,

featuring more than 1,800 infant, child, and adult participants. Databrary has more than

100 authorized researchers representing more than 60 institutions across the globe. Video

data is big data, and the interest in recording and sharing video for research, education,

and policy purposes continues to grow.

The Databrary project (databrary.org) arose to meet the challenges of sharing

research video and to deliver on the promise of open data sharing in educational and

developmental science. With funding from NSF (BCS-1238599) and NIH (NICHD

U01-HD-076595), Databrary has focused on building a data library specialized for video,

creating data management tools, crafting new policies that enable video sharing, and

fostering a community of researchers who embrace video sharing. Databrary also developed

a free, open-source video annotation tool, Datavyu (http://datavyu.org). The project

received funding in 2012-2013, began a private beta testing phase in the spring of 2014 and

opened for public use in October 2014.

System Design

The Databrary system enables large numbers of video and related files to be

uploaded, converted, organized, stored, streamed, and tagged. Databrary is a free,

open-source (http://github.com/databrary) web application whose data are preserved

indefinitely in a secure storage facility at NYU. Databrary can house video and audio files,
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along with associated materials, coding spreadsheets, and metadata. Video and audio data

are transcoded into standard and HTML5-compatible formats. This ensures that video

data can be streamed and downloaded by any operating system that supports a modern

browser. Copies of original video files are also stored. Databrary stores other data in their

original formats (e.g., .doc, .docx, .xls, .xlsx, .txt, .csv, .pdf, .jpg, .png).

The system’s data model embodies flexibility. Researchers organize their materials by

acquisition date and time into structures called sessions. A session corresponds to a unique

recording episode featuring specific participants. It contains one or more videos and other

file types and may be linked to user-defined metadata about the participants, tasks or

measures, and locations. A group of sessions is called a volume. Databrary contributors

may combine sessions or segments with coding manuals, coding spreadsheets, statistical

analyses, questionnaires, IRB documents, computer code, sample displays, and links to

published journal articles.

Databrary does not enforce strict ontologies for tagging volumes, sessions, or the

contents of videos. Video data are so rich and complex that in many domains, researchers

have not settled on standard definitions for particular behaviors and may have little

current need for standardized tasks, procedures, or terminology. Indeed, standardized

ontologies are not necessary for many use cases. Databrary empowers users to add keyword

tags and to select terms that have been suggested by others without being confined to the

suggestions. Moreover, Databrary encourages user communities within Databrary to

converge on common conceptual and metadata ontologies based on the most common

keyword tags, and to construct and enforce common procedures and tasks wherever this

makes sense.

Future challenges include enhancing the capacity to search for tagged segments inside

of videos. Some search functionality exists in the current software, with more extensive

capabilities on the near horizon. A related challenge involves importing files from desktop

video coding tools. This will allow for the visualization of user-supplied codes independent
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of the desktop software deployed in a particular project. We envision a parallel set of

export functions that permit full interoperability among coding tools. The priority will be

to create interoperability with tools using open, not proprietary file formats. Databrary

also recognizes the need to develop open standards and interfaces that enable Databrary to

link to and synchronize with outside sources that specialize in other data types.

Policies for Safe and Secure Video Sharing

Policies for openly sharing identifiable data in ways that securely preserve participant

privacy are essential for sharing research video. Databrary does not attempt to de-identify

videos. Instead, we maximize the potential for video reuse by keeping recordings in their

original unaltered form. To make unaltered raw videos available to others for reuse,

Databrary has developed a two-pronged access model that (a) restricts access to authorized

researchers, and (b) enables access to identifiable data only with the explicit permission of

participants.

To gain access to Databrary a person must register on the site. Applicants agree to

uphold Databrary’s ethical principles and to follow accepted practices concerning the

responsible use of sensitive data. Each applicant’s institution must co-sign an access

agreement. Full privileges are granted only to those applicants with independent researcher

status at their institutions. Others may be granted privileges if they are affiliated with a

researcher who agrees to sponsor their application and supervise their use. Ethics board or

IRB approval is not required to gain access to Databrary because many use cases do not

involve research, but IRB approval is required for research uses. Once authorized, a user

has full access to the site’s shared data, and may browse, tag, download for later viewing,

and conduct non- or pre-research activities.

Unique among data repositories, the Databrary access agreement authorizes both

data use and contribution. However, users agree to store on Databrary only materials for

which they have ethics board or IRB approval. Data may be stored on Databrary for the
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contributing researcher’s use regardless of whether the records are shared with others or

not. When a researcher chooses to share, Databrary makes the data openly available to the

community of authorized researchers.

In addition to restricting access to authorized researchers, Databrary has extended

the principle of informed consent to participate in research to encompass permission to

share data with other researchers. To formalize the process of acquiring permission,

Databrary has developed a Participant Release Template (Databrary Project, 2015) with

standard language we recommended for use with study participants. This language helps

participants to understand what is involved in sharing video data, with whom the data will

be shared, and the potential risks of releasing video and other identifiable data to other

researchers.

Managing Data for Sharing

When researchers do share, standard practice involves organizing data after a project

has finished, perhaps when a paper goes to press. This “preparing for sharing” after the

fact presents a difficult and unrewarding chore for investigators. It makes curating and

ingesting datasets challenging for repositories, as well. Databrary has chosen a different

route to curation.

We have developed a data management system that empowers researchers to upload

and organize data as it is collected. Immediate uploading reduces the workload on

investigators, minimizes the risk of data loss and corruption, and accelerates the speed with

which materials become openly available. The system employs familiar, easy-to-use

spreadsheet and timeline-based interfaces that allow users to upload videos, add metadata

about tasks, settings, and participants, link related files, and assign appropriate permission

levels for sharing. To encourage immediate uploading, Databrary provides a complete set

of controls so that researchers can restrict access to their own labs or to other users of their

choosing. Datasets can be openly shared with the broader research community at a later



VIDEO DATA SHARING 10

point when data collection and ancillary materials are complete, whenever the contributor

is comfortable sharing, or when journals or funders require it.

Building a Community

Data sharing works only when the scientific community embraces it. From the

beginning, Databrary has sought to cultivate a community of researchers who support data

sharing and commit to enacting that support in their own work flows. Our community

building efforts involve many interacting components. They include active engagement

with professional associations, conference-based exhibits and training workshops,

communications with research ethics and administration staff, talks and presentations to

diverse audiences, and one-on-one consultations with individual researchers and research

teams. These activities are time and labor-intensive, but we believe that they are critical

to changing community attitudes toward data sharing in the educational and learning

sciences. Looking ahead, it will be critical to engage funders, journals, and professional

organizations in the effort to forge community consensus about the importance, feasibility,

and potential of open video data sharing.

Conclusion

Imagine a time in the near future when researchers interested in studying classroom

teaching and learning can mine an integrated, synchronized, interoperable, open and widely

shared dataset. The components include video from multiple cameras, eye tracking,

motion, and physiological measurements, and information from both historical and

real-time student performance measures. Imagine that this classroom-level data can be

linked with grade, school, neighborhood, community, region, and state-level data about

education practice, curriculum, and policy. Then, imagine training a cadre of experts with

skills in the data science of learning and education who are sensitive to privacy,

confidentiality and ethical issues involved in research involving identifiable information. We

empower these learning scientists to extract from the data meaningful insights about how
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educational practice and policy might be improved. In short, imagine a science of teaching

and learning that can be personally tailored to individuals in ways analogous to the impact

of big data on medicine. The barriers to realizing this vision are similar to those that

confront the vision of personalized medicine – the development of technologies that enable

data to be collected, synchronized, tagged, curated, stored, shared, linked, and aggregated;

policies and practices that ensure security and individual privacy; and the cultivation of

professional expertise needed to turn raw data into actionable insights.

As Gesell once noted, cameras can record behavior in ways that make it “...as tangible

as tissue” (Scott, 2011). The Databrary team contends that video has a central role to play

in efforts to make tangible the anatomy of successful teaching and learning. In fact, we

argue that video can be the core around which other measures of teaching and learning

cluster. This requires reducing barriers to sharing video and fostering new community

values around data sharing that make it indispensible. The Databrary project has built

technology and policies that overcome many of the most significant barriers to widespread

sharing within the developmental sciences community. Databrary suggests ways that video

and other identifiable data collected in the context of education research might also be

shared. Technologies and policies for providing secure access to videos for broader use cases

will have to be developed, tools that allow desktop coding software files to be seamlessly

converted to and from one another will have to be perfected, and ways of synchronizing and

linking disparate data streams will have to be created. Equally important, communities of

scholars dedicated to collecting, sharing, and mining education-related video data will have

to be cultivated. But, we believe that the widespread sharing of high value, high impact

data of the sort that video can provide promises to achieve this ambitious vision to advance

education policy and improve practice. Databrary is working toward a future where open

video data sharing is the norm, a personalized science of teaching and learning is the goal,

and what optimizes student learning is as tangible as tissue.
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Integrating Data: Imagining the Possibilities 
Edith Gummer 

Education Research and Policy Director 
Ewing Marion Kauffman Foundation 

 
The National Science Foundation Ideas Lab to Foster Transformative 
Approaches to Teaching and Learning was an activity intended to bring together 
a range of STEM education developers and researchers to think about how large 
data sets might be leveraged to improve teaching and learning in STEM. The 
central premise of data in the announcement was that new advances in data 
analysis coupled with rich and complex data systems would enable us to develop 
and study new formal and informal learning environments. The focus on data in 
the announcement was deliberately quite wide. 

These new approaches will require the generation and use of data that 
range from micro-level data on individual learners, to data from online 
learning sources (such as massively open online courses), to meso-level 
data from the classroom that provide information to students and teachers 
about how learning is progressing, to macro-level data such as school, 
district, state, and national data, including data from federal science and 
policy agencies. (NSF, 2013) 

Both Ken Koedinger and Rick Gilmore reporting in the Integrating Data 
Repositories panel will discuss the micro level data. What I want to focus on is 
the meso and macro levels of data and the potential for integration across these 
data levels to inform research and policy studies. 
 
The NSF recently funded a proposal for researchers at SRI who are examining 
the ways in which teachers make use of data from an online learning platform 
that includes instructional resources and content assessments that serve as the 
central structure in the students’ learning environments. The intent of the 
research is to examine the key challenges facing practitioners in their use of 
information that comes from data intensive research methods and to identify 
what partnership activities best support evidence-based practices. The findings 
from this study will lead to an understanding of the utility and feasibility of a 
teacher's use of the volumes of data that come from virtual learning 
environments, effectively bridging the micro and meso level data categories. 
 
The collection and use of data collected at the meso level has lagged well behind 
the development of rich data archives at both the micro and macro level. The 
Race to the Top initiative of the Department of Education has supported a 
number of states to develop and implement Instructional Improvement Systems 
(IIS) that are currently being investigated. An IIS model frequently includes 
systems that support curriculum, formative and interim assessment, and 
instructional (lesson-planning) management. They also facilitate the use of 
electronic grade books and may support a professional development 
management component. The IIS frequently includes a daily import of data from 
the state’s Student Information System (SIS) that includes attendance and 



disciplinary data. Usually constructed by a vendor identified through a 
competitive bidding process, these data systems include standards-aligned 
lesson plans developed by teachers and externally developed resources that are 
linked to grade-books, enabling researchers to examine not only student 
achievement, but also opportunity to learn. Data from these systems are also 
used to support the determination of early warning systems that inform districts 
and schools about students at risk. 
 
Much of the meso-level education data are collected through school and district 
level systems that include student demographics, attendance, disciplinary, 
course-taking, grade, local assessments (formative, benchmark and interim), 
state assessment and SAT/ACT testing data. Student information systems are 
frequently linked to human resource data systems that facilitate connecting 
information about teachers to student data. Educators at the school and district 
level are provided data dashboards that facilitate the display of data in formats 
that are intended to be easy to interpret. Increasingly, educator use of these data 
systems has been a focus of research at the school level where the data do not 
necessarily correspond to “big data”. A study by Brunner, Fasca, Heinze, Honey, 
Light, Mandinach and Wexler (2005) documented the ways in which teachers 
used the paper and web-based data that were provided to them through the 
Grow Network in the New York public schools. Findings from this study 
emphasized the focus on “bubble” students, those who are on the cusp of 
meeting proficiency on the high stakes testing. Other researchers have examined 
the interpretive processes and social and organizational conditions under which  
data use is conducted (Coburn & Turner, 2011). But if we begin to study 
populations of teachers in districts using data, the scale increases significantly. 
These meso-level data sets connect to the macro-level data in that much of the 
data included in them are reported to the state longitudinal data systems. 
 
The Department of Education State Longitudinal Data Systems (SLDS) have 
supported the development of P-20 data systems that frequently are attached to 
workforce data as well to the tune of over half a billion dollars. These data 
represent the macro level of data and they contain data at a much larger grain 
size than micro and meso level systems. While many states are at varying levels 
of levels of interoperability of the data in these systems, a number have 
developed systems that allow for quite sophisticated research and policy 
questions to be addressed. For instance, the State of Washington Education 
Research and Data Center (WA-ERDC), housed in the states Office of Financial 
Management, was created in 2007 to assemble, link and analyze education and 
workforce data and support research focusing on student transitions. The WA-
ERDC includes data from the following agencies: 

• Department of Social and Health Services- social service program 
participants; 

• Department of Early Learning, Office – early learning and child care 
providers; 



• Office of Superintendent of Public Instruction – P-12 student state 
assessment, attendance, course-taking patterns, graduation, and 
information about teachers; 

• Washing Student Achievement Council – financial aid information; 
• State Board for Community and Technical Colleges – students, courses, 

degrees, and majors; 
• Public Centralized Higher Education Enrollment System – students, 

courses, degrees and majors; 
• Workforce Training and Education Coordinating Board – career schools, 

non-credit workforce programs; 
• Labor and Industries – state apprenticeships; and 
• Employment Security – industry, hours, and earnings. 

From the integration of these data, the WA-ERDC can produce information for 
parents, teachers, administrators, policy makers, and researchers. The center 
routinely provides data sets to researchers that contain de-identified data that 
can still be linked longitudinally under specific Memoranda of Understanding that 
protect student privacy.  
 
Seven of the first two years of awards from the NSF Building Community and 
Capacity for Data Intensive Research program focused on building the education 
and social science research community to use integrated systems that included 
education data at their core. Northwestern and Duke universities were funded to 
begin to develop a national interdisciplinary network of scholars that would use 
new datasets that linked K-12 data to birth and medical records, information from 
Medicaid and welfare programs, preschool and early childhood interventions, 
marriage and criminal records, and other workforce data. These linked datasets 
facilitate research on early childhood investments and interventions and their 
effect on school performance. They also provide the opportunity to focus on 
salient long run adult outcomes rather than just test scores. The Minnesota 
Linking Information for Kids (Minn-LInK) project expanded the focus of cross-
linked data to support a more complete understanding of child well-being with a 
special focus on at-risk children and youth. In Ohio, the Ohio Longitudinal Data 
Archive seeks to examine the effects of educational processes from pre-school 
through graduate study on economic development in that state. In Virginia, 
researchers working with Project Child HANDS are designing the data interface 
and analytic tools and determining the data governance structure and processes 
to facilitate the use of social services, child care quality and educational data. 
 
In response to the Digital Accountability and Transparency Act (DATA Act), the 
Data Quality Campaign has increased calls for  

“ data that are accessible, understandable, and actionable so they can 
make informed decisions. States’ data collection and public reporting 
efforts should move away from simply complying with state and federal 
regulations and toward answering stakeholders’ questions (DQC, no 
date). 



The Ewing Marion Kauffman Foundation has developed a data tool that is 
intended for such public use by multiple stakeholders. Called EdWise, the tool is 
scheduled for use during the early summer of 2015. 
 
EdWise came out of the need for data to inform both the identification of schools 
that would benefit from foundation support and the need to be good stewards of 
EMKF funds by providing evidence of the potential influence or impact of the 
funding actions. The state of Missouri provides spreadsheets of data on their 
website that include thousands of lines of data. We have combined fourteen 
million records of Missouri K-12 education data into a single easy-t-use online 
tool to help parents, educators, school districts, policymakers, and the general 
public better understand the educational landscape and make informed 
education decisions. With these macro-level and aggregate data, parents can 
identify schools and districts in which to enroll their children. More importantly, 
school districts can better identify other districts that have similar characteristics 
and the might provide either more targeted examples to query for assistance, or 
to use as comparisons when newspapers report annual achievement rates. 
EdWise contains hundreds of variables that extend over two decades to 
understand trends over time. EdWise does not contain student or teacher data 
from Kansas as these data are currently embargoed under Kansas legislation. 
We are currently working with the departments of higher education in both 
Kansas and Missouri to connect aggregate data from postsecondary institutions 
with K-12 information. But what the higher education data users want is the 
connection of higher education data with that from work force so that they can 
demonstrate the importance of postsecondary education. In our experience, each 
level of the system wants to look both behind and ahead of their own level of 
data.  
 
Integrating these multiple levels of data presents serious technical and system 
level problems. Data are frequently still sequestered in silos within and across 
different levels. Figuring out how to address issues around identifiers is another 
technical problem. Privacy issues are also a barrier to integrating data sources. 
Ken and Rick identify even more technical problems. But what kinds of real-world 
educational questions might we answer if we solved these problems and 
developed the ability to truly track students across educational contexts and 
systems?   
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Introduction	
  

This	
  document	
  touches	
  on	
  many	
  types	
  of	
  “big	
  data”	
  applications.	
  Large	
  amounts	
  of	
  data	
  can	
  be	
  
gathered	
  across	
  many	
  learners	
  (broad	
  between-­‐learner	
  data),	
  but	
  also	
  within	
  individual	
  learners	
  (deep	
  
within-­‐learner	
  data).	
  The	
  depth	
  of	
  the	
  data	
  is	
  determined	
  not	
  only	
  by	
  the	
  raw	
  amount	
  of	
  data	
  on	
  a	
  given	
  
learner,	
  but	
  also	
  by	
  the	
  availability	
  of	
  contextual	
  information.1	
  Possible	
  applications	
  range	
  from	
  game-­‐
based	
  learning	
  environments	
  to	
  analytics	
  to	
  MOOCs,	
  to	
  integrated	
  advising	
  systems,	
  to	
  competency-­‐
based	
  systems,	
  and	
  more.	
  

Big	
  data	
  in	
  education	
  provides	
  many	
  opportunities,	
  such	
  as:	
  

• Individualizing	
  a	
  student’s	
  path	
  to	
  content	
  mastery,	
  through	
  adaptive	
  learning	
  or	
  competency-­‐
based	
  education.	
  

• Better	
  learning	
  as	
  a	
  result	
  of	
  faster	
  diagnosis	
  of	
  learning	
  needs	
  or	
  course	
  trouble	
  spots.	
  
• Targeted	
  interventions	
  to	
  improve	
  student	
  success	
  and	
  reduce	
  overall	
  costs	
  to	
  students	
  and	
  

institutions.	
  
• Deeper	
  learning	
  and	
  better	
  transfer	
  of	
  knowledge	
  by	
  using	
  game-­‐based	
  environments	
  for	
  

learning	
  and	
  assessment,	
  where	
  learning	
  is	
  situated	
  in	
  complex	
  information	
  and	
  decision-­‐making	
  
situations,	
  using	
  games	
  as	
  an	
  architecture	
  for	
  engagement	
  and	
  assessment	
  of	
  skills	
  such	
  as	
  
systems	
  thinking,	
  collaboration,	
  problem	
  solving	
  in	
  the	
  context	
  of	
  subject-­‐area	
  knowledge.	
  

• A	
  new	
  credentialing	
  paradigm	
  for	
  the	
  digital	
  ecosystem,	
  integrating	
  micro-­‐credentials,	
  diplomas,	
  
and	
  informal	
  learning	
  in	
  ways	
  that	
  serve	
  the	
  individual	
  and	
  employers.	
  

• Academic	
  resource	
  decision-­‐making,	
  such	
  as	
  managing	
  costs	
  per	
  student	
  credit	
  hour,	
  reducing	
  
DFW	
  rates,	
  eliminating	
  bottleneck	
  courses,	
  aligning	
  course	
  capacity	
  with	
  changing	
  student	
  
demand,	
  etc.	
  	
  

While	
  there	
  is	
  tremendous	
  potential,	
  many	
  questions	
  remain	
  unasked	
  and	
  unanswered.	
  Below	
  are	
  some	
  
of	
  the	
  challenges	
  that	
  might	
  be	
  addressed	
  through	
  additional	
  research.	
  Note	
  that	
  several	
  items	
  are	
  not	
  
discussed	
  here	
  because	
  they	
  are	
  likely	
  to	
  be	
  addressed	
  in	
  other	
  papers	
  (e.g.,	
  analytics	
  or	
  game-­‐based	
  
environments).	
  	
  

Challenges	
  

There	
  are	
  a	
  number	
  of	
  challenges	
  associated	
  with	
  data-­‐intensive	
  environments.	
  Below	
  is	
  a	
  sampling	
  of	
  
issues.	
  One	
  illustrates	
  the	
  challenges	
  of	
  complex	
  systems	
  (integrated	
  competency	
  management	
  system	
  
for	
  students,	
  higher	
  education	
  and	
  employers);	
  another	
  focuses	
  on	
  technical	
  infrastructure	
  (next	
  
generation	
  digital	
  learning	
  environment).	
  Two	
  illustrate	
  challenges	
  in	
  human	
  capacity,	
  specifically	
  
awareness/adoption	
  and	
  workforce	
  development.	
  The	
  final	
  area	
  illustrated	
  deals	
  with	
  policy.	
  Note	
  that	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  Thille,	
  C.,	
  Schneider,	
  D.	
  E.,	
  Kizilcec,	
  R.	
  F.,	
  Piech,	
  C.,	
  Halawa,	
  S.	
  A.,	
  &	
  Greene,	
  D.	
  K.	
  (2014).	
  The	
  Future	
  of	
  data–
enriched	
  assessment.	
  Research	
  &	
  Practice	
  in	
  Assessment,	
  9(2),	
  5-­‐16.	
  http://www.rpajournal.com/dev/wp-­‐
content/uploads/2014/10/A1.pdf	
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some	
  (e.g.,	
  policy	
  issues)	
  may	
  not	
  lend	
  themselves	
  to	
  NSF-­‐supported	
  research	
  however	
  they	
  must	
  be	
  
addressed	
  to	
  achieve	
  the	
  potential	
  of	
  data-­‐intensive	
  environments.	
  

Integrated	
  Competency	
  Management	
  System	
  for	
  Students,	
  Higher	
  Education	
  and	
  Employers	
  

There	
  is	
  an	
  opportunity	
  to	
  use	
  big	
  data	
  capabilities	
  to	
  create	
  an	
  integrated	
  competency	
  management	
  
system	
  that	
  supports	
  students,	
  higher	
  education	
  and	
  employers.	
  Such	
  a	
  system	
  would	
  integrate	
  “the	
  
body	
  of	
  knowledge,	
  skills,	
  and	
  experience	
  achieved	
  through	
  both	
  formal	
  and	
  informal	
  activities	
  that	
  an	
  
individual	
  accumulates	
  and	
  validates	
  during	
  their	
  lifetime.”2	
  	
  

The	
  current	
  environment	
  for	
  skills,	
  credentials,	
  and	
  employment	
  opportunities	
  is	
  disconnected.	
  	
  
Students	
  attend	
  multiple	
  institutions	
  and	
  can	
  assemble	
  experience	
  and	
  credentials	
  that	
  go	
  beyond	
  a	
  
degree.	
  Students	
  use	
  non-­‐institutional	
  career	
  development	
  networks,	
  in	
  part	
  because	
  institutions	
  do	
  not	
  
have	
  enough	
  career	
  services	
  professionals.	
  Students	
  and	
  employers	
  are	
  turning	
  to	
  LinkedIn,	
  Monster,	
  
and	
  CareerBuilder.	
  For	
  example,	
  LinkedIn	
  reports	
  hosting	
  300	
  million	
  individual	
  profiles.	
  More	
  than	
  75%	
  
of	
  employers	
  use	
  social	
  networks	
  for	
  employee	
  recruitment.	
  The	
  opportunity	
  appears	
  to	
  be	
  significant.	
  
For	
  example,	
  investors	
  have	
  dedicated	
  more	
  than	
  $700	
  million	
  to	
  education	
  businesses	
  focused	
  on	
  
ventures	
  that	
  disaggregate	
  and	
  re-­‐aggregate	
  credentials.3	
  

“Foundational	
  lifelong	
  skills	
  such	
  as	
  critical	
  thinking,	
  teamwork	
  and	
  collaboration,	
  and	
  problem	
  solving	
  
are	
  climbing	
  to	
  the	
  top	
  of	
  employers’	
  wish	
  lists,	
  and	
  yet	
  few	
  institutional	
  measures	
  capture	
  these	
  
attributes.	
  These	
  dynamics	
  are	
  pushing	
  students	
  and	
  employers	
  to	
  explore	
  alternative	
  platforms	
  for	
  
both	
  presenting	
  and	
  evaluating	
  profiles	
  that	
  capture	
  an	
  individual’s	
  evidence	
  of	
  learning.”4	
  	
  	
  	
  	
  

There	
  are	
  at	
  least	
  5	
  elements	
  that	
  involve	
  big	
  data:	
  

• Experience:	
  The	
  process	
  of	
  learning,	
  formally	
  or	
  informally,	
  including	
  MOOCs,	
  adaptive	
  learning,	
  
social	
  learning	
  models,	
  etc.	
  Also	
  included	
  are	
  non-­‐course-­‐based	
  learning	
  activities.	
  

• Validate:	
  Assessing	
  and	
  recognizing	
  experiences	
  for	
  credit	
  or	
  qualifications,	
  including	
  non-­‐
cognitive	
  attributes	
  of	
  students,	
  badging	
  or	
  micro-­‐credentialing,	
  credit	
  for	
  prior	
  learning	
  and	
  
training	
  experiences.	
  

• Assemble:	
  Capturing	
  and	
  curating	
  evidence	
  of	
  learning,	
  including	
  transcripts,	
  assessments,	
  
outside	
  learning	
  experiences,	
  etc.	
  

• Promote:	
  Marking	
  the	
  assembled	
  evidence	
  to	
  link	
  candidates	
  and	
  opportunities,	
  which	
  may	
  
include	
  social	
  media	
  analytics,	
  behavioral	
  assessment,	
  and	
  other	
  data-­‐mining	
  techniques.	
  

• Align:	
  Using	
  feedback	
  loops	
  to	
  constantly	
  evaluate	
  performance	
  and	
  make	
  improvements	
  and	
  
the	
  individual	
  and	
  enterprise	
  level.	
  

Today,	
  this	
  emerging	
  cross-­‐segment	
  competency	
  management	
  system	
  appears	
  to	
  be	
  developing	
  outside	
  
of	
  higher	
  education.	
  Colleges	
  and	
  universities	
  can	
  bridge	
  students	
  and	
  the	
  workplace	
  by	
  aligning	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
  Newman,	
  Adam.	
  (2015,	
  February).	
  Evidence	
  of	
  Learning:	
  The	
  Case	
  for	
  an	
  Integrated	
  Competency	
  Management	
  
System.	
  http://tytonpartners.com/library/evidence-­‐learning-­‐case-­‐integrated-­‐competency-­‐management-­‐system/	
  	
  
3	
  Ibid.	
  
4	
  Ibid,	
  page	
  6	
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learning	
  outcomes	
  across	
  institutions	
  and	
  employers.	
  But	
  developing	
  scalable	
  systems	
  will	
  also	
  require	
  
technical	
  integration	
  and	
  workflow	
  processes.	
  

Research	
  could	
  advance	
  individual	
  elements	
  (e.g.,	
  adaptive	
  learning,	
  non-­‐cognitive	
  skill	
  assessment,	
  etc.)	
  
of	
  this	
  framework.	
  Research	
  may	
  catalyze	
  the	
  necessary	
  data	
  exchanges	
  among	
  institutions	
  and	
  
employers	
  that	
  will	
  be	
  required	
  for	
  such	
  a	
  system	
  to	
  be	
  successful.	
  	
  

Next	
  Generation	
  Digital	
  Learning	
  Environment	
  

The	
  LMS	
  is	
  the	
  most	
  ubiquitous	
  digital	
  tool	
  in	
  higher	
  education.	
  In	
  spite	
  of	
  its	
  prevalence,	
  the	
  LMS	
  is	
  
largely	
  designed	
  to	
  administer	
  learning	
  (e.g.,	
  distribution	
  of	
  materials,	
  gradebooks,	
  etc.)	
  rather	
  than	
  
enabling	
  it.	
  It	
  is	
  also	
  predicated	
  on	
  a	
  course-­‐centric	
  and	
  instructor-­‐centric	
  model.	
  That	
  model	
  is	
  being	
  
replaced	
  with	
  a	
  focus	
  on	
  learning	
  and	
  the	
  learner,	
  moving	
  beyond	
  courses	
  and	
  today’s	
  credentialing	
  
systems.	
  	
  

The	
  LMS	
  needs	
  to	
  be	
  replaced	
  by	
  a	
  new	
  digital	
  architecture	
  and	
  components	
  for	
  learning.	
  This	
  “next	
  
generation	
  digital	
  learning	
  environment”	
  may	
  not	
  be	
  a	
  single	
  application	
  like	
  today’s	
  LMS	
  but	
  be	
  more	
  of	
  
a	
  “mash-­‐up”	
  or	
  “lego	
  set.”	
  EDUCAUSE	
  research	
  suggests	
  that	
  the	
  next	
  generation	
  digital	
  learning	
  
environment	
  (NGDLE)	
  will	
  be	
  an	
  ecosystem	
  of	
  sorts,	
  characterized	
  by:	
  

• Interoperability	
  and	
  integration:	
  Interoperability	
  is	
  the	
  linchpin	
  of	
  the	
  NGDLE.	
  The	
  ability	
  to	
  
integrate	
  tools	
  and	
  exchange	
  content	
  and	
  learning	
  data	
  enables	
  everything	
  else.	
  

• Personalization:	
  Personalization	
  is	
  the	
  most	
  important	
  user-­‐facing	
  functional	
  domain	
  of	
  the	
  
NGDLE.	
  

• Analytics,	
  advising,	
  and	
  learning	
  assessment:	
  The	
  analysis	
  of	
  all	
  forms	
  of	
  learning	
  data	
  is	
  a	
  vital	
  
component	
  of	
  the	
  NGDLE	
  and	
  must	
  include	
  support	
  for	
  new	
  learning	
  assessment	
  approaches,	
  
particularly	
  in	
  the	
  area	
  of	
  competency-­‐based	
  education.	
  

• Collaboration:	
  The	
  NGDLE	
  must	
  support	
  collaboration	
  at	
  multiple	
  levels	
  and	
  make	
  it	
  easy	
  to	
  
move	
  between	
  private	
  and	
  public	
  digital	
  spaces.	
  

• A	
  cloud-­‐like	
  space	
  to	
  aggregate	
  and	
  connect	
  content	
  and	
  functionality,	
  similar	
  to	
  a	
  smartphone,	
  
where	
  users	
  fashion	
  their	
  environments	
  directly	
  with	
  self-­‐selected	
  apps.	
  	
  

In	
  addition,	
  there	
  may	
  be	
  a	
  host	
  of	
  additional	
  NGDLE	
  components,	
  such	
  as:	
  

• Learning	
  environment	
  architectures:	
  A	
  set	
  of	
  exemplary	
  NGDLE	
  architecture	
  designs,	
  which	
  
could	
  serve	
  as	
  models	
  for	
  the	
  community.	
  	
  

• Smart	
  tools:	
  A	
  set	
  of	
  learning-­‐tool	
  designs	
  that	
  explicitly	
  incorporate	
  learning	
  science	
  and	
  
universal	
  design	
  and	
  are	
  fully	
  NGDLE	
  compliant.	
  	
  

• Learning	
  measurement	
  rubrics:	
  A	
  set	
  of	
  designs	
  to	
  effectively	
  integrate	
  new	
  rubrics	
  for	
  learning	
  
measurement	
  and	
  degree	
  progress	
  (e.g.,	
  competency)	
  into	
  the	
  NGDLE.	
  5	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5	
  Brown,	
  M.,	
  Dehoney,	
  J.,	
  and	
  Millichap,	
  N.	
  (2015).	
  The	
  next	
  generation	
  digital	
  learning	
  environment:	
  a	
  report	
  on	
  
research.	
  (EDUCAUSE	
  Learning	
  Initiative	
  Paper).	
  http://net.educause.edu/ir/library/pdf/eli3035.pdf	
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Research	
  is	
  needed	
  to	
  validate	
  these	
  elements	
  and	
  document	
  best	
  practices	
  in	
  architectures,	
  tools,	
  
rubrics,	
  etc.	
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Audience,	
  Awareness	
  and	
  Adoption	
  

Awareness	
  and	
  adoption	
  of	
  data-­‐intensive	
  educational	
  tools	
  is	
  very	
  uneven.	
  MOOCs	
  are	
  an	
  example.	
  
EDUCAUSE	
  surveys	
  found	
  that	
  about	
  three	
  in	
  four	
  faculty	
  (76%)	
  said	
  they	
  are	
  either	
  conceptually	
  or	
  
experientially	
  familiar	
  with	
  MOOCs;	
  compare	
  this	
  to	
  only	
  one	
  in	
  four	
  undergraduates	
  (24%)	
  who	
  say	
  
they	
  know	
  what	
  a	
  MOOC	
  is.	
  Though	
  few	
  faculty	
  reported	
  having	
  actually	
  taught	
  a	
  MOOC	
  (3%),	
  they	
  are	
  
much	
  more	
  likely	
  than	
  students	
  to	
  know	
  about	
  this	
  alternative	
  model	
  for	
  online	
  learning.	
  	
  

Part-­‐time	
  faculty	
  (53%)	
  expressed	
  more	
  support	
  than	
  full-­‐time	
  faculty	
  (38%);	
  furthermore,	
  non-­‐tenure-­‐
track	
  faculty	
  (46%)	
  were	
  more	
  supportive	
  than	
  tenured	
  (34%)	
  or	
  tenure-­‐track	
  (39%)	
  faculty.	
  About	
  two	
  
in	
  five	
  faculty	
  (43%)	
  with	
  less	
  than	
  10	
  years	
  of	
  teaching	
  experience	
  were	
  supportive,	
  whereas	
  somewhat	
  
fewer	
  faculty	
  (37%)	
  with	
  10	
  or	
  more	
  years	
  of	
  experience	
  were	
  supportive.	
  Not	
  surprisingly,	
  the	
  picture	
  
painted	
  here	
  is	
  that	
  newer	
  (less	
  experienced)	
  faculty	
  have	
  more	
  positive	
  perceptions	
  of	
  MOOCs	
  adding	
  
value	
  to	
  higher	
  education.6	
  

The	
  population	
  enrolling	
  in	
  MOOCs	
  may	
  be	
  somewhat	
  different	
  than	
  earlier	
  predictions.	
  Young	
  learners	
  
are	
  a	
  rising	
  proportion	
  of	
  the	
  MOOC	
  population,	
  according	
  to	
  University	
  of	
  Edinburgh	
  research,	
  with	
  
those	
  under	
  18	
  rising	
  50%.	
  While	
  they	
  are	
  still	
  only	
  5%	
  of	
  the	
  learners	
  on	
  average,	
  the	
  increase	
  may	
  be	
  
tied	
  to	
  teachers.7	
  Recent	
  research	
  from	
  edX	
  and	
  HarvardX	
  illustrated	
  that	
  a	
  major	
  audience	
  for	
  MOOCs	
  
are	
  teachers	
  (28%	
  of	
  enrollees	
  in	
  11	
  different	
  MOOCs	
  were	
  former	
  or	
  active	
  teachers).8	
  As	
  we	
  
understand	
  more	
  about	
  MOOC	
  audiences	
  and	
  motivations,	
  we	
  may	
  need	
  to	
  shift	
  the	
  design	
  of	
  MOOCs	
  
to	
  better	
  align	
  with	
  audiences	
  served.	
  Ongoing	
  research	
  on	
  audience,	
  experience,	
  and	
  outcomes	
  will	
  be	
  
important.	
  	
  

Workforce	
  Development	
  

Data-­‐intensive	
  environments	
  demand	
  a	
  new	
  type	
  of	
  professional	
  that	
  some	
  call	
  data	
  scientists.	
  No	
  
matter	
  what	
  the	
  name,	
  higher	
  education	
  needs	
  to	
  develop	
  the	
  skills	
  of	
  these	
  professionals	
  as	
  well	
  as	
  a	
  
“pipeline”	
  into	
  the	
  profession.	
  Data	
  science	
  is	
  a	
  blend	
  of	
  fields,	
  including	
  statistics,	
  applied	
  mathematics,	
  
and	
  computer	
  science.	
  

Qualities	
  of	
  data	
  scientists	
  who	
  can	
  address	
  data-­‐intensive	
  challenges	
  include:	
  

• Technical	
  Skills:	
  Mathematics,	
  statistics,	
  and	
  computer	
  science	
  skills	
  to	
  work	
  with	
  data	
  and	
  
analyze	
  it.	
  	
  

• Tool	
  Mastery:	
  Complex	
  software	
  tools	
  are	
  critical	
  to	
  analyzing	
  massive	
  amounts	
  of	
  data.	
  	
  
• Teamwork	
  Skills:	
  Almost	
  all	
  of	
  the	
  data	
  science	
  roles	
  are	
  cross-­‐disciplinary	
  and	
  team-­‐based,	
  

hence	
  teamwork	
  skills	
  are	
  critical.	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6	
  Dahlstrom,	
  E.,	
  and	
  Brooks,	
  D.C.	
  (2014,	
  July)	
  ECAR	
  Study	
  of	
  Faculty	
  and	
  Information	
  Technology,	
  2014.	
  (ECAR	
  
Research	
  Report)	
  http://net.educause.edu/ir/library/pdf/ers1407/ers1407.pdf	
  	
  
7	
  Macleod,	
  H.,	
  Haywood,	
  J.,	
  Woodgate,	
  A.,	
  and	
  Alkhatnai,	
  M.	
  (2015).	
  Emerging	
  patterns	
  in	
  MOOCs:	
  Learners,	
  
course	
  designs	
  and	
  directions.	
  TechTrends,	
  59(1),	
  56-­‐63.	
  doi:10.1007/s11528-­‐014-­‐0821-­‐y	
  
8	
  Pope,	
  J.	
  (2015).	
  What	
  Are	
  MOOCs	
  Good	
  For?	
  Technology	
  Review,	
  118(1),	
  68-­‐71.	
  
http://www.technologyreview.com/review/533406/what-­‐are-­‐moocs-­‐good-­‐for/	
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• Communication	
  Skills:	
  Deriving	
  insights	
  from	
  data,	
  communicating	
  the	
  value	
  of	
  a	
  data	
  insight,	
  
and	
  communicating	
  in	
  a	
  way	
  that	
  decision	
  makers	
  can	
  trust	
  what	
  they’re	
  being	
  told.	
  

• Business	
  Skills:	
  Understanding	
  of	
  the	
  business,	
  bringing	
  value	
  from	
  contextual	
  understanding	
  to	
  
the	
  data	
  analysis.9	
  

	
  
Developing	
  an	
  understanding	
  of	
  the	
  skills	
  essential	
  in	
  data	
  scientists	
  and	
  others	
  who	
  support	
  big	
  data	
  
systems	
  will	
  be	
  important	
  so	
  that	
  institutions	
  can	
  develop	
  the	
  appropriate	
  training	
  and	
  education	
  
programs	
  as	
  well	
  as	
  attract	
  students.	
  	
  
	
  
Policy	
  

Most	
  data-­‐intensive	
  environments	
  represent	
  risks	
  and	
  challenges	
  in	
  policy	
  areas,	
  particularly	
  privacy	
  and	
  
security.	
  While	
  there	
  may	
  be	
  model	
  policies	
  in	
  place	
  at	
  some	
  institutions,	
  the	
  appropriate	
  policy	
  
infrastructure	
  is	
  not	
  in	
  place	
  at	
  many	
  institutions.	
  In	
  addition,	
  many	
  policy	
  discussions	
  are	
  hampered	
  by	
  
misinformation	
  and	
  fear.	
  Appropriate	
  policies	
  must	
  address	
  privacy,	
  security,	
  and	
  data	
  sharing.	
  Federal	
  
regulations,	
  such	
  as	
  FERPA,	
  are	
  often	
  misunderstood.	
  	
  	
  

Good	
  information	
  security	
  practices	
  are	
  essential	
  to	
  reduce	
  risk;	
  safeguard	
  data,	
  information	
  systems,	
  
and	
  networks;	
  and	
  protect	
  the	
  privacy	
  of	
  the	
  higher	
  education	
  community.	
  Good	
  institutional	
  
information	
  security	
  practices	
  encompass	
  the	
  technologies,	
  policies	
  and	
  procedures,	
  and	
  education	
  and	
  
awareness	
  activities	
  that	
  balance	
  the	
  need	
  to	
  use	
  information	
  to	
  support	
  institutional	
  missions	
  with	
  the	
  
need	
  to	
  protect	
  it	
  from	
  internal	
  and	
  external	
  threats	
  and	
  ensure	
  the	
  privacy	
  of	
  the	
  campus	
  community.	
  
These	
  practices	
  constantly	
  evolve	
  as	
  the	
  threat	
  landscape	
  evolves.	
  
	
  
All	
  individuals	
  associated	
  with	
  colleges	
  and	
  universities,	
  whether	
  faculty,	
  staff,	
  or	
  students,	
  need	
  to	
  
protect	
  their	
  privacy	
  and	
  control	
  their	
  digital	
  footprint.	
  Big	
  data	
  environments	
  escalate	
  the	
  importance	
  
of	
  ensuring	
  that	
  protecting	
  privacy	
  and	
  data	
  are	
  everyone's	
  priority.	
  There	
  are	
  different	
  types	
  of	
  privacy	
  
that	
  should	
  be	
  recognized.	
  For	
  example,	
  autonomy	
  privacy	
  is	
  an	
  individual's	
  ability	
  to	
  conduct	
  activities	
  
without	
  concern	
  of	
  or	
  actual	
  observation.	
  Information	
  privacy	
  is	
  the	
  appropriate	
  protection,	
  use,	
  and	
  
dissemination	
  of	
  information	
  about	
  individuals.	
  Information	
  security	
  supports,	
  and	
  is	
  essential	
  to,	
  
autonomy	
  and	
  information	
  privacy.10	
  

Institutions	
  must	
  be	
  aware	
  of	
  many	
  ramifications	
  of	
  big	
  data,	
  such	
  as:	
  

• Legal	
  and	
  compliance	
  issues:	
  The	
  consequences	
  of	
  compliance	
  failure	
  may	
  be	
  significant	
  in	
  
analytics	
  systems.	
  Regulatory	
  compliance	
  (e.g.,	
  FERPA,	
  HIPAA),	
  e-­‐discovery	
  rules,	
  open	
  records	
  
laws,	
  student	
  privacy	
  expectations	
  (confidentiality),	
  and	
  the	
  role	
  of	
  the	
  institutional	
  review	
  
board	
  may	
  all	
  come	
  into	
  play.	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9	
  Dan	
  Woods	
  (2012,	
  March)	
  What	
  Is	
  a	
  Data	
  Scientist?:	
  Michael	
  Rappa,	
  Institute	
  for	
  Advanced	
  Analytics.	
  Forbes	
  
Magazine.	
  http://www.forbes.com/sites/danwoods/2012/03/05/what-­‐is-­‐a-­‐data-­‐scientist-­‐michael-­‐rappa-­‐north-­‐
carolina-­‐state-­‐university/3/	
  	
  
10	
  Ho,	
  Lisa.	
  (2015)	
  Privacy	
  vs.	
  Privacy.	
  http://www.educause.edu/blogs/lisaho/privacy-­‐vs-­‐privacy	
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• Unintended	
  consequences	
  of	
  third-­‐party	
  data	
  access/use:	
  The	
  use	
  of	
  big	
  data	
  systems	
  may	
  raise	
  
concerns	
  about	
  third-­‐party	
  misuse	
  of	
  data	
  or	
  its	
  use	
  for	
  anything	
  other	
  than	
  its	
  intended	
  
purpose.	
  	
  

• Inappropriate	
  use	
  of	
  data:	
  Institutions	
  may	
  make	
  inappropriate	
  use	
  of	
  the	
  data	
  presented	
  in	
  
dashboards	
  or	
  reports,	
  or	
  misunderstand	
  their	
  limits.11	
  	
  

• Data	
  ownership:	
  Arguments	
  exist	
  for	
  students	
  to	
  control	
  data	
  about	
  themselves,	
  as	
  they	
  do	
  for	
  
institutions.	
  The	
  success	
  of	
  analytics	
  depends	
  on	
  institutions	
  accessing,	
  curating,	
  harvesting,	
  and	
  
controlling	
  multiple	
  sources	
  of	
  data.	
  Lack	
  of	
  control	
  over	
  the	
  data	
  might	
  compromise	
  the	
  
integrity	
  of	
  data-­‐driven	
  initiatives.12	
  	
  

Research	
  associated	
  with	
  data-­‐intensive	
  applications	
  must	
  be	
  based	
  on	
  an	
  understanding	
  of	
  the	
  relevant	
  
policy	
  factors.	
  And,	
  institutional	
  implementation	
  of	
  these	
  systems	
  will	
  only	
  be	
  successful	
  if	
  there	
  is	
  a	
  
solid	
  policy	
  framework	
  at	
  the	
  institution	
  as	
  well	
  as	
  at	
  Federal	
  levels.	
  	
  

Conclusion	
  

The	
  five	
  sections	
  included	
  in	
  this	
  thought	
  paper	
  are	
  illustrative	
  of	
  the	
  opportunities,	
  challenges	
  and	
  
research	
  needed	
  to	
  advance	
  data-­‐intensive	
  areas	
  in	
  education.	
  	
  

	
  

	
  

Diana	
  Oblinger	
  
President	
  and	
  CEO,	
  EDUCAUSE	
  

May,	
  2015	
  
	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
11	
  EDUCAUSE.	
  (2014,	
  April)	
  What	
  Leaders	
  Need	
  to	
  Know	
  about	
  Managing	
  Data	
  Risk	
  in	
  Student	
  Success	
  Systems.	
  	
  
http://www.educause.edu/library/resources/what-­‐leaders-­‐need-­‐know-­‐about-­‐managing-­‐data-­‐risk-­‐student-­‐success-­‐
systems	
  	
  
12	
  Jones,	
  K.	
  M.	
  L.,	
  Thomson,	
  J.,	
  and	
  Arnold,	
  K.	
  (2014,	
  August	
  25).	
  Questions	
  of	
  data	
  ownership	
  on	
  campus.	
  
EDUCAUSE	
  Review	
  Online.	
  http://www.educause.edu/ero/article/questions-­‐data-­‐ownership-­‐campus	
  	
  
	
  



Big Data and Assessment of Complex Skills

Piotr Mitros
edX

Historically, assessment in classrooms was limited to instructor grading, or problems that lend
themselves well to relatively simple automation, such as multiple-choice questions. Progress
in educational technology, combined with economies of scale, has allowed us to digitally mea-
sure student performance on authentic assessments such as engineering design problems and
free-form text answers, radically increasing the depth and the accuracy of our measurements
of what students learn, allowing us to tailor instruction to specific students needs and giving
individualized feedback for an increasing range of issues. In addition, social interactions have
increasingly moved on-line. We now have traces of a substantial portion of student-student
interactions. By integrating these and other sources of data, we have data with which we can
estimate complex skills, such as mathematical maturity, complex problem solving, and team-
work for large numbers of students. This paper looks at the potential information found in the
data we now collect, some of the challenges with making sense of that data, and some early
successes in analyzing that data. The data is complex. Actually extracting useful high-level
metrics has proven difficult. The next grand challenge in big data in education will be finding
ways to analyze complex data from heterogeneous sources to extract such measurements.

Keywords: educational datamining, assessment

Twenty years ago, most digital assessments consisted of
multiple choice questions and most social interactions hap-
pened in person. Data was spread out over multiple sys-
tems with no practical means of integration. Over the past
two decades, we have seen fundamental progress in edu-
cational technology, combined with broad-based adoption
of such technology at scale1. Digital assessment has in-
creasingly moved towards rich authentic assessment. Pre-
viously, widely available data for large numbers of students
principally came from standardized exams or standardized
research instruments such as the Force Concept Inventory.
These assessments are limited to a short time window, and
as a result, they either contain a large number of small prob-
lems (which are statistically significant, but generally fail to
capture skills which require more than a minute or two to
measure), or a small number of large problems (which, on a
per-student basis lack statistical significance). Today, we are
increasingly collecting data for students doing a large num-
bers of complex problems as part of their regular coursework.
For example, the first edX/MITx course2, 6.002x (Mitros et
al., 2013) was implemented entirely with authentic assess-
ment. Students completed circuit design problems (verified
through simulation), and design and analysis problems (with
answers as either equations or numbers). Since these types of
questions have a near-infinite number of possible solutions,
answers cannot be guessed. Students could attempt to submit
an answer as many times as necessary in order to completely
understand and solve a problem. The assessments were com-
plex – most weeks of the course had just four assessments,

but completing those four required 10-20 hours of work. We
see similarly rich assessments in courses such as chemistry,
biology, physics, digital electronics, and many others. Such
complex assessments, taken together across many courses,
give rich data about problem solving skills, creativity, and
mathematical maturity.

Furthermore, we now collect microscopic data about indi-
vidual student actions. We can see not only which problems
students answered correctly, but how they got there. Exten-
sive literature on expert-novice shows differences in prob-
lem solving strategy between novices and experts. For ex-
ample, experts can chunk information (Schneider, Gruber,
Gold, & Opwis, 1993) – an expert looking at an analog cir-
cuit will be able to remember that circuit, whereas a novice
will not (Egan & Schwartz, 1979). In our data sets, we can
see actions which reflect such differences. Continuing with
the example of chunking, we record how many times a stu-
dent flips between pages of a problem set, looks up equations
in a textbook, and similar activities which are proxies for ex-
pertise.

Next, social interactions are increasingly moving on-line.
As we introduce increased amounts of digital group work to

1We define at-scale learning environments as ones where thou-
sands of students share common digital resources, and where we
collect data about such use. This includes MOOCs, but also many
educational technologies predating MOOCs, as well as formats
such as SPOCs.

2Used both in a pure on-line format, as well as in a blended
format in a number of schools
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courses, we start to see traces of social activity in our logs.
We can begin to look for students who under-perform or
over-perform in group tasks, and directly measure students’
contributions to groups. We have enough data to begin to
look for specific actions and patterns that lead to good over-
all group performance, and hopefully we will be able to use
such patterns to provide feedback to students. Natural lan-
guage processing frameworks, such as the open-source edX
EASE and Discern, are still used primarily for short-answer
grading, but were designed to also apply to analysis of so-
cial activities, such as e-mails and forum posts, as well. We
believe this will begin to give insights into soft skills, writ-
ing processes (Southavilay, Yacef, Reimann, & Calvo, 2013),
communications styles, and group dynamics.

Finally, aside from just looking within individual courses,
we can perform longitudinal analysis across a student’s edu-
cational career. In most cases, a single group design project
does not provide statistically significant information. How-
ever, all of the projects over the duration of a student’s
schooling are likely to be significant. Learning analytics sys-
tems are increasingly moving in the direction of aggregating
information from multiple sources across multiple courses.
Open analytics architectures (Siemens et al., 2011) such as
edX Insights (Mitros, 2013) or Tin Can provide a common
data repository for all of a student’s digital learning activities.

However, going from data to measurement is a complex
problem. In the next few sections of this paper, we will dis-
cuss some of the challenges, as well as early successes.

Challenges – Pedagogical Design

There is substantial friction between the design for dif-
ferent educational purposes, of which, measurement is just
one. Assignments and assessments in courses have several
objectives:

• Initial and formative assessment as an ongoing
means of monitoring what students know. This al-
lows instructors and students to tailor teaching and
learning to problematic areas (Sadler, 1989).

• The principal means by which student learn new
information. In many subjects, most student learning
happens through assignments where they manipulate,
derive, or construct knowledge (Chi, 2011) – not lec-
tures, videos, or readings.

• A key components of grading. Grading itself has
multiple goals, from certifying student accomplish-
ment to providing motivation for desired student be-
haviors.

• Summative assessment of both students and
courses. Summative assessment has many goals, such
as student certification and school accreditation.

Historically, different research communities emphasized
different objectives and gave very different principles around
how good assessments ought to be constructed. For example,
the psychometrics community principally relies on metrics
such as validity and reliability. These suggest a high level of
standardization in assessments. In contrast, the physics edu-
cation research community emphasizes concepts such as the
trade-off between authentic assessment and deliberate prac-
tice (Ericsson, Krampe, & Tesch-Römer, 1993), as well as
principles such as rapid feedback, active learning, and con-
structive learning. Educational psychology (Bloom, 1984)
and gamification emphasize mastery learning (where stu-
dents eventually get all questions right).

Numerical techniques which presume that assessments are
developed designed based on principles which optimize for
measurement often fail when applied to the much broader
set of classroom assessments. There is an inherent friction
between:

• Having a sufficient number of problems for statisti-
cal significance vs. long-form assessments which al-
low students to exercise complex problem solving and
mathematical maturity.

• Measuring individual students vs. group work3.

• Standardized assessments vs. diversity in education.
The US economy benefits from a diverse workforce,
and the educational system, especially at a tertiary
level, is designed to create one. There are over ten
thousand distinct university-level courses.

• Aiming for 50% of questions correct (maximize mea-
surement) vs. 100% of concepts mastered (mastery
learning)

To give an example of how friction comes into play, the
MIT RELATE group applied item response theory (Embret-
son & Reise, 2000), a traditional psychometric technique,
to calibrate the difficulty of problems in 6.002x, the first
MITx/edX course. However, IRT presumes that problem cor-
rectness is a measure of problem difficulty. 6.002x is based
on mastery learning, and students can continue trying until
they answer a question correctly – any sufficiently dedicated
student could answer all questions correctly. To apply IRT
in this context, RELATE had to substantially adapt the tech-
nique (Champaign et al., 2014).

Challenges – Diversity and Sample Bias

Many traditional psychometric techniques rely on a rel-
atively uniform dataset generated with relatively unbiased
sampling. For example, to measure learning gains, we would

3At this point, we have overwhelming evidence that well-
structured groupwork leads to improved student outcomes.
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typically run a pre-test and a post-test on the same set of stu-
dents. In most at-scale learning settings, students drop out
of classes, take different sets of classes, and indeed, the set
of classes taken often correlates with student experience in
previous classes. We see tremendous sampling bias. For ex-
ample, a poor educational resource may cause more students
to drop out, or to take a more basic class in the future. This
shifts demographics in a future assessments to a stronger stu-
dents taking weaker courses, giving a perceived gain on post-
assessment if such effects were not controlled for.

Likewise, integrating different forms of data – from peer
grading, to mastery-based assessments, to ungraded forma-
tive assessments, to participation in social forums – gives an
unprecedented level of diversity to the data. This suggests
a moves from traditional statistics increasingly into machine
learning, and calls for very different techniques from those
developed in traditional psychometrics.

Challenges – Data Size and Researcher Skillset

Traditionally, big data educational research was con-
ducted by statisticians in schools of education with tools such
as spreadsheets, and numerical packages such as R. This
worked well when data sets were reasonably small. A typ-
ical data set from a MOOC is several gigabytes. The data
at a MOOC provider is currently several terabytes. While
this is not big data in a classic sense, the skills and tools re-
quired for managing this data go far beyond those found at
many schools of education. With continuing moves towards
technologies such as teleconferencing, we expect datasets to
grow manyfold.

As a result, most data science in MOOCs has been con-
ducted in schools of computer science by researchers gener-
ally unfamiliar with literature in educational research. This
shortcoming is reflected in the quality of published results
– for example, in many cases, papers unknowingly replicat-
ing well-established decades-old results from classical edu-
cational research.

Meaningful research requires skillsets from both back-
grounds. There are few researchers with such skillsets, and
collaborations are sometimes challenging due to substan-
tial cultural differences between schools of education and
schools of computer science.

Early Successes

An early set of high-profile successes in this sort of data
integration came from systems which analyzed data across
multiple courses in order to predict student success in fu-
ture courses. This includes systems such as Purdue Course
Signals (Arnold & Pistilli, 2012), Marist Open Academic
Analytics Initiative (Lauría, Moody, Jayaprakash, Jonnala-
gadda, & Baron, 2013), and Desire2Learn Student Success
System (Essa & Ayad, 2012).

There have been early successes with system which look
at different types of data as well. For example, the first proto-
type of the edX Open-ended Response Assessment (ORA1)
system integrated:

• Self-assessment – students rate their own answers on
a rubric.

• Peer assessment – students provide grading and feed-
back for assignments submitted by other students.

• Instructor assessment – the traditional form of as-
sessment.

• AI assessment – a computer grades essays by attempt-
ing to apply criteria learned from a set of human-
graded answers.

In the theoretical formulation (Mitros & Paruchuri, 2013),
each of the four grading systems contributes a different type
and amount of information. The system routes problems to
the most appropriate set of grading techniques. An algorithm
combines responses from graders to individual rubric items
into feedback and a final score. A simplified form of this
algorithm was experimentally validated.

Conclusion

While many of the goals of an educational experience can-
not be easily measured, it is much easier to improve, control,
and understand those that can. The breadth and depth of data
now available has the potential to fundamentally transform
education.

Students and instructors are incentivized to optimize
teaching and learning to measured skills, often at the ex-
pense of more difficult-to-measure skills. While we have
seen tremendous progress in education with the spread of
measurement, limited or inaccurate assessments can actually
cause harm if relied on too much. Measurement in tradi-
tional education is tremendously resource-constrained which
severely restricts what can be measured. Standardized high-
stakes tests are typically 3-4 hours long, and must be graded
for millions of students in bulk. In most cases, such high-
stakes exams can only accurately measure some skills and
use those as proxies for more complex to measure skills.
Many completely fail to capture skills such as mathematical
maturity, critical thinking, complex problem solving, team-
work, leadership, organization, time management, and simi-
lar skills. While time constraints in traditional classroom set-
tings are somewhat more relaxed than in high-stakes exams,
instructors still often rely on proxies. For example, when
measuring communication skill, a common proxy is an es-
say – a medium relatively rare in outside of the classroom.
Instructors cannot effectively critique longer formats of com-
munications, such as e-mail threads, meetings, and similar
without extreme student:faculty ratios – computers can.
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Digital assessments have long been effective means
to liberate instructor time, particularly in blended learn-
ing settings, as well as for providing immediate forma-
tive feedback (VanLehn, 2011) (National Research Council,
2000) (Patterson, Gavrin, & Christian, 1999). Building on
this work, we are increasingly seeing a move to authentic as-
sessment, approaches where humans and machines work in
concert to quickly and accurately assess and provide feed-
back to student problems (Basu, Jacobs, & Vanderwende,
2013), where data is integrate from very diverse sources, and
where data is collected longitudinally.

With this shift, for the first time, we have data about
virtually all aspects of students skills – including complex
ones that are, ultimately, more important than simple factual
knowledge (Sternberg, 2013). We have the potential to pro-
vide new means to assess students in ways which can im-
prove the depth, frequency, and response time, potentially
dramatically expanding the scope with which students and
instructors can monitor learning, including assessment of
higher-level skills, and proving personalized feedback based
on those assessments. However, the tool for understanding
this data (edX ORA, Insights, EASE, and Discern, in our sys-
tem, and their counterparts in others) are still in their infancy.
The grand challenge in data-intensive research in education
will be finding means to extract such knowledge from the
extremely rich data sets being generated today.
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Four variations on a theme of data-intensive research in education 
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In this brief thought paper, I offer four loosely related perspectives and arguments on the present and 
possible future of data-intensive research in education: 
 
1) Before “data collection” comes “data creation” 
2) Defining (and committing to) the MOOC “student” 
3) NSF Training Grants for graduate-level research using digital learning data 
4) The purpose of education is not prediction but learning 
 
1) Before “data collection” comes “data creation” 
 
Where do data come from?  The phrases, “data collection,” and, “data mining,” both suggest that data 
simply exist for researchers to collect and mine.  In educational research, I think a more useful term is, 
“data creation,” because it focuses analysts on the process that generates the data. From this 
perspective, the rise of “big data” is the result of new contexts that create data, not new methods that 
extract data from existing contexts. If I create a massive open online course (MOOC), or an online 
educational game, or a learning management system, or an online assessment, I am less enabling the 
collection of data, than creating data in a manner that happens to enable its collection. 
 
This is a consequential perspective because it discourages lazy generalizations and false equivalencies.  
In previous work, my coauthors and I described MOOCs not as new courses but new contexts, where 
conventional notions of enrollment, participation, curriculum, and achievement required 
reconceptualization (DeBoer et al., 2014). We tempered early optimism around MOOCs as labs for 
researching learning by focusing on what made MOOCs different from seemingly analogous learning 
contexts in residential and online education: heterogeneous participants, asynchronous use, and low 
barriers to entry.  Note that a completion rate is one minus a browsing rate, and browsing is a desired 
outcome for many MOOC participants (Reich, 2014). Research that tries to increase completion rates 
(and by definition decrease browsing rates) is both poorly motivated and unlikely to inform dropout 
prevention where it matters in residential institutions and selective online courses.  
 
Beyond MOOCs, I am arguing that NSF should be critical of any line of work that touts its “data 
intensive” or “big data” orientation without describing the contexts and processes that generate the 
data.  When the context and process are particular, as they often are in “big data” educational research, 
applicants that promise general contributions to “how we learn” are likely to damage or at least muddy 
a field already overpopulated with mixed findings.   
 
2) Defining (and committing to) the MOOC “student” 
 
In the previous section, I argue that we should view many “data-intensive” contexts in education not as 
familiar contexts with data but as unfamiliar contexts, else why would there be so much data?  I believe 
this perception can refocus research productively on describing these contexts and determining 
whether, not just how, research findings within them generalize to contexts more familiar.  In the 
context that I have studied most closely, Harvard and MIT open online courses (Ho et al., 2014; 2015), 
my colleagues and I do indeed find a “classroom” like no physical classroom on earth, with considerable 



variation in participant age, education, and geography, along with many teachers (see also, Seaton et al., 
2015) and varying levels of initial commitment (see also, Reich, 2014).  We and others have argued that 
this makes evaluating MOOCs extremely difficult (Reich & Ho, 2014), with the uncritical use of 
“completion rates” as an outcome variable being particularly problematic.  In this section, I make a 
normative argument that this difficulty should not exempt MOOCs from critical evaluation, and I point a 
path forward, coming full circle to completion rates. 
 
I believe that many MOOC platforms, instructors, and institutions feel accountability to the first “M,” for 
“Massive,” and therefore report undifferentiated numbers of registrants whether they ultimately use or 
are interested in completing the course.  Unsurprisingly, given the context I describe, completion rates 
for these registrants are very low.  Unfortunately, the response by some MOOC insiders has been to rely 
on the contextual argument to exempt themselves from accountability to any metrics at all.  I think this 
is bad science and bad pedagogy.  Without a mutual sense of accountability, from students and 
instructors alike, I would describe MOOCs not as Massive Open Online Courses but Massive Open Online 
Content.  
 
Content alone is a contribution, and content alone is indeed all that many instructors and institutions 
may be interested in providing. However, providing open content alone makes MOOC completion likely 
for a particular kind of learner, those who know what they need, those who are self-motivated, and 
those who have the time and skills necessary to keep themselves in the zone of proximal development 
as the course progresses.  The general finding that MOOC registrants are disproportionately college 
educated is a testament to this. I consider this less “teaching” than “providing content to learners,” a 
distinction that can also be described as that between “active teaching” and “teaching,” similar to that 
between “active learning” and “learning.”  The consequence of passive teaching is that MOOCs will not 
close achievement gaps and provides a very limited definition of “access.” 
 
All MOOCs that commit to “active teaching” should embrace a common definition of a “committed 
learner” and make this clear to registrants and the public.  My proposed definition of a “committed 
learner” is those registrants who a) state a commitment to completing the course and b) spend at least 
5 hours in the courseware.  I choose this cutoff because it seems a sufficient amount of time for a 
student to understand what she or he is getting into (the “shopping period”) and because it results in a 
completion rate of 50% in the Harvard and MIT data (tautologically, this maximizes variance in the 
dichotomous outcome variable).  Instructors and institutions should publish counts of committed 
learners along with their completion rates and strive to improve them from baseline rates. 
 
Importantly, this definition of “committed learner” does not exclude other participants.  Under this 
model, browsers who are curious, auditors who merely wish access to videos, and teachers who are 
seeking materials may use MOOCs as they please.  In other words, the natural response to the 
heterogeneity of the MOOC population is not to decide that measurement and accountability is 
impossible.  It is the opposite: Now that we know who our participants are, the teacher’s instinct is to 
hold oneself accountable to helping them achieve their goals. 
 
3) NSF Training Grants for graduate-level research using digital learning data 
 
I like to say that, in academia, the unit of work is not the professor but the graduate student.  Graduate 
students also facilitate collaborations between research groups and push their advisers to learn new 
analytic methods and ask new questions.  Some of the best researchers riding the recent wave of data-
intensive research in education have been graduate students or recent graduates, and many of them 



have organized cross-disciplinary communities that could benefit from structured financial support and 
training. Especially as “big data” in education are attracting those with little background in causal 
inference, assessment, or educational research, inferential and analytic errors remain common: 
confusing correlation with causation, assuming all assessment scores are valid for their intended uses , 
assuming all distributions are normal, confusing statistical significance with substantial effect sizes, and 
generally wielding hammers without first asking whether there are nails. 
 
I think that a targeted investment by NSF in ongoing research training for doctoral students would be 
very wise long-term.  As always, the keys to practical research training include granting students access 
to real data and training them in hands-on analytic methods.  The Institute of Education Science (IES) 
Research Training Programs could serve as a model here, except that the particular focus would be on 
rigorous methods for drawing relevant inferences from digital learning data. 
 
4) The purpose of education is not prediction but learning 
 
The most common questions I see being asked of digital learning data involve prediction, including 
prediction of certification, attrition, and future outcomes like course taking patterns.  I think it’s worth 
remembering that, in any formative educational process, the criterion for prediction is not accuracy, as 
measured by distance between predictions and outcomes.  Instead it is impact, as measured by the 
distance between student learning with the predictive algorithm in place, and student learning had it 
not been in place.  I find the emphasis on technically sophisticated predictive models and intricate 
learning pathways to be disproportionate, and I think there is too little attention to rigorous 
experimental designs to ascertain whether students and instructors can use these tools to increase 
learning. 
 
In short, we want educational predictions to be wrong.  If our predictive model can tell that a student is 
going to drop out, we want that to be true in the absence of intervention, but if the student does in fact 
drop out, then that should be seen as a failure of the system.  A predictive model should be part of a 
prediction-and-response system that a) makes predictions that would be accurate in the absence of a 
response and b) enables a response that renders the prediction incorrect.  In a good prediction-and-
response system, all predictions would ultimately be negatively biased.  The only way to demonstrate 
this empirically is to exploit random variation in the assignment of the system, as in random assignment 
of the prediction-and-response system to some but not all students. 
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Creating creative learning data scientists 
Matthew Berland (University of Wisconsin–Madison), mberland@wisc.edu 
 
I am an assistant professor of Digital Media in the Dept. of Curriculum & Instruction at 
University of Wisconsin–Madison, part of the Games+Learning+Society group, with 
appointments in both Computer Science and Library & Information Studies. My background is 
in both learning sciences and computer science, and my first paper on "big data" (or “very large 
corpora; Berland & Charniak, 1999) is taught in computer science classes globally. I am also the 
director of the Learning Games Play Data Consortium (PDC). The PDC is made of up of game 
designers, the education industry, learning scientists, computer scientists, data scientists, 
students, and startups; the core mission of the PDC is to bring people together to facilitate 
collaboration and advance understanding on how to create the next generation of data-driven 
learning games, learning theories, and learning tools. The PDC has developed and maintains 
several tools to help people implement advanced data analysis for learning in game design, 
research, and industry. 
 
As director of the PDC, I work with a wide range of people who are using data in new ways to 
understand learning, education, games, play, and creativity. We have currently identified five 
imminent challenges in data science for learning and education: training learning data scientists, 
building analytic tools, developing learning theory for design, designing new models of 
assessment, visualizing learning data, and innovating curricula. In this piece, I will cover one 
core aspect that underlies many of the others: training new creative learning data scientists. 
 
Training a diverse and wide-ranging set of designers and researchers to think about new 
possibilities with data is hard. Training people to think creatively about the possibilities for data 
in education turns out to be really hard, and there are few good examples of how to do it.  
Imminent possibilities, given well trained people, include: pioneering new modes of assessment; 
new tools for teachers, students, and administrators; innovating design for games and learning 
environments; and new understandings of how people learn and how schools work. Those 
possibilities lie at the overlap of several disciplines (computer science, statistics, education, 
design, information studies), but creative data-driven design thinking is not necessarily the 
purview of any single discipline. This makes the problem even harder: the data scientists trained 
by (say) industry, startups, or computer science tend (quite reasonably) to hew closely to their 
missions. When I look at the landscape of what is possible in education, few people are using 
data to design or create new things that were not possible before modern data science. Both 
industry and academia (myself included) often use data to reify and reinforce classical ways of 
doing things, but it seems likely that the "killer apps" of data-driven learning are not going to 
come from deeper investment in (say) computer-based tests. As data-driven thinking is 
democratized, those models will likely seem more problematic to learners.  
 
Part of the problem with training is that we know relatively little about creative data analysis and 
visualization towards creating educational learning environments. Learning sciences - my home 
academic field and a place in which novel work is being done - is quite small and only modestly 
funded, but computer scientists (of which I am also one) are usually not trained in how people 
learn and tend to replicate traditionalist models of education, thinking, and learning while vastly 



improving models of how to work with a lot of data. Information studies, design schools, arts, 
journalism, and applied mathematics have pioneered new ways of visualizing data, but they 
frequently lack training in either computer science and learning sciences. In short, there are very 
few people who are training students (and faculty) to consider new modes of how to understand, 
visualize, and change how people learn and how education works.  
 
It is simpler and cheaper to reproduce classical modes of education with big data than it is to 
develop new modes of giving learners agency. As a result, many of the data scientists in 
education are being trained to do very careful large-scale analyses of inherently problematic 
assessments. A scenario in which schools are optimized to produce the most available and easily 
parsable data would presumably result in a situation worse than the testing-driven model we are 
seeing now: it can (and may) become a model in which students are constantly tested, evaluated, 
and all opportunities to productively fail (in other words, learn) are eliminated. This is a real (if 
dystopian) possibility, and it may be the most likely one. I have heard many successful friends 
and colleagues say something to the effect of "I do not know how I would have learned anything 
if Twitter had been around when I was learning - I would hate to have all of my mistakes 
archived forever." When all mistakes are evaluated, people are more afraid to make mistakes.  
 
That said, teenagers read and write more than they did before social media, they make fewer 
grammatical mistakes, and they "connect" with many more people (boyd, 2007). The utopian 
promise of data in education is that students will be able to learn from their mistakes in real-time 
and authentic situations. Social media provides instant feedback - it is a novel mode of "big data 
analysis" - furthermore, one of the most salient introductions to data-driven learning comes from 
the kinds of simple analytics that Twitter, Facebook, and Google Analytics give to people. 
People like creating, and they would like to use the data they create to better understand their 
world. By giving the data back to people, we will be both making people happy, helping them 
learn more quickly, and creating the next generation of data scientists. 
 
Our group at UW–Madison (together with our many wonderful colleagues across the US) has 
attempted to do this in a few ways. One way is by developing tools through which the creation of 
data collection and analytics can be open to a much wider group of game designers and people 
designing creative learning environments. For instance with ADAGE (2014; 2015), we have 
developed a widely used, free, open source platform for collecting and analyzing learning data 
from games. We have also been developing ways to look at many different forms of data 
multimodally through our PDC Dashboard. Our view is that learning data look fundamentally 
different from the kinds of data that people look at in most data dashboards, that learning data 
happens over time, and outliers should be focused on and explored rather than ignored (Berland, 
Baker, & Blikstein, 2014). We also have several games in which data analytics are used to 
inform students and teachers about what is happening in their classrooms and understand why 
students are successful (e.g., Berland, Martin, Benton, Petrick Smith, & Davis, 2013; Berland, 
Smith, & Davis, 2013; Berland & Wilensky, 2015); in all of these games, it is important that 
some element of analysis is structured and driven by the teachers and students themselves.  
 
The group has learned several factors of successful data-driven learning: students love analyzing 
data about themselves; teachers understand better than we do when data would be helpful for 
teaching; and using advanced data analytics on constructive, creative learning environments is 



both possible and not nearly as hard as we had thought. In short, we learned that training novice 
data scientists through real constructive work - as researchers on my team, designers on my 
team, teachers we work with, and target students themselves - is not only possible but that it can 
enjoyable for all parties. We have found that people become deeply engaged and understand 
complex data analytic content more fully when they are deeply connected to that content. From 
there, it is possible for both learners and researcher to think differently about that data by 
connecting and visualizing many different modes of those data, such as transcript, game play, 
pre-/post-tests, and more longitudinal data. Those connections both to the data and across 
different types and modes of data seem essential to understanding the data more fully. 
Some recommendations for supporting the growth of data analytics to learning: 1) bring 
interested, diverse novices into your groups and let them be wrong; and 2) build tools that help 
students understand how they are creating (think: twitter) rather than evaluating them post-hoc 
(think: standardized testing). Novices will frequently have terrible, unimplementable ideas, and 
the process will be horribly inefficient, but it will lead to a better solution. In artificial 
intelligence, this is how many optimization algorithms (such as simulated annealing) work - not 
by evaluating every possible branch forever but by finding pathways around and through local 
maxima. We are all stuck in our local maxima, we are all hindered by the activation energy to 
make big changes. To find new spaces in which to grow, we have to listen to what novices say 
when they are most totally wrong: What do they want to say? What information do they think 
might help them? Leverage their misunderstanding to reshape your own understanding, and 
teach them to use data to come to understand how they learn. By training new people to think 
creatively with data, you will be exposed to new ways of thinking by people who might use those 
data. 
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Eric	
  Klopfer	
  
	
  
Game-­‐Based	
  Learning	
  Ecosystem	
  
	
  
Few	
  people	
  learn	
  anything	
  from	
  playing	
  games.	
  	
  But	
  there	
  is	
  a	
  potential	
  for	
  many	
  people	
  to	
  
learn	
  things	
  with	
  games.	
  	
  The	
  distinction	
  comes	
  from	
  how	
  we	
  situate	
  game	
  play	
  into	
  the	
  
learning	
  experience.	
  	
  Games	
  have	
  the	
  greatest	
  potential	
  impact	
  on	
  learning	
  when	
  they	
  are	
  part	
  
of	
  an	
  experience	
  that	
  also	
  involves	
  reflection,	
  abstraction,	
  and	
  application	
  of	
  concepts.	
  	
  This	
  
differentiates	
  what	
  has	
  come	
  to	
  be	
  known	
  (via	
  Jim	
  Gee	
  and	
  others)	
  as	
  the	
  game	
  (the	
  digital	
  
distributed	
  experience)	
  from	
  the	
  Game	
  (the	
  entire	
  experience	
  including	
  what	
  happens	
  on	
  and	
  
off	
  screen—including	
  interactions	
  with	
  peers	
  and	
  mentors,	
  and	
  use	
  of	
  complimentary	
  media	
  
like	
  websites	
  and	
  video).	
  
	
  
While	
  some	
  learners	
  may	
  possess	
  the	
  skills	
  necessary	
  to	
  consciously	
  reflect	
  on	
  what	
  they	
  are	
  
doing	
  in	
  a	
  game	
  in	
  order	
  to	
  be	
  able	
  to	
  abstract	
  from	
  specific	
  instances	
  to	
  more	
  general	
  
concepts,	
  and	
  then	
  apply	
  that	
  in	
  a	
  different	
  context,	
  in	
  practice	
  this	
  is	
  rare.	
  	
  Most	
  students	
  take	
  
the	
  game	
  play	
  at	
  its	
  face	
  value	
  and	
  would,	
  on	
  their	
  own,	
  struggle	
  to	
  connect	
  that	
  experience	
  to	
  
learning	
  goals.	
  	
  Instead	
  this	
  process	
  typically	
  needs	
  to	
  be	
  scaffolded	
  by	
  teachers	
  (or	
  peers,	
  
mentors,	
  etc.).	
  	
  The	
  question	
  is	
  then,	
  How	
  can	
  we	
  better	
  support	
  teachers	
  in	
  making	
  that	
  cycle	
  
of	
  learning	
  more	
  efficient	
  and	
  more	
  effective?	
  
	
  
Effectively	
  addressing	
  this	
  challenge	
  actually	
  requires	
  us	
  to	
  first	
  take	
  a	
  step	
  back	
  and	
  ask	
  a	
  
series	
  of	
  questions	
  about	
  the	
  goals	
  and	
  nature	
  of	
  game-­‐based	
  learning	
  in	
  classrooms	
  today:	
  	
  

• What	
  are	
  the	
  experiences	
  that	
  we	
  want	
  to	
  provide	
  students	
  through	
  games?	
  	
  And	
  how	
  
are	
  those	
  situated	
  in	
  the	
  learning	
  experience?	
  	
  	
  

• How	
  do	
  we	
  design	
  targeted	
  experiences	
  that	
  focus	
  on	
  the	
  learning	
  activities	
  that	
  we	
  are	
  
interested	
  in?	
  	
  And	
  how	
  do	
  we	
  collect	
  the	
  relevant	
  data	
  from	
  those	
  experiences	
  to	
  guide	
  
teachers/learners?	
  

• What	
  kind	
  of	
  data	
  do	
  we	
  provide	
  to	
  teachers	
  that	
  is	
  actionable?	
  
	
  
I	
  argue	
  that	
  games	
  have	
  their	
  greatest	
  potential	
  as	
  learning	
  experiences	
  when	
  they	
  precede	
  
formal	
  instruction,	
  providing	
  a	
  concrete	
  and	
  common	
  reference	
  point	
  upon	
  which	
  to	
  build	
  
formal	
  concepts.	
  	
  They	
  further	
  provide	
  value	
  as	
  a	
  touchpoint	
  that	
  students	
  periodically	
  return	
  
to	
  as	
  they	
  iteratively	
  build	
  their	
  knowledge	
  in	
  increasingly	
  complex	
  ways.	
  	
  Games	
  provide	
  
meaningful	
  learning	
  experiences,	
  and	
  provide	
  feedback	
  to	
  the	
  learner	
  on	
  their	
  understanding	
  
and	
  engagement	
  in	
  that	
  system.	
  Thus,	
  games	
  play	
  a	
  role	
  as	
  vehicles	
  of	
  formative	
  assessment,	
  
where	
  performance	
  on	
  tasks	
  generates	
  actionable	
  information	
  that	
  guides	
  their	
  experience—
and	
  ultimately	
  leads	
  to	
  enhanced	
  learning.	
  	
  Games	
  may	
  also	
  play	
  a	
  role	
  as	
  a	
  means	
  for	
  
summative	
  assessment,	
  as	
  they	
  provide	
  rich	
  and	
  complex	
  problem	
  spaces.	
  	
  But	
  for	
  the	
  purpose	
  
of	
  this	
  paper	
  I	
  will	
  focus	
  on	
  formative	
  assessment.	
  
	
  
The	
  data	
  generated	
  by	
  games,	
  and	
  in	
  games,	
  creates	
  a	
  tremendous	
  opportunity	
  for	
  supporting	
  
better	
  learning	
  experiences.	
  As	
  is	
  so	
  often	
  the	
  case	
  with	
  data,	
  the	
  opportunities	
  also	
  bring	
  their	
  
own	
  challenges.	
  Though	
  we	
  may	
  be	
  able	
  to	
  “fish	
  in	
  the	
  exhaust”	
  (as	
  HarvardX	
  researcher	
  Justin	
  



Reich	
  says)	
  of	
  the	
  keystrokes	
  and	
  data	
  trails	
  of	
  games	
  to	
  recognize	
  successful	
  patterns	
  and	
  
differentiate	
  them	
  from	
  those	
  of	
  players	
  who	
  struggle,	
  that	
  methodology	
  is	
  not	
  yet	
  sufficient	
  
for	
  realizing	
  this	
  potential	
  of	
  games.	
  	
  Instead,	
  we	
  must	
  design	
  for	
  the	
  learning	
  experiences	
  of	
  
games,	
  the	
  data	
  they	
  can	
  generate,	
  and	
  specifically	
  how	
  we	
  make	
  sense	
  of	
  that	
  data	
  to	
  inform	
  
further	
  learning.	
  Through	
  offering	
  specific	
  activities	
  and	
  corresponding	
  outcomes	
  that	
  can	
  
generate	
  the	
  data	
  we	
  need.	
  not	
  only	
  can	
  we	
  then	
  differentiate	
  success	
  from	
  failure,	
  but	
  to	
  
identify	
  why	
  particular	
  students	
  are	
  succeeding	
  or	
  struggling	
  to	
  support	
  those	
  students	
  and	
  
allow	
  all	
  students	
  to	
  master	
  the	
  essential	
  concepts.	
  	
  	
  
	
  
This	
  means	
  we	
  need	
  to	
  follow	
  an	
  approach	
  that	
  helps	
  designers	
  create	
  game-­‐based	
  tasks	
  that	
  
elicit	
  this	
  useful	
  data.	
  	
  Evidence-­‐Centered	
  Design	
  (ECD	
  –	
  Mislevy,	
  Almond	
  &	
  Lukas,	
  2003)	
  is	
  one	
  
useful	
  –	
  and	
  thus	
  far	
  highly	
  popular	
  amongst	
  learning	
  game	
  designers	
  –	
  way	
  of	
  approaching	
  
this.	
  	
  ECD	
  defines	
  four	
  relevant	
  models:	
  

• the	
  student	
  model	
  (what	
  the	
  student	
  knows	
  or	
  can	
  do);	
  
• the	
  evidence	
  model	
  (what	
  a	
  student	
  can	
  demonstrate	
  and	
  we	
  can	
  collect	
  to	
  show	
  what	
  

they	
  know);	
  
• the	
  task	
  model	
  (the	
  designed	
  experience	
  from	
  which	
  we	
  can	
  collect	
  data);	
  and	
  	
  
• the	
  presentation	
  model	
  (how	
  that	
  actually	
  appears	
  to	
  the	
  student).	
  	
  	
  

Though	
  ECD	
  was	
  originally	
  conceived	
  by	
  assessment	
  developers	
  to	
  create	
  better	
  and	
  more	
  
diverse	
  assessments,	
  it	
  has	
  become	
  quite	
  popular	
  amongst	
  learning	
  game	
  designers	
  for	
  its	
  
ability	
  to	
  create	
  a	
  framework	
  for	
  collecting	
  and	
  interpreting	
  assessment	
  data	
  in	
  games.	
  Though	
  
the	
  details	
  of	
  this	
  methodology	
  may	
  seem	
  onerous	
  to	
  a	
  game	
  designer	
  seeking	
  to	
  create	
  an	
  
experience	
  that	
  not	
  only	
  embodies	
  the	
  potential	
  to	
  create	
  useful	
  data,	
  but	
  the	
  ECD	
  framework	
  
serves	
  as	
  a	
  design	
  lens	
  that	
  can	
  also	
  provide	
  engagement	
  and	
  challenge	
  that	
  draws	
  players	
  into	
  
the	
  game.	
  	
  	
  	
  	
  
	
  
In	
  reality,	
  the	
  game	
  is	
  much	
  more	
  likely	
  to	
  become	
  part	
  of	
  a	
  larger	
  educational	
  experience	
  if	
  it	
  
can	
  provide	
  useful	
  and	
  actionable	
  data	
  to	
  teachers,	
  and	
  this	
  can	
  really	
  only	
  come	
  from	
  this	
  
initial	
  thoughtful	
  and	
  intentional	
  design.	
  	
  Variations	
  on	
  ECD	
  for	
  design	
  of	
  educational	
  games	
  
may	
  make	
  this	
  methodology	
  easier	
  and	
  more	
  effective	
  to	
  follow.	
  	
  Groff	
  et	
  al.	
  (2015)	
  have	
  
proposed	
  a	
  simplified	
  version	
  that	
  reduces	
  this	
  to	
  a	
  Content	
  Model	
  (the	
  relevant	
  knowledge	
  
and	
  skills),	
  Evidence	
  Model	
  (the	
  information	
  needed	
  to	
  know	
  if	
  someone	
  has	
  that	
  knowledge)	
  
and	
  the	
  Task	
  Model	
  (what	
  the	
  person	
  is	
  engaged	
  in	
  doing	
  to	
  elicit	
  that	
  data)	
  as	
  a	
  lens	
  for	
  
instructional	
  design	
  that	
  aligns	
  both	
  content	
  and	
  assessment	
  data	
  in	
  games.	
  	
  This	
  model	
  further	
  
links	
  each	
  of	
  these	
  models	
  in	
  a	
  more	
  cyclic	
  fashion,	
  rather	
  than	
  a	
  linear	
  fashion	
  as	
  ECD	
  typically	
  
provides,	
  which	
  is	
  better	
  aligned	
  to	
  how	
  game	
  designers	
  think	
  about	
  their	
  craft.	
  	
  	
  
	
  



	
  
A	
  simplified	
  version	
  of	
  ECD	
  known	
  as	
  XCD	
  (Groff	
  et	
  al.	
  2015)	
  

	
  
Similarly	
  we	
  (Conrad	
  et	
  al.	
  2014)	
  have	
  created	
  a	
  variant	
  called	
  Experiment	
  Centered	
  Design,	
  in	
  
which	
  the	
  tasks	
  are	
  thought	
  of	
  specifically	
  as	
  series	
  of	
  experiments	
  conducted	
  by	
  the	
  learners.	
  	
  
This	
  works	
  well	
  for	
  science-­‐based	
  games	
  as	
  well	
  as	
  math-­‐based	
  games,	
  in	
  which	
  players	
  conduct	
  
experiments	
  that	
  both	
  models	
  the	
  practices	
  of	
  those	
  disciplines	
  and	
  also	
  provides	
  a	
  foundation	
  
upon	
  which	
  to	
  design	
  a	
  series	
  of	
  tasks	
  that	
  can	
  elicit	
  relevant	
  data.	
  	
  It	
  is	
  important	
  in	
  this	
  
methodology	
  that	
  we	
  think	
  of	
  data	
  not	
  at	
  the	
  grain	
  size	
  of	
  individual	
  actions,	
  but	
  rather	
  a	
  series	
  
of	
  related	
  and	
  predefined	
  actions	
  that	
  comprise	
  an	
  iteration	
  of	
  an	
  experiment.	
  	
  In	
  spaces	
  where	
  
the	
  information	
  is	
  complex,	
  mirroring	
  authentic	
  learning	
  environments,	
  single	
  actions	
  are	
  not	
  
sufficient	
  for	
  accomplishing	
  a	
  task,	
  and	
  a	
  priori	
  defined	
  chunks	
  (e.g.	
  experimental	
  iterations)	
  
may	
  make	
  analysis	
  both	
  easier	
  and	
  more	
  relevant	
  to	
  the	
  learning	
  outcomes.	
  	
  	
  
	
  
For	
  example,	
  in	
  a	
  game	
  designed	
  around	
  genetics	
  experiments	
  the	
  data	
  may	
  be	
  thought	
  of	
  not	
  
as	
  what	
  a	
  player	
  does	
  in	
  a	
  single	
  breeding	
  experiment,	
  or	
  even	
  as	
  the	
  action	
  taken	
  based	
  on	
  the	
  
outcomes	
  of	
  such	
  an	
  experiment,	
  but	
  rather	
  as	
  an	
  iterative	
  series	
  of	
  experiments.	
  	
  In	
  this	
  case,	
  
the	
  learner	
  conducts	
  an	
  experiment,	
  gets	
  back	
  an	
  outcome	
  and	
  performs	
  another	
  experiment	
  
based	
  upon	
  that	
  outcome.	
  	
  They	
  may	
  in	
  fact	
  need	
  to	
  perform	
  a	
  fairly	
  extensive	
  sequence	
  of	
  
these	
  experiments,	
  based	
  both	
  upon	
  the	
  complexity	
  of	
  the	
  task,	
  and	
  the	
  random	
  variation	
  that	
  
may	
  occur	
  within	
  those	
  experiments.	
  
	
  
This	
  is	
  a	
  methodology	
  that	
  we	
  apply	
  in	
  an	
  educational	
  Massively	
  Multiplayer	
  Online	
  (MMO)	
  
game,	
  called	
  The	
  Radix	
  Endeavor	
  (Radix).	
  	
  In	
  Radix,	
  players	
  are	
  set	
  in	
  an	
  earth-­‐like	
  world	
  in	
  a	
  
Renaissance	
  era	
  state	
  of	
  knowledge,	
  and	
  must	
  use	
  math	
  and	
  science	
  to	
  help	
  the	
  world	
  improve.	
  	
  



Players	
  get	
  quests	
  (tasks	
  with	
  proximate	
  goals)	
  along	
  the	
  way.	
  	
  Quests	
  range	
  from	
  fixing	
  
buildings	
  using	
  geometry	
  skills	
  to	
  diagnosing	
  disease	
  based	
  on	
  understanding	
  of	
  body	
  systems.	
  	
  
One	
  of	
  the	
  quest	
  lines	
  is	
  around	
  genetics,	
  and	
  players	
  get	
  tasks	
  such	
  as	
  delivering	
  a	
  “true	
  
breeding”	
  strain	
  of	
  a	
  medicinal	
  plant.	
  	
  Starting	
  with	
  a	
  stock	
  of	
  seemingly	
  similar	
  plants	
  in	
  the	
  
field	
  they	
  must	
  breed	
  pairs	
  of	
  plants	
  and	
  observe	
  the	
  outcomes.	
  	
  A	
  single	
  outcome	
  such	
  as	
  two	
  
plants	
  producing	
  identical	
  offspring	
  may	
  not	
  be	
  sufficient	
  for	
  determining	
  whether	
  the	
  plants	
  
are	
  dominant	
  or	
  recessive,	
  or	
  even	
  if	
  they	
  might	
  be	
  homozygous	
  and	
  you	
  just	
  have	
  a	
  sample	
  too	
  
small	
  to	
  show	
  diversity.	
  	
  After	
  that	
  outcome,	
  it	
  is	
  important	
  to	
  see	
  what	
  the	
  player	
  does	
  next.	
  	
  
Do	
  they	
  do	
  the	
  same	
  experiment	
  again,	
  breed	
  the	
  offspring,	
  or	
  breed	
  with	
  one	
  of	
  the	
  parental	
  
generation	
  plants?	
  	
  From	
  this	
  sequence	
  we	
  can	
  begin	
  to	
  uncover	
  what	
  the	
  student	
  understands	
  
about	
  genotype	
  and	
  phenotype.	
  	
  Even	
  in	
  systems	
  such	
  as	
  geometry,	
  which	
  are	
  not	
  stochastic,	
  
the	
  series	
  of	
  measurements	
  and	
  building	
  activities	
  can	
  be	
  informative.	
  	
  An	
  initial	
  guess	
  at	
  the	
  
angles	
  in	
  a	
  triangle	
  may	
  need	
  to	
  be	
  adjusted	
  in	
  a	
  second	
  iteration	
  and	
  it	
  is	
  key	
  to	
  observe	
  which	
  
way	
  they	
  are	
  adjusted.	
  	
  Based	
  on	
  these	
  models	
  we	
  can	
  diagnose	
  specific	
  misconceptions	
  and	
  
send	
  players	
  on	
  “side	
  quests”	
  that	
  specifically	
  address	
  their	
  learning	
  challenges.	
  	
  	
  
	
  
In	
  practice,	
  doing	
  this	
  effectively	
  is	
  a	
  significant	
  challenge.	
  	
  Determining	
  the	
  student	
  learning	
  
challenges,	
  defining	
  the	
  models	
  with	
  sufficient	
  specificity,	
  implementing	
  them,	
  interpreting	
  the	
  
data,	
  and	
  feeding	
  it	
  back	
  to	
  students	
  and	
  teachers	
  is	
  a	
  lot	
  of	
  work.	
  	
  That	
  work	
  translates	
  into	
  
cost,	
  which	
  is	
  a	
  challenge	
  within	
  the	
  research	
  space	
  and	
  a	
  bigger	
  challenge	
  within	
  the	
  
commercial	
  space	
  that	
  might	
  bring	
  these	
  games	
  to	
  scale.	
  	
  	
  But	
  it	
  also	
  provides	
  an	
  opportunity	
  
for	
  creating	
  games	
  with	
  increased	
  value.	
  	
  	
  
	
  
Looking	
  at	
  extended	
  sequences	
  of	
  actions	
  are	
  also	
  important	
  in	
  complex	
  spaces	
  to	
  allow	
  for	
  
exploration,	
  that	
  is	
  times	
  when	
  players	
  are	
  simply	
  orienting	
  themselves	
  and	
  pursuing	
  their	
  own	
  
interests,	
  which	
  may	
  not	
  be	
  targeting	
  a	
  particular	
  learning	
  outcome.	
  	
  This	
  is	
  often	
  seen	
  as	
  a	
  
desirable	
  outcome.	
  	
  In	
  Radix,	
  if	
  players	
  are	
  exploring	
  and	
  conducting	
  additional	
  experiments	
  on	
  
their	
  own	
  or	
  just	
  exploring	
  the	
  game’s	
  flora	
  and	
  fauna,	
  we	
  as	
  game	
  designers	
  would	
  view	
  that	
  
as	
  a	
  positive.	
  	
  But	
  it	
  is	
  difficult	
  to	
  detect	
  when	
  players	
  are	
  exploring,	
  or	
  simply	
  don’t	
  know	
  what	
  
to	
  do	
  next.	
  	
  This	
  is	
  an	
  area	
  in	
  which	
  we	
  may	
  be	
  able	
  to	
  examine	
  players	
  patterns,	
  past	
  
performance,	
  and	
  other	
  factors	
  to	
  help	
  nudge	
  players	
  who	
  are	
  truly	
  confused	
  back	
  in	
  the	
  right	
  
direction.	
  	
  	
  
	
  
Related	
  to	
  exploration	
  is	
  the	
  notion	
  of	
  productive	
  failure—situations	
  in	
  which	
  a	
  player	
  tests	
  the	
  
bounds	
  of	
  the	
  system,	
  such	
  as	
  jumping	
  off	
  a	
  cliff	
  just	
  to	
  see	
  what	
  happens.	
  	
  The	
  simple	
  action	
  of	
  
jumping	
  off	
  the	
  cliff	
  is	
  not	
  sufficient	
  information	
  to	
  deduce	
  whether	
  the	
  players	
  on	
  a	
  pathway	
  
to	
  success	
  or	
  failure,	
  even	
  what	
  that	
  action	
  leads	
  to	
  an	
  outcome	
  which	
  may	
  be	
  perceived	
  as	
  
negative	
  (death	
  of	
  the	
  player).	
  	
  But	
  such	
  testing	
  of	
  the	
  boundaries	
  is	
  important	
  for	
  the	
  player	
  
understanding	
  how	
  the	
  world	
  in	
  which	
  they	
  exist	
  works.	
  	
  Longer	
  sequences	
  of	
  actions	
  –	
  what	
  
the	
  player	
  does	
  after	
  that	
  event	
  –	
  may	
  provide	
  for	
  a	
  rich	
  description	
  of	
  the	
  learner’s	
  experience.	
  
	
  
As	
  an	
  MMO,	
  Radix	
  provides	
  us	
  with	
  the	
  opportunity	
  to	
  also	
  examine	
  multiplayer	
  interactions.	
  	
  
This	
  is	
  a	
  rich	
  area	
  to	
  explore.	
  	
  The	
  current	
  iteration	
  only	
  provides	
  optional	
  multiplayer	
  
interactions	
  –	
  data	
  sharing,	
  “partying”,	
  chatting,	
  etc.	
  	
  Structured	
  interactions,	
  where	
  players	
  are	
  



differentiated	
  by	
  roles	
  and	
  given	
  tasks	
  will	
  provide	
  better	
  ways	
  of	
  examining	
  these	
  interactions	
  
from	
  a	
  data	
  perspective	
  (where	
  we	
  can	
  infer	
  some	
  intentionality	
  by	
  role)	
  as	
  well	
  as	
  a	
  player	
  
perspective.	
  
	
  
Evidence-­‐Centered	
  Design	
  (or	
  any	
  of	
  these	
  variants)	
  allows	
  us	
  to	
  identify	
  the	
  data	
  of	
  interest	
  in	
  
advance.	
  	
  Rather	
  than	
  collecting	
  every	
  bit	
  of	
  data	
  and	
  parsing	
  it	
  after	
  the	
  fact,	
  one	
  can	
  collect	
  
the	
  necessary	
  sequences	
  based	
  upon	
  the	
  defined	
  tasks	
  and	
  provide	
  real	
  time	
  feedback	
  on	
  
success	
  or	
  the	
  lack	
  thereof.	
  	
  However,	
  there	
  is	
  still	
  a	
  roll	
  for	
  “fishing	
  in	
  that	
  additional	
  exhaust”.	
  	
  
As	
  mentioned	
  previously,	
  we	
  may	
  be	
  able	
  to	
  identify	
  correlates	
  of	
  productive	
  or	
  
counterproductive	
  behaviors	
  that	
  we	
  can	
  pick	
  up	
  easily	
  and	
  use	
  to	
  provide	
  additional	
  feedback.	
  	
  
In	
  the	
  formative	
  case,	
  we	
  need	
  not	
  be	
  certain	
  that	
  the	
  person	
  is	
  on	
  the	
  right	
  or	
  wrong	
  pathway,	
  
we	
  need	
  only	
  to	
  make	
  a	
  best	
  guess	
  probe	
  that	
  guess	
  and	
  make	
  a	
  correction	
  if	
  it	
  is	
  not	
  correct.	
  	
  
We	
  may	
  also	
  be	
  able	
  to	
  identify	
  additional	
  behaviors	
  or	
  revise	
  our	
  theories	
  on	
  student	
  
understanding	
  for	
  the	
  next	
  iteration	
  of	
  a	
  task.	
  	
  But	
  in	
  these	
  cases	
  we	
  should	
  think	
  of	
  the	
  data	
  
revising	
  our	
  theories,	
  which	
  in	
  turn	
  can	
  influence	
  our	
  design	
  and	
  data	
  collection,	
  rather	
  than	
  the	
  
data	
  itself	
  directly	
  informing	
  students.	
  
	
  
In	
  some	
  cases	
  the	
  data	
  can	
  directly	
  inform	
  students	
  about	
  their	
  progress,	
  directly	
  (providing	
  
information	
  about	
  what	
  they	
  are	
  doing	
  wrong	
  when	
  that	
  is	
  identified)	
  or	
  indirectly	
  (by	
  giving	
  
them	
  increasingly	
  more	
  difficult	
  tasks	
  when	
  they	
  are	
  succeeding,	
  or	
  breaking	
  complex	
  tasks	
  
down	
  into	
  simpler	
  ones	
  when	
  they	
  are	
  not).	
  	
  But	
  to	
  turn	
  the	
  game	
  into	
  a	
  Game	
  that	
  is	
  a	
  truly	
  
productive	
  learning	
  experience,	
  the	
  data	
  must	
  get	
  out	
  of	
  the	
  game	
  and	
  into	
  the	
  hands	
  of	
  the	
  
teacher	
  in	
  a	
  useful	
  way.	
  	
  This	
  is	
  a	
  significant	
  challenge,	
  balancing	
  the	
  depth	
  and	
  complexity	
  of	
  
information	
  that	
  we	
  can	
  provide,	
  with	
  the	
  simplicity	
  and	
  immediacy	
  that	
  teachers	
  need	
  to	
  make	
  
use	
  of	
  that	
  data.	
  	
  	
  
	
  
The	
  first	
  wave	
  of	
  simple	
  dashboards	
  that	
  just	
  show	
  green,	
  yellow,	
  red	
  do	
  not	
  provide	
  teachers	
  
with	
  enough	
  information	
  to	
  be	
  useful	
  on	
  a	
  case	
  by	
  case	
  basis,	
  other	
  than	
  knowing	
  whether	
  the	
  
class	
  is	
  “getting	
  it”	
  or	
  not.	
  	
  The	
  other	
  end	
  of	
  the	
  spectrum,	
  which	
  shows	
  the	
  outcome	
  of	
  every	
  
game	
  action	
  for	
  every	
  player	
  is	
  too	
  much	
  information	
  to	
  be	
  useful.	
  	
  A	
  teacher	
  with	
  100	
  or	
  more	
  
students	
  cannot	
  use	
  such	
  information	
  to	
  address	
  individual	
  (or	
  even	
  classwide)	
  issues.	
  	
  	
  
	
  
Additionally,	
  as	
  many	
  of	
  these	
  models	
  are	
  probabilistic	
  we	
  need	
  to	
  provide	
  teachers	
  with	
  the	
  
skills	
  that	
  they	
  need	
  to	
  correctly	
  interpret	
  the	
  data	
  that	
  is	
  coming	
  to	
  them.	
  	
  In	
  fact,	
  most	
  
assessment	
  measures	
  require	
  a	
  fairly	
  sophisticated	
  interpretation,	
  but	
  we	
  don’t	
  usually	
  convey	
  
this	
  nuanced	
  interpretation.	
  While	
  we	
  may	
  not	
  need	
  to	
  turn	
  teachers	
  into	
  data	
  scientists	
  we	
  
need	
  to	
  provide	
  them	
  with	
  a	
  baseline	
  of	
  skills	
  to	
  interpret	
  data.	
  	
  	
  
	
  
This	
  all	
  means	
  that	
  using	
  games	
  to	
  know	
  what	
  students	
  know	
  is	
  not	
  an	
  activity	
  that	
  falls	
  solely	
  
within	
  the	
  domain	
  of	
  data	
  scientists,	
  it	
  is	
  something	
  that	
  must	
  draw	
  upon	
  the	
  skills	
  of	
  learning	
  
scientists,	
  instructional	
  designers,	
  game	
  designers	
  and	
  teacher	
  educators	
  well.	
  	
  These	
  roles	
  are	
  
all	
  required	
  to	
  define	
  the	
  necessary	
  learning	
  outcomes	
  and	
  challenges,	
  develop	
  effective	
  and	
  
engaging	
  tasks,	
  and	
  provide	
  that	
  data	
  to	
  teachers	
  in	
  actionable	
  ways.	
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Big Data in Education: Opportunities, Challenges, and Future Research  

Valerie Shute, Florida State University 

Imagine an educational system where high-stakes tests are no longer used. Instead, students would 

progress through their school years engaged in different learning contexts, all of which capture, measure, 

and support growth in valuable cognitive and noncognitive skills. This is conceivable because in our 

complex, interconnected, digital world, we’re all producing numerous digital footprints daily. This vision 

thus involves continually collecting data as students interact with digital environments both inside and, 

importantly, outside of school. When the various data streams coalesce, the accumulated information can 

potentially provide increasingly reliable and valid evidence about what students know and can do across 

multiple contexts. It involves high-quality, ongoing, unobtrusive assessments embedded in various 

technology-rich environments (TREs) that can be aggregated to inform a student’s evolving competency 

levels (at various grain sizes) and also aggregated across students to inform higher-level decisions (e.g., 

from student to class to school to district to state, to country).  

The primary goal for this vision of assessment is to improve learning (e.g., Black & Wiliam, 1998; Shute, 

2009), particularly learning outcomes and processes necessary for students to succeed in the 21st century. 

Most current approaches to assessment/testing are too disconnected from learning processes. That is, the 

typical classroom cycle is: Teach. Stop. Administer test. Go loop (with new content). But consider the 

following metaphor representing an important shift that occurred in the world of retail outlets (from small 

businesses to large department stores), suggested by Pellegrino, Chudhowsky, and Glaser (2001, p. 284). 

No longer do these businesses have to close down once or twice a year to take inventory of their stock. 

Instead, with the advent of automated checkout and barcodes for all items, these businesses have access to 

a continuous stream of information that can be used to monitor inventory and the flow of items. Not only 

can businesses continue without interruption, but the information obtained is far richer, enabling stores to 

monitor trends and aggregate the data into various kinds of summaries, as well as support real-time, just-

in-time inventory management. Similarly, with new assessment technologies, schools should no longer 

have to interrupt the normal instructional process at various times during the year to administer external 

tests to students. Instead, assessment should be continual and invisible to students, supporting real-time, 

just-in-time instruction and other types of learning support.  

The envisioned ubiquitous nature of assessment will require a reconceptualization on the boundaries of 

the educational system. That is, the traditional way of teaching in classrooms today involves providing 

lectures and giving tests in class, then assigning homework to students to complete outside of class 

(usually more reading on the topic and perhaps answering some topical questions).  Alternatively, 

consider a relatively new pedagogical approach called “flipped classrooms.” This involves a reversal of 

the traditional approach where students first examine and interact with a target topic by themselves at 

home and at their leisure (e.g., viewing an online video and/or playing an educational game); and then in 

class, students apply the new knowledge and skills by solving problems and doing practical work (see 

Bergmann & Sams, 2012). The flipped classroom is already operational for core courses at some schools 

and universities across North America. The teacher supports the students in class when they become 

stuck, rather than delivering the initial lesson in person. Flipped classrooms free class time for hands-on 

work and discussion, and permit deep dives into the content. Students learn by doing and asking 

questions, and they can also help each other, a process that benefits a majority of learners (Strayer, 2012).  

Challenges and Future Research  

For this vision of the future of assessment—as ubiquitous, unobtrusive, engaging, and valid—to gain 

traction, there are a number of large hurdles to overcome.  Following are four of the more pressing issues 

that need more research.  
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1. Quality of Assessments. The first hurdle relates to variability in the quality of assessments within 

TREs. That is, because schools are under local control, students in a given state could engage in 

thousands of TREs during their educational tenure.  Teachers, publishers, researchers, and others 

will be developing TREs, but with no standards in place, they will inevitably differ in curricular 

coverage, difficulty of the material, scenarios and formats used, and many other ways that will 

affect the adequacy of the TRE, tasks, and inferences on knowledge and skill acquisition that can 

justifiably be made from successfully completing the TREs. Assessment design frameworks (e.g., 

ECD, Mislevy et al., 2003; Assessment Engineering, Lucht, 2013) represent a design 

methodology but not a panacea, so more research is needed to figure out how to equate TREs or 

create common measurements (i.e., standardized) from diverse environments. Towards that end, 

there must be common models employed across different activities, curricula, and contexts. 

Moreover, it is important to figure out how to interpret evidence where the activities may be the 

same but the contexts in which students are working are different (e.g., working alone vs. 

working with another student).  

2. Interpreting Different Learning Progressions. The second hurdle involves accurately capturing 

and making sense of students’ learning progressions. That is, while TREs can provide a greater 

variety of learning situations than traditional face-to-face classroom learning, evidence for 

assessing and tracking learning progressions becomes heterogeneous and complex rather than 

general across individual students. Thus there is a great need to model learning progressions in 

multiple aspects of student growth and experiences, which can be applied across different 

learning activities and contexts (Shavelson & Kurpius, 2012). However as Shavelson and Kurpius 

point out, there is no single absolute order of progression as learning in TREs involves multiple 

interactions between individual students and situations, which may be too complex for most 

measurement theories in use that assume linearity and independence. Clearly, theories of learning 

progressions in TREs need to be actively researched and validated to realize TREs’ potential.  

3. Expanded educational boundaries. The third problem to resolve involves impediments to moving 

toward the idea of new contexts of learning (e.g., flipped classrooms). One issue concerns the 

digital divide where some students may not have access to a home computer.  In those cases, 

students can be allowed to use library resources or a computer lab. Alternatively, online 

components can be accessed via a cell phone as many students who do not have computers or 

Internet at home do have a phone that can meet the requirements of online activities.  In addition, 

some critics argue that flipped classrooms will invariably lead to teachers becoming outdated. 

However, teachers become even more important in flipped classrooms, where they educate and 

support rather than lecture (i.e., “guide on the side” rather than “sage on a stage”). This represents 

an intriguing way to take back some of the very valuable classroom time, and serve as a more 

efficient and effective teacher. Much more empirical research is needed to determine how this 

pedagogical approach works relative to traditional pedagogies.  

4. Privacy/Security. The fourth hurdle involves figuring out a way to resolve privacy, security, and 

ownership issues regarding students’ information.  The privacy/security issue relates to the 

accumulation of student data from disparate sources. The recent failure of the $100 million 

inBloom initiative (see McCambridge, 2014) showcases the problem. That is, the main aim of 

inBloom was to store, clean, and aggregate a wide range of student information for states and 

districts, and then make the data available to district-approved third parties to develop tools and 

dashboards so the data could be easily used by classroom educators. The main issue boils down to 

this: information about individual students may be at risk of being shared far more broadly than is 

justifiable. And because of the often high-stakes consequences associated with tests, many 

parents and other stakeholders fear that the data collected could later be used against the students.  
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What would it take to implement the vision once the hurdles are surmounted? I’ll use ECD to illustrate. In 

addition to ECD’s ability to handle multivariate competency models (Mislevy et al., 2003), it is able to 

accumulate evidence across disparate sources (e.g., homework assignment, in-class quiz on an iPad, high 

score on a video game). This is possible as ECD provides assessment designers with processes that enable 

them to work through the design trade-offs that involve multiple competency variables—either within one 

assessment or across multiple assessments. The “alchemy” involves turning the raw data coming in from 

various sources into evidence.  Evidence models will need to be able to interpret the results of all 

incoming data for the purposes of updating the student model. The rules of evidence must describe which 

results can be used as evidence, as well as any transformation that needs to be done to those results (e.g., 

averaging, rescaling, setting cut scores) (see Almond, 2010 for more on this process). As sufficient data 

(i.e., outcomes from students’ interactions with a collection of tasks) become available, Bayesian 

inference can be used to replace the prior distributions for parameters with posterior distributions. This 

should improve the quality of inferences that come from the system.  

Despite the foregoing hurdles, constructing the envisioned ubiquitous and unobtrusive assessments across 

multiple learner dimensions, with data accessible by diverse stakeholders, could yield various educational 

benefits. First, the time spent administering tests, handling make-up exams, and going over test responses 

is not very conducive to learning. Given the importance of time on task as a predictor of learning, 

reallocating those test-preparation activities into ones that are more educationally productive would 

provide potentially large benefits to almost all students. Second, by having assessments that are 

continuous and ubiquitous, students are no longer able to “cram” for an exam. Although cramming can 

provide good short-term recall, it is a poor route to long-term retention and transfer of learning. Standard 

assessment practices in school can lead to assessing students in a manner that is in conflict with their 

long-term success. With a continuous assessment model in place, the best way for students to do well is to 

do well every day. The third direct benefit is that this shift in assessment mirrors the national shift toward 

evaluating students on the basis of acquired competencies. With increasing numbers of educators growing 

wary of pencil and paper, high-stakes tests for students, this shift toward ensuring students have acquired 

“essential” skills fits with the idea of my envisioned future of assessment.   

The time is now ripe for such assessments given the dire need for supporting new 21st century skills and 

the increased availability of computer technology. New technologies make it easy to capture the results of 

routine student work—in class, at home, or wherever. It could be that 21st century assessment will be so 

well integrated into students’ day-to-day lives that they don’t even know it’s there. This represents quite a 

contrast to our current testing contexts. However, while the benefits of using a seamless-and-ubiquitous 

model to run a business have been clear for more than four decades, applying this metaphor to education 

may require adjustments as we are dealing with humans, not goods. For instance, one risk associated with 

the vision is that students may come to feel like they are constantly being evaluated which could 

negatively affect their learning and possibly add stress to their lives. Another risk of a continuous 

assessment vision could result in teaching and learning turning into ways to “game the system” depending 

on how it is implemented and communicated. But the aforementioned hurdles and risks, being anticipated 

and researched in advance, can help to shape the vision for a richer, deeper, more authentic assessment (to 

support learning) of students in the future. How many current businesses would elect to return to pre-

barcode days?    
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On	
  the	
  Value	
  of	
  Post-­‐Secondary	
  School	
  Training	
  

J.	
  D.	
  Fletcher	
  

Institute	
  for	
  Defense	
  Analyses	
  

These	
  comments	
  concern	
  the	
  assessment	
  of	
  training	
  and	
  training	
  innovation,	
  mostly	
  in	
  the	
  
Department	
  of	
  Defense	
  (DoD).	
  The	
  may	
  or	
  may	
  not	
  be	
  relevant	
  to	
  this	
  group,	
  but,	
  undaunted,	
  
I’ll	
  carry	
  on.	
  	
  	
  

By	
  ‘training’	
  I	
  mean	
  preparation	
  to	
  perform	
  specific	
  jobs	
  and	
  tasks.	
  	
  It	
  is	
  a	
  means	
  to	
  an	
  end	
  that	
  
is	
  at	
  least	
  somewhat	
  predictable.	
  	
  The	
  requirements	
  of	
  jobs	
  and	
  tasks	
  change,	
  of	
  course,	
  and	
  
transfer	
  of	
  learning	
  is	
  still	
  as	
  critical	
  for	
  training	
  as	
  for	
  education.	
  	
  But	
  training	
  stands	
  in	
  contrast	
  
to	
  education,	
  which	
  is	
  an	
  end	
  in	
  its	
  own	
  right	
  and	
  preparation	
  for	
  life.	
  	
  Training	
  seems	
  
particularly	
  useful	
  in	
  assessing	
  the	
  effectiveness	
  of	
  instructional	
  approaches,	
  old	
  and	
  new,	
  
because	
  we	
  can	
  determine	
  relatively	
  quickly	
  how	
  successful	
  they	
  are	
  in	
  producing	
  necessary	
  
learning.	
  	
  	
  

Educators	
  may	
  assume	
  that	
  training	
  is	
  not	
  relevant	
  to	
  education,	
  but	
  I	
  contend	
  that	
  
instructional	
  approaches	
  are	
  much	
  the	
  same	
  for	
  education	
  and	
  training.	
  	
  Both	
  endeavors	
  have	
  
much	
  to	
  learn	
  from	
  each	
  other,	
  and	
  the	
  list	
  of	
  training	
  approaches	
  and	
  techniques,	
  especially	
  
those	
  of	
  the	
  DoD,	
  that	
  have	
  made	
  their	
  way	
  into	
  K-­‐12	
  education	
  is	
  long.	
  	
  These	
  comments	
  focus	
  
on	
  DoD	
  results	
  and	
  data	
  from	
  post-­‐secondary	
  training,	
  but	
  they	
  may	
  be	
  relevant	
  to	
  most	
  if	
  not	
  
all	
  training	
  and	
  education.	
  

‘Value’	
  in	
  the	
  above	
  title	
  is	
  central	
  to	
  these	
  comments.	
  Budget	
  battles	
  for	
  training	
  in	
  DoD,	
  
especially	
  training	
  of	
  individuals	
  in	
  residence	
  (i.e.,	
  schoolhouses),	
  fare	
  as	
  poorly	
  as	
  they	
  often	
  do	
  
in	
  K-­‐12	
  education.	
  	
  That	
  may	
  be	
  partly	
  due	
  to	
  our	
  focus	
  on	
  training	
  effectiveness	
  and	
  neglect	
  of	
  
the	
  “so	
  what”	
  question.	
  	
  To	
  say	
  that	
  we	
  find	
  superior	
  learning	
  from	
  a	
  training	
  approach	
  is	
  only	
  
part	
  of	
  the	
  issue	
  for	
  decision	
  makers	
  and	
  check	
  writers	
  in	
  Defense	
  and	
  industry.	
  	
  They	
  need	
  to	
  
know	
  what	
  effectiveness	
  means	
  for	
  success	
  of	
  the	
  missions	
  they	
  must	
  pursue.	
  	
  What,	
  for	
  
instance,	
  is	
  the	
  priority	
  for	
  training	
  compared	
  to	
  other	
  approaches	
  that	
  contribute	
  to	
  mission	
  
success?	
  	
  What	
  is	
  a	
  pound	
  of	
  training	
  worth?	
  The	
  same	
  balance	
  and	
  priority	
  determination	
  
must	
  be	
  found	
  for	
  public	
  service	
  expenditures	
  where	
  the	
  question	
  is	
  to	
  determine	
  what	
  a	
  
pound	
  of	
  education	
  is	
  worth.	
  	
  Over	
  the	
  years,	
  I	
  have	
  been	
  concerned	
  with	
  answering	
  this	
  
question	
  in	
  both	
  venues.	
  

The	
  issue	
  is	
  not	
  cost	
  -­‐-­‐	
  for	
  either	
  civilian	
  or	
  military	
  budgets.	
  	
  If	
  it	
  were,	
  we	
  might	
  arm	
  the	
  U.S.	
  
Ari	
  Force	
  with	
  Piper	
  Cubs.	
  	
  Concluding	
  that	
  an	
  instructional	
  approach	
  is	
  unaffordable	
  because	
  of	
  
cost	
  is	
  insufficient.	
  	
  	
  A	
  full	
  answer	
  to	
  the	
  question	
  must	
  address	
  both	
  cost	
  and	
  what	
  we	
  get	
  for	
  it	
  
–	
  i.e.,	
  return	
  on	
  investment.	
  	
  This	
  issue	
  is	
  rarely	
  addressed	
  in	
  either	
  education	
  or	
  training	
  



2	
  
	
  

assessments	
  as	
  we	
  compete	
  for	
  funds	
  with	
  other,	
  perfectly	
  respectable	
  alternatives.	
  	
  In	
  the	
  
military,	
  the	
  issue	
  can	
  be	
  whether	
  to	
  buy	
  jet	
  propulsion	
  fuel	
  or	
  improved	
  training.	
  	
  We	
  know	
  
how	
  many	
  sorties	
  the	
  fuel	
  will	
  bring	
  and	
  how	
  that	
  affects	
  mission	
  success.	
  	
  How	
  does	
  that	
  
compete	
  with	
  training	
  outcomes?	
  	
  Similar	
  balances	
  must	
  be	
  determined	
  for	
  profit	
  and	
  loss	
  in	
  
business	
  and	
  for	
  public	
  funds	
  used	
  to	
  support	
  local	
  and	
  national	
  well-­‐being.	
  	
  	
  What,	
  again,	
  is	
  a	
  
pound	
  of	
  training	
  worth?	
  	
  There	
  are	
  ROI	
  studies	
  for	
  education	
  and	
  training,	
  but	
  I	
  suggest	
  they	
  
are	
  too	
  few	
  and	
  too	
  rare.	
  

Measuring	
  the	
  cost	
  of	
  an	
  investment	
  is	
  easier	
  than	
  measuring	
  its	
  return.	
  	
  Assessing	
  operational	
  
return	
  (e.g.,	
  mission	
  effectiveness)	
  is	
  far	
  too	
  messy	
  to	
  discuss	
  in	
  this	
  short	
  note.	
  	
  It	
  is	
  difficult	
  
and	
  wildly	
  uncertain.	
  	
  However,	
  three	
  assessments	
  of	
  monetary	
  return	
  can	
  be	
  briefly	
  
mentioned	
  here.	
  	
  	
  In	
  all	
  three	
  cases	
  the	
  investment	
  is	
  in	
  computer	
  technology	
  for	
  training.	
  

As	
  a	
  first	
  example,	
  we	
  find	
  from	
  data	
  that	
  the	
  rate	
  at	
  which	
  students	
  in	
  a	
  classroom	
  (civilian	
  or	
  
military,	
  children	
  or	
  adults)	
  is	
  at	
  least	
  4:1.	
  	
  Other	
  data	
  have	
  found	
  that	
  the	
  use	
  of	
  computer	
  
technology	
  to	
  individualize	
  (people	
  are	
  saying	
  ‘personalize’	
  these	
  days)	
  instruction	
  so	
  that	
  the	
  
slowest	
  students	
  can	
  receive	
  the	
  time	
  they	
  need	
  to	
  reach	
  basic	
  learning	
  levels	
  and	
  the	
  fastest	
  
students	
  can	
  be	
  all	
  they	
  can	
  be	
  (to	
  coin	
  a	
  phrase).	
  	
  This	
  capability	
  has	
  been	
  found	
  to	
  reduce	
  
overall	
  time	
  to	
  learn	
  by	
  at	
  least	
  30	
  percent.	
  	
  	
  Suppose	
  we	
  were	
  to	
  reduce	
  the	
  time	
  for	
  60%	
  of	
  
military	
  technicians	
  to	
  complete	
  entry	
  level	
  specialized	
  training,	
  which	
  cost	
  about	
  $9B	
  in	
  2014,	
  
by	
  30%.	
  	
  The	
  savings	
  would	
  amount	
  to	
  about	
  $1.8B.	
  Cost	
  of	
  the	
  computer	
  software	
  and	
  
hardware	
  to	
  accomplish	
  this	
  needs	
  to	
  be	
  determined,	
  but	
  it	
  is	
  likely	
  to	
  be	
  considerably	
  less	
  than	
  
$1.8B.	
  

Second,	
  we	
  have	
  found	
  a	
  recently	
  developed,	
  digital	
  tutoring	
  system	
  for	
  training	
  Information	
  
Systems	
  Technology	
  (IT)	
  technicians	
  can,	
  after	
  16	
  weeks,	
  produce	
  US	
  Navy	
  sailors	
  who	
  outscore	
  
in	
  IT	
  knowledge	
  and	
  troubleshooting	
  skill	
  other	
  sailors	
  with	
  more	
  than	
  9	
  years	
  of	
  Fleet	
  IT	
  
experience.	
  	
  The	
  effect	
  sizes	
  in	
  this	
  assessment	
  exceed	
  3	
  standard	
  deviations	
  for	
  the	
  Fleet	
  ITs	
  
(and	
  for	
  newly	
  graduated	
  sailors	
  who	
  received	
  35	
  weeks	
  of	
  training).	
  	
  Comparing	
  this	
  ability	
  to	
  
accelerate	
  the	
  development	
  of	
  expertise	
  to	
  that	
  required	
  by	
  9	
  years	
  of	
  on-­‐job	
  experience	
  and	
  
training	
  and	
  assuming	
  the	
  current	
  training	
  pipeline	
  of	
  2,000	
  Navy	
  ITs	
  a	
  year	
  suggests	
  annual	
  
savings	
  to	
  the	
  Fleet	
  of	
  about	
  $300M	
  per	
  year.	
  

Third,	
  we	
  found	
  that	
  the	
  same	
  system	
  used	
  to	
  train	
  post-­‐Gulf	
  War	
  veterans,	
  most	
  of	
  whom	
  
were	
  unemployed,	
  for	
  18	
  weeks	
  provided	
  them	
  civilian	
  job	
  offers	
  with	
  a	
  median	
  salary	
  of	
  
$73,000,	
  which	
  is	
  roughly	
  equivalent	
  to	
  that	
  earned	
  by	
  industry	
  network	
  administrators	
  with	
  3-­‐
5	
  years	
  of	
  experience.	
  	
  Aside	
  from	
  the	
  impact	
  on	
  these	
  veterans’	
  lives,	
  the	
  monetary	
  return	
  to	
  
the	
  government	
  for	
  supporting	
  veterans	
  in	
  this	
  course	
  (tuition,	
  lodging,	
  and	
  meals)	
  was	
  about	
  
twice	
  the	
  return	
  in	
  revenue	
  (i.e.,	
  taxes	
  paid)	
  received	
  from	
  other,	
  more	
  typical	
  approaches	
  
providing	
  similar	
  support	
  for	
  two-­‐	
  and	
  four-­‐year	
  academic	
  institutions.	
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These	
  examples	
  approach	
  cost-­‐effectiveness	
  and	
  return	
  on	
  investment	
  in	
  different	
  ways.	
  	
  The	
  
first	
  holds	
  effectiveness/return	
  constant	
  and	
  minimizes	
  cost/investment	
  by	
  releasing	
  students	
  
as	
  soon	
  as	
  they	
  reach	
  a	
  threshold	
  of	
  learning.	
  	
  The	
  second	
  and	
  third	
  examples	
  hold	
  
costs/investment	
  constant	
  while	
  maximizing	
  effectiveness/return.	
  	
  The	
  latter	
  approach	
  may	
  be	
  
much	
  preferred	
  because	
  it	
  is	
  more	
  compatible	
  with	
  established	
  personnel	
  practices,	
  which	
  have	
  
difficulty	
  dealing	
  with	
  different	
  learners	
  finishing	
  courses	
  of	
  instruction	
  at	
  different	
  times.	
  

The	
  data	
  reported	
  in	
  these	
  examples	
  may	
  change	
  with	
  additional	
  scrutiny	
  and	
  replication,	
  
although	
  substantial	
  change	
  in	
  their	
  overall	
  findings	
  seems	
  unlikely.	
  	
  However,	
  the	
  point	
  of	
  
these	
  examples	
  is	
  to	
  suggest	
  how	
  the	
  value	
  –	
  the	
  “so	
  what”	
  –	
  question	
  might	
  be	
  addressed	
  in	
  
similar	
  assessments	
  and	
  research.	
  	
  It	
  is	
  to	
  further	
  suggest	
  that	
  return	
  on	
  investment	
  can	
  and	
  
should	
  become	
  a	
  routine	
  element	
  in	
  education	
  and	
  training	
  assessments.	
  	
  Researchers	
  may	
  
complain	
  (as	
  they	
  have)	
  about	
  becoming	
  accountants,	
  but	
  the	
  nature	
  of	
  our	
  business	
  is	
  
changing	
  and	
  so	
  should	
  we	
  if	
  we	
  are	
  to	
  defend	
  investments	
  in	
  education	
  and	
  training	
  and	
  
compete	
  more	
  successfully	
  with	
  other	
  demands	
  for	
  public	
  support	
  and	
  budget	
  allocation.	
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 (This “thought-paper” was done with contributions from Claudia Urrea, researcher from the 
 Online Education Policy Initiative at the MIT Office of Digital Learning and Jeff Merriman from the MIT 
Office of Digital Learning) 

 
 
The Data deluge is affecting all disciplines requiring new computational capabilities (tools, 
technologies, and platforms) and skills to capture, manipulate, visualize, integrate and manage 
(including preservation) large amounts of data. At the same time, it is presenting great 
opportunities in the field of educational research (Koedinger, McLaughlin & Stamper, 20141,  
Breslow et al. 20132). Massive Open Online Courses(MOOCs)  such as edX, have added 
legitimacy and even, perhaps, urgency to the field of educational research at MIT and 
elsewhere.   
 
HarvardX and MITx research units are also following the recipe for advancing MOOC research 
recommended by Reich (2015): improving assessments, conducting experiments, and sharing 
data” (Ho et. al. 2015)3.  
 
Indeed, there are high expectations all around for massive open online courses to not 
only bring the best education in the world to the most remote corners of the planet,  but 
also that the large data sets generated by users numbering in the hundreds of 
thousands will provide insights into education. These insights will inform faculty on how 
to use technology in their teaching, and will enhance the experience of learners 
everywhere. Large data sets will help legitimize some of the existing theories and 
methods of learning, and help establish new insights and theories of how people learn 
online, how communities emerge and interact, etc.    
 
This “thought-paper” sets out to identify opportunities for data-intensive research in education to 
improve practice and policy. It draws from a set of research themes and associated 
issues/questions that were identified as part of an MIT exercise to frame a research agenda on 
MOOCs. 
   
The paper also draws on activities underway at MIT with which the author and his associates 
are engaged that address issues related to developing technological considerations and 
                                                
1 Koedinger, Kenneth R., Elizabeth A. McLaughlin, and John C. Stamper. “Data-Driven Learner Modeling 
to Understand and Improve Online (2014).  
2 Breslow, L., Pritchard, D. E., DeBoer, J., Stump, G. S., Ho, A. D., and Seaton, D. T. Studying Learning 
in the Worldwide Classroom Research into edX's First MOOC. Research and Practice in Assessment 8, 
19 (2013), 13–25. 
3 Andrew Dean, et al. "HarvardX and MITx: Two Years of Open Online Courses Fall 2012-Summer 2014." 
Available at SSRN 2586847 (2015) 



capabilities for delivering quality learning opportunities at scale. The activities are in the area of 
Distributed Assessments and Mapping Courses to Skills development4. Interoperability 
considerations are central to the approaches. 
  

The Data Dividend 
 
The document identifies 3 Opportunity Areas for Big Data/ data-intensive research in education 
to improve practice and policy: 
  

1:  Distributed, Embedded Assessment  
2:  Competency and Skill based Learning 
3:  Strategic Scaffolding 
 

 
1. Distributed, Embedded Assessment 
 

Creating Repositories and Recommenders  
A substantial body of research has been compiled on the best practices in structuring and using 
feedback in traditional educational settings. One of the most exciting features of online learning, 
as demonstrated amply in edX, is the platform’s ability to ask students to apply the concepts 
they have just encountered and test them to provide timely feedback leading to mastery or 
different pathways (Embedding assessments frequently for formative testing). An enormous 
investment is currently being made at MIT and elsewhere to design and develop effective 
assessments, for the rapidly expanding roster of MOOC offerings from colleges and universities 
worldwide. 
  

How can we make this process scalable and cost effective? If the power of technology can 
be pressed into service for direct assessment, education would benefit enormously. 
  
To date, no technology exists to effectively manage and share this content or to support re-use 
of assessment items across courses, departments, institutions—or more importantly, across 
educational platforms and technologies. In addition, no approach to managing and authoring 
assessments has yet to effectively map them to learning objectives or track item response 
analytics and other valuable use [and user?] data. As we move forward in developing a robust 
digital learning infrastructure, the need for a new set of tools to facilitate and improve 
assessments is critical. 
  
To address this need, we propose the creation of the Digital Learning Assessment Bank, a 
global federation of assessment tools that will facilitate the availability of online assessments. A 
secure and interoperable Federated Assessment Service would support the creation of such an 
assessment bank where users will be able to create and update assessment offerings and 
perform assessment authorizing, reporting, learning objectives mapping and analytics. 

                                                
4 Core Concept Catalog: MC3 (http://oeit.mit.edu/gallery/projects/core-concept-catalog-mc3) 



  
Big Data capability can allow us to study the effectiveness of assessments drawn from these 
assessments banks for different learning outcomes/ in different contexts and make this 
information available along with these assessments. We can imagine Assessment 
Recommenders that facilitate the identification and selection of assessments from the digital 
learning assessment bank for use by course authors. As such Digital Learning/MOOC 
environments can provide more opportunity to personalize learning (through analytics), more 
opportunity to provide interactivity with content and more opportunity for asynchronous 
interaction. 
 

Finally, research into digital assessment—its use and its results—can feed into our 
understanding of learning itself.  As students interact with online materials, the data generated 
will give researchers insight into how learners struggle to master concepts, how they deal with 
misconceptions and skills, and how they ultimately succeed.  

Questions:  
- What are the alternative methods for understanding and making learning visible? 
- Would Digital Learning Assessment Banks result in better learning objectives? Or vice 

versa? 

  
2. Competency and Skill based Learning  
  

Keys measures of educational effectiveness, from the perspective of the community colleges, 
Department of Labor (DOL), Department of Education (DOE) and the Trade Adjustment 
Assistance Community College Career Training (TAACCCT) grant program, are data that 
indicates the numbers of graduates of degree or certificate programs that go on to get jobs, and 
most importantly, the “growth in the wage premium associated with higher education and 
cognitive ability"(Autor, 2014)5. The data required for these measures are captured in various 
institutional and state systems, educational SIS, labor and wage reporting, departments of 
revenue, and cross-organizational agreements. The techniques for sharing this data for the 
purposes of research and reporting grant effectiveness are just beginning to emerge, largely, 
from what we can tell, driven by the requirements for these organizations to report results of 
recent federal grants.  A robust, well design system that integrates real data would inform policy 
makers and at the same time, help create well-informed policy. 
  
A missing component of this data train is where the mapping occurs between educational 
courses/programs and job skills. As we know, from our own design efforts around learning 
objective models, we cannot get an adequate end-to-end picture across the entire path from 
educational program to job placement and make sense of it without modeling educational goals 
related to course and programs. Without goal modeling, this mapping is done by hand, by 

                                                
5 Autor, David. "Skills, education, and the rise of earnings inequality among the" other 99 percent" 2014 



people who make educated decisions regarding which programs of study map to a particular job 
classification6. 
  
We can imagine a number of activities that could help with this: 
 
One, of course, being the learning objective cataloging systems we are building at MIT. In fact, 
for the TAACCCT Round 4 Data Bus project, we are planning to leverage this work, standing up 
services to manage and map data on educational goals. We are hopeful that one or more of the 
Mass Community Colleges might be willing to run an experiment for curricular mapping and 
linkages to job skills. 
  
Another is semantic analysis. Starting with knowledge models, developed by domain experts, 
we are currently exploring ways to auto-generate learning outcomes from available data. For 
instance, given what we know about the content that our faculty are relating to their authored 
learning goals, we can infer other related content or requisite relationships or even identify 
missing learning goals that are evidenced by the data. In the same way we could consider 
analysis of expert-authored crosswalks to begin automatically identifying additional educational 
opportunities available for a particular job code, or conversely, we can better identify job 
opportunities that may be available to students that were not initially conceived. 
 

Question: 
- Which models can be implemented under current conditions (e.g. social, political, 

technological, and structural within education) and which will require change? 

 

3.  Strategic Scaffolding (Help for the Networked Learner/) 
 

Scaffolding, an instructional strategy designed to promote deeper level of understanding and 
autonomous learning, is of particular relevance for online learning. It recognizes diverse 
pathways and forms of knowledge and expertise, and it takes into account learning 
experience, concept, and abilities. In an ideal MOOC, students should be presented with a 
great variety of content and activities, as well as feedback and support strategies that:  

- illustrate concepts, problems, and processes in multiple ways to ensure understanding 
- model a process before students are asked to complete their own 
- allow connections to previous knowledge and experience 
- provide instant feedback about level of understanding  
- enable deeper level of absorption, understanding and application of knowledge 
- offer a network of support comprised of peers and experts. 

 
MOOCs bring together a diversity of participants with different levels of preparation and 
backgrounds and a variety of motivations, interests and needs. Understanding how these 
conditions inform the different pathways and levels of success is of critical to the goal of 

                                                
6 Standard Occupational Classification (SOC) systeml (http://www.bls.gov/soc/).  



increasing equitable access to high-quality online learning opportunities at scale. Big Data 
driven research can help us understand the interaction among students, pedagogy, curricular 
material, support networks and the circumstances under which successful learning occur. 
More importantly, it would help create automatic support and scaffolding strategies for a wide 
variety of learners. It would provide the “temporary” learning structures that can enhance 
students’ performance during a particular learning situation, gradually increasing the level of 
complexity needed to achieve mastery and higher levels of sophistication.  

 
Both the MOOC learning experience as well as the characteristics/needs of the networked 
learner 7(such as their help seeking behavior) present added dimensionality that impact how 
and when help (timely, appropriate) can be provided or for that matter how best key aspects 
of quality such as “personalization” can be realized. They also suggest moving beyond the 
expert driven model of identifying misconception to a data driven model of understanding the 
learning strategies and behaviors of Networked Open Learners.  
  
For example, an important consideration in the MOOC/online environment revolves around 
the possibility that scale is an essential “input” (i.e. more students participating in a course 
would actually improve the experience) which is the opposite of what we believe for face-to-
face settings. The quality and diversity of interactions might actually improve in a large online 
course due to the level of participation in forums. Related is the fact that the MOOC learning 
experience – implies the ability to navigate an online experience – is one that involves 
forming and interacting with communities. 

Questions: 
- What models of digital scaffolding exist already? How is their success measured? 
- In what ways do underserved communities currently benefit from access to online 

education? What are the conditions in which that happens?  
- How can we create successful communities of practice? Is a “critical mass” of learners 

prerequisite for community engagement? 
- How can we ensure the privacy of students and other participants? 

  
 

  
 

 

                                                
7 Drexler, Wendy. "The networked student model for construction of personal learning environments: 
Balancing teacher control and student autonomy." Australasian Journal of Educational Technology 26.3 
(2010). http://www.ascilite.org.au/ajet/ajet26/drexler.html 
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Numerous	
  efforts	
  are	
  underway	
  to	
  build	
  digital	
  learning	
  systems	
  and	
  the	
  designs	
  of	
  
such	
  systems	
  vary	
  in	
  critical	
  aspects:	
  	
  components,	
  organization,	
  extensibility,	
  
adaptability,	
  data	
  intensity,	
  and	
  use.	
  With	
  support	
  from	
  the	
  Bill	
  and	
  Melinda	
  Gates	
  
Foundation,	
  one	
  set	
  of	
  researchers	
  is	
  linking	
  learning	
  maps	
  to	
  systems	
  of	
  
assessment	
  and	
  analytics	
  in	
  order	
  to	
  define	
  and	
  examine	
  progress	
  in	
  learning	
  across	
  
large	
  numbers	
  of	
  students	
  (	
  projects	
  include:	
  Next	
  Generation	
  Schools,	
  Glass	
  Labs,	
  
Enlearn,	
  CRESST,	
  Dynamic	
  Maps,	
  SUDDS).	
  	
  In	
  this	
  paper,	
  I	
  describe	
  one	
  of	
  the	
  
projects,	
  Scaling	
  Up	
  Digital	
  Design	
  Studies(SUDDS)	
  at	
  North	
  Carolina	
  State	
  
University,	
  highlighting	
  how	
  its	
  structure	
  and	
  design	
  can	
  inform	
  efforts	
  at	
  applying	
  
big	
  data	
  in	
  mathematics	
  education.	
  	
  I	
  propose	
  that	
  articulating	
  an	
  explicit	
  theory	
  of	
  
student-­‐centered	
  learning	
  can	
  help	
  in	
  leveraging	
  “big	
  data”	
  to	
  improve	
  the	
  depth	
  of	
  
learning	
  and	
  not	
  simply	
  leverage	
  performance	
  from	
  users	
  of	
  digital	
  learning	
  systems	
  
at	
  a	
  possible	
  cost	
  to	
  understanding.	
  	
  It	
  is	
  a	
  conjecture	
  that	
  remains	
  to	
  be	
  tested.	
  
	
  
A	
  Student-­‐Centered	
  Digital	
  Learning	
  System	
  (DLS)	
  
	
  
	
  A	
  representation	
  of	
  a	
  digital	
  learning	
  system	
  is	
  shown	
  below.	
  	
  It	
  consists	
  of	
  a	
  
learning	
  map,	
  which	
  delineates	
  the	
  topics	
  	
  to	
  be	
  learned	
  as	
  big	
  ideas	
  and	
  their	
  
underlying	
  learning	
  structure,.	
  	
  The	
  constructs	
  in	
  the	
  map	
  are	
  connected	
  to	
  	
  a	
  set	
  of	
  
internet	
  resources	
  that	
  can	
  be	
  deployed	
  as	
  curricular	
  materials,	
  and	
  a	
  means	
  of	
  
lesson	
  delivery	
  combined	
  with	
  a	
  workspace	
  and	
  access	
  to	
  a	
  set	
  of	
  math-­‐specific	
  
tools.	
  	
  	
  The	
  map	
  is	
  also	
  linked	
  to	
  multiple	
  forms	
  of	
  assessments	
  and	
  reporting.	
  The	
  
whole	
  system	
  will	
  be	
  undergirded	
  with	
  an	
  analytic	
  system	
  to	
  monitor,	
  study,	
  and	
  
modify	
  	
  the	
  use	
  of	
  the	
  DLS.	
  	
  	
  Supports	
  for	
  teaching	
  refer	
  to	
  activities	
  around	
  
professional	
  development	
  materials	
  and	
  means	
  for	
  teachers	
  to	
  manage	
  the	
  system.	
  	
  
The	
  arrows	
  along	
  the	
  bottom	
  indicate	
  from	
  where	
  feedback	
  comes	
  and	
  to	
  where	
  it	
  is	
  
delivered.	
  
	
  



	
  
	
  
A	
  DLS	
  is	
  student-­‐centered	
  when	
  each	
  of	
  these	
  components	
  is	
  designed	
  to	
  strengthen	
  
students’	
  movement	
  within	
  the	
  digitally-­‐enabled	
  space.	
  	
  A	
  student-­‐centered	
  DLS:	
  
● 	
  increases	
  students’	
  ability	
  to	
  understand	
  what	
  they	
  are	
  learning,	
  
● supports	
  appropriate	
  levels	
  of	
  choice	
  in	
  	
  sequencing	
  or	
  making	
  decisions	
  

about	
  materials	
  (with	
  guidance	
  of	
  teachers	
  or	
  knowledgeable	
  adults)	
  
● supports	
  genuine	
  mathematical	
  work	
  including	
  an	
  authentic	
  use	
  of	
  the	
  tools	
  

(not	
  just	
  filling	
  in	
  answers),	
  	
  
● affords	
  peer	
  collaboration,	
  	
  discussing	
  and	
  sharing	
  results,	
  
● allows	
  students	
  to	
  create,	
  store	
  and	
  curate	
  products,	
  and	
  
● provides	
  students’	
  diagnostic	
  feedback	
  allowing	
  them	
  to	
  self-­‐monitor	
  and	
  set	
  

goals.	
  
	
  
Student-­‐centeredness	
  does	
  not	
  imply	
  individualization,	
  working	
  largely	
  alone	
  at	
  
one’s	
  own	
  speed,	
  but	
  it	
  does	
  support	
  personalization,	
  making	
  choices	
  and	
  self-­‐
regulation	
  (Confrey,	
  2014).	
  	
  The	
  DLS	
  can	
  be	
  used	
  by	
  classes	
  using	
  predefined	
  scope	
  
and	
  sequences	
  to	
  coordinate	
  activities.	
  	
  
	
  
Introducing	
  	
  the	
  SUDDS	
  Grades	
  6-­‐8	
  Learning	
  Map	
  
	
  
A	
  learning	
  map	
  is	
  a	
  configuration	
  in	
  space	
  of	
  the	
  primary	
  concepts	
  to	
  be	
  learned.	
  
Our	
  middle	
  school	
  version	
  is	
  organized	
  hierarchically	
  to	
  show	
  the	
  major	
  fields	
  in	
  
mathematics	
  (number,	
  statistics	
  and	
  probability,	
  measurement	
  and	
  geometry,	
  and	
  
algebra)	
  and	
  nine	
  big	
  ideas	
  from	
  across	
  those	
  fields.	
  	
  These	
  nine	
  big	
  ideas,	
  called	
  
regions,	
  span	
  all	
  grades	
  	
  (6-­‐8)	
  and	
  include	
  such	
  topics	
  as	
  “	
  Compare	
  quantities	
  to	
  
operate	
  and	
  compose	
  with	
  ratio,	
  rate	
  and	
  percent”	
  or	
  “display	
  data	
  and	
  use	
  statistics	
  
to	
  measure	
  center	
  and	
  variation	
  in	
  distributions”.	
  	
  Big	
  ideas,	
  rather	
  than	
  relying	
  on	
  
individual	
  standards,	
  have	
  the	
  advantage	
  of	
  providing	
  focus	
  both	
  at	
  and	
  across	
  
grades.	
  	
  Too	
  many	
  systems	
  attempt	
  to	
  map	
  standard	
  by	
  standard	
  which	
  is	
  
problematic	
  since	
  standards	
  vary	
  in	
  size	
  and	
  often	
  apply	
  to	
  multiple	
  big	
  ideas.	
  	
  
	
  



	
  
	
  
	
  
The	
  level	
  below	
  the	
  regions	
  is	
  comprised	
  of	
  related	
  learning	
  clusters	
  (RLCs).	
  	
  At	
  this	
  
level,	
  the	
  research	
  on	
  student	
  learning	
  has	
  a	
  significant	
  impact	
  on	
  the	
  map.	
  	
  RLCs	
  are	
  
sets	
  of	
  constructs	
  that	
  are	
  learned	
  in	
  relation	
  to	
  each	
  other	
  and	
  their	
  spatial	
  
configurations	
  on	
  the	
  map	
  convey	
  to	
  the	
  user	
  information	
  about	
  those	
  relationships.	
  	
  	
  	
  
For	
  instance,	
  within	
  the	
  big	
  idea	
  of	
  ratio,	
  rate,	
  and	
  percent,	
  there	
  are	
  five	
  RLCs:	
  1)	
  
key	
  ratio	
  relationships,	
  2)	
  comparing	
  and	
  finding	
  missing	
  values,	
  3)	
  percents,	
  4)	
  
calculating	
  with	
  percents	
  and	
  5)	
  rational	
  number	
  operators.	
  	
  	
  In	
  a	
  region	
  or	
  big	
  idea,	
  
the	
  RLC’s	
  organization	
  from	
  bottom	
  left	
  to	
  upper	
  right	
  conveys	
  to	
  the	
  users	
  to	
  
address	
  the	
  first	
  cluster,	
  key	
  ratio	
  relationships,	
  before	
  trying	
  to	
  compare	
  ratios	
  or	
  
build	
  up	
  to	
  meeting	
  values.	
  The	
  shape	
  of	
  a	
  particular	
  RLC,	
  for	
  example,	
  key	
  ratio	
  
relationships,	
  also	
  conveys	
  suggested	
  sequencing.	
  	
  Its	
  shape	
  as	
  an	
  inverted	
  triangle,	
  
conveys	
  that	
  users	
  should	
  begin	
  with	
  what	
  it	
  means	
  for	
  the	
  ratio	
  of	
  two	
  quantities	
  to	
  
be	
  equal,	
  when	
  there	
  is	
  more	
  or	
  less	
  or	
  both	
  quantities.	
  	
  The	
  parallel	
  structure	
  of	
  the	
  
upper	
  two	
  vertices	
  of	
  the	
  inverted	
  triangle	
  conveys	
  that	
  base	
  ratio	
  (lowest	
  pair	
  of	
  
relatively	
  prime	
  whole	
  numbers)	
  and	
  unit	
  ratio	
  can	
  be	
  learned	
  in	
  either	
  order.	
  	
  	
  By	
  
learning	
  the	
  ideas	
  of	
  equivalence,	
  base	
  ratio,	
  and	
  unit	
  ratio	
  before	
  moving	
  to	
  
comparing	
  and	
  finding	
  missing	
  values	
  ensures	
  more	
  success	
  as	
  student	
  learn	
  to	
  
build	
  up	
  in	
  a	
  table	
  or	
  graph	
  to	
  find	
  	
  a	
  missing	
  value	
  using	
  the	
  base	
  or	
  unit	
  ratio,	
  and	
  
eventually	
  they	
  learn	
  to	
  find	
  a	
  missing	
  value	
  directly	
  through	
  the	
  application	
  of	
  a	
  
combination	
  of	
  multiplication	
  and	
  division.	
  	
  With	
  this	
  example	
  of	
  organization,	
  one	
  
can	
  see	
  how	
  the	
  student-­‐centered	
  design	
  of	
  the	
  map	
  differs	
  from	
  a	
  solely	
  content-­‐
based	
  logical	
  analysis	
  of	
  mathematics,	
  in	
  that	
  it	
  is	
  based	
  on	
  leveraging	
  the	
  research	
  
on	
  student	
  learning	
  patterns.	
  
	
  



	
  
	
  
At	
  the	
  next	
  level	
  of	
  detail,	
  the	
  construct	
  level,	
  a	
  user	
  have	
  access	
  to	
  what	
  is	
  called	
  the	
  
“learning	
  trajectory	
  stack.”	
  	
  	
  	
  The	
  stack	
  details	
  the	
  typical	
  behaviors,	
  conceptions,	
  
and	
  language	
  of	
  children	
  as	
  they	
  learn	
  and	
  revise	
  ideas	
  from	
  naive	
  to	
  more	
  
sophisticated.	
  	
  In	
  the	
  figure	
  below,	
  the	
  first	
  levels	
  of	
  the	
  stack	
  for	
  unit	
  ratio	
  are	
  
shown.	
  	
  	
  For	
  a	
  ratio	
  where	
  one	
  number	
  is	
  a	
  multiple	
  of	
  the	
  other	
  (12:3),	
  one	
  of	
  the	
  
two	
  unit	
  ratios	
  is	
  (4:1)	
  and	
  these	
  are	
  the	
  easiest	
  for	
  students	
  to	
  understand,	
  for	
  
instance,	
  in	
  a	
  recipe,	
  4	
  cups	
  of	
  flour	
  per	
  one	
  cup	
  of	
  milk.	
  	
  At	
  the	
  second	
  level,	
  from	
  a	
  
4:1	
  ratio,	
  they	
  can	
  reason	
  to	
  find	
  the	
  other	
  ratio	
  of	
  (1:	
  ¼)	
  or	
  one	
  cup	
  of	
  flour	
  per	
  one	
  
quarter	
  cup	
  of	
  milk.	
  	
  	
  	
  At	
  the	
  next	
  level,	
  students	
  can	
  find	
  unit	
  ratios	
  from	
  base	
  ratios,	
  
such	
  as	
  going	
  from	
  (2:3)	
  to	
  (1,	
  3/2)	
  or	
  (2/3:1).	
  	
  It	
  is	
  important	
  for	
  students	
  to	
  realize	
  
that	
  either	
  quantity	
  in	
  the	
  ratio	
  can	
  become	
  the	
  “per	
  one	
  quantity”.	
  	
  The	
  next	
  level	
  is	
  
finding	
  a	
  unit	
  ratio	
  for	
  a	
  decimal	
  or	
  fractional	
  value	
  of	
  one	
  of	
  the	
  quantities	
  (2.3:	
  5)	
  
to	
  become	
  (23:5)	
  and	
  then,	
  for	
  instance	
  (1,	
  5/23).	
  	
  Finally	
  (non	
  visible	
  in	
  picture),	
  a	
  
student	
  can	
  find	
  the	
  unit	
  ratio	
  for	
  any	
  ratio	
  (a:	
  b)	
  as	
  	
  (a/b:1)	
  or	
  (1:	
  b/a).	
  	
  



	
  
	
  
Tapping	
  on	
  the	
  symbol	
  CCSS-­‐M,	
  shows	
  the	
  standards	
  that	
  are	
  related	
  to	
  this	
  
construct.	
  	
  	
  	
  Associating	
  the	
  standards	
  with	
  the	
  constructs	
  assures	
  teachers	
  that	
  they	
  
are	
  addressing	
  the	
  proper	
  material,	
  but	
  as	
  one	
  can	
  clearly	
  see,	
  the	
  learning	
  
trajectory	
  information	
  is	
  far	
  more	
  informative	
  in	
  terms	
  of	
  pedagogical	
  content	
  
knowledge	
  than	
  are	
  the	
  standards,	
  as	
  should	
  be	
  expected.	
  	
  
	
  

	
  
	
  
	
  
	
  
	
  



	
  Also	
  choosing	
  any	
  particular	
  standard,	
  one	
  sees	
  flags	
  in	
  the	
  places	
  in	
  the	
  map	
  where	
  
it	
  plays	
  a	
  major	
  role	
  (in	
  ratio,	
  rate	
  and	
  percent)	
  and	
  a	
  minor	
  role,	
  (in	
  functions	
  and	
  
relations).	
  	
  This	
  way	
  of	
  creating	
  a	
  learning	
  map,	
  using	
  a	
  hierarchical	
  structure	
  and	
  
tying	
  into	
  big	
  ideas	
  permits	
  a	
  user,	
  whether	
  it	
  is	
  a	
  teacher	
  or	
  a	
  student,	
  to	
  
comprehend	
  the	
  structure	
  within	
  which	
  they	
  are	
  learning.	
  	
  It	
  is	
  in	
  sharp	
  contrast	
  to	
  
learning	
  systems	
  that	
  attempt	
  to	
  connect	
  materials	
  standard-­‐by-­‐standard.	
  	
  We	
  claim	
  
that	
  a	
  standard-­‐by	
  –standard	
  approach	
  is	
  ineffective	
  due	
  to	
  the	
  fact	
  that	
  standards	
  
can	
  be	
  mapped	
  to	
  multiple	
  places	
  on	
  the	
  map	
  and	
  they	
  vary	
  in	
  grain	
  size.	
  	
  Their	
  
systematic	
  connection	
  to	
  big	
  ideas	
  is	
  not	
  sufficiently	
  articulated	
  in	
  that	
  the	
  
progressions	
  remain	
  implicit.	
  	
  We	
  seek	
  to	
  make	
  those	
  relationships	
  explicit	
  and	
  the	
  
basis	
  of	
  our	
  assessment	
  models.	
  
	
  
	
  

	
  
	
  
	
  
The	
  map	
  offers	
  other	
  features	
  to	
  users.	
  	
  First	
  of	
  all,	
  a	
  single	
  or	
  multiple	
  grade	
  levels	
  
can	
  be	
  selected	
  to	
  allow	
  its	
  flexible	
  use	
  across	
  different	
  grade	
  configurations.	
  	
  Also,	
  
in	
  construction,	
  is	
  a	
  scope	
  and	
  sequence	
  generator,	
  so	
  a	
  school	
  can	
  map	
  the	
  regions	
  
to	
  the	
  days	
  of	
  instruction	
  and	
  can	
  sequence	
  down	
  to	
  the	
  cluster	
  level.	
  	
  	
  	
  Finally,	
  also	
  
under	
  construction,	
  is	
  a	
  means	
  to	
  take	
  short	
  journeys	
  from	
  one	
  cluster	
  or	
  construct	
  
to	
  another,	
  so	
  that	
  topics	
  across	
  the	
  fields	
  can	
  be	
  connected.	
  	
  	
  The	
  map	
  provides	
  
insight	
  into	
  the	
  underlying	
  theory	
  of	
  learning	
  and,	
  as	
  such,	
  provides	
  critical	
  features	
  
that	
  could	
  be	
  leveraged	
  in	
  the	
  process	
  of	
  data	
  mining.	
  
	
  
Diagnostic	
  Assessment	
  and	
  Reporting	
  
	
  
Our	
  map	
  connects	
  to	
  a	
  diagnostic	
  assessment	
  system	
  at	
  the	
  level	
  of	
  the	
  RLCs.	
  	
  When	
  
students	
  complete	
  the	
  study	
  of	
  materials	
  assigned	
  at	
  each	
  of	
  the	
  constructs	
  in	
  a	
  
cluster,	
  they	
  take	
  a	
  diagnostic	
  assessment	
  of	
  the	
  RLC.	
  	
  	
  By	
  assessing	
  at	
  the	
  cluster	
  



level,	
  testing	
  is	
  given	
  periodically	
  yet	
  with	
  sufficient	
  frequency	
  to	
  provide	
  useful	
  
diagnostic	
  information	
  and	
  check	
  connections	
  and	
  retention.	
  	
  
	
  
A	
  unique	
  quality	
  of	
  our	
  assessment	
  system	
  is	
  that	
  the	
  assessments	
  are	
  often	
  
designed	
  to	
  show	
  the	
  process	
  of	
  solving	
  the	
  problem	
  and	
  evaluated	
  to	
  reveal	
  the	
  
students’	
  preferred	
  method	
  of	
  solving	
  a	
  problem.	
  For	
  example,	
  if	
  a	
  student	
  
represents	
  univariate	
  data	
  in	
  sixth	
  grade	
  statistics	
  using	
  the	
  increasingly	
  
sophisticated	
  elements	
  of	
  ordering,	
  grouping,	
  scale	
  and	
  intervals,	
  their	
  progress	
  to	
  
proficiency	
  on	
  this	
  skill	
  can	
  be	
  mapped.	
  	
  	
  Many	
  of	
  our	
  items	
  use	
  “item	
  generation	
  
environments”	
  which	
  allow	
  the	
  systematic	
  variation	
  of	
  the	
  item	
  parameters	
  to	
  show	
  
variations	
  in	
  processes	
  across	
  task	
  classes	
  (Confrey	
  and	
  Maloney,	
  ).	
  	
  
	
  
	
  The	
  assessments	
  are	
  constructed	
  through	
  a	
  process	
  of	
  “evidence-­‐centered	
  design”	
  
(Mislevy	
  and	
  	
  Riconscente,	
  2005)	
  	
  The	
  value	
  of	
  a	
  clear	
  description	
  of	
  the	
  student	
  
model	
  in	
  EDC	
  was	
  described	
  by	
  Mislevy,	
  Behrens,	
  Dicerbo,	
  and	
  Levy	
  	
  (2012)as:	
  
	
  

We	
  note	
  that	
  the	
  patterns	
  in	
  data	
  transcend	
  the	
  particular	
  in	
  which	
  they	
  were	
  
gathered	
  in	
  ways	
  that	
  we	
  can	
  talk	
  about	
  in	
  terms	
  of	
  students’	
  capabilities,	
  which	
  
we	
  implement	
  as	
  student	
  model	
  variables	
  and	
  organize	
  in	
  ways	
  tuned	
  to	
  their	
  
purpose.	
  	
  Having	
  the	
  latent	
  variables	
  in	
  student	
  model	
  as	
  the	
  organizing	
  
framework	
  allows	
  us	
  to	
  carry	
  out	
  coherent	
  interpretations	
  of	
  evidence	
  from	
  a	
  
task	
  with	
  one	
  set	
  of	
  surface	
  features	
  to	
  other	
  task	
  that	
  may	
  be	
  quite	
  different	
  on	
  
the	
  surface.	
  The	
  machinery	
  of	
  probability-­‐based	
  inference	
  in	
  the	
  evidence	
  
accumulation	
  process	
  is	
  used	
  to	
  synthesize	
  information	
  from	
  diverse	
  tasks	
  in	
  the	
  
form	
  of	
  evidence	
  about	
  student	
  capabilities,	
  and	
  quantifies	
  the	
  strength	
  of	
  that	
  
evidence.	
  	
  Psychometric	
  models	
  can	
  do	
  these	
  things	
  to	
  the	
  extent	
  that	
  the	
  
different	
  situations	
  display	
  the	
  pervasive	
  patterns	
  at	
  a	
  more	
  fundamental	
  level	
  
because	
  they	
  reflect	
  fundamental	
  aspects	
  of	
  the	
  ways	
  students	
  think,	
  learn,	
  and	
  
interact	
  with	
  the	
  world.	
  	
  (p.	
  30).	
  

	
  
In	
  our	
  application	
  of	
  ECD,	
  the	
  assessment	
  is	
  tied	
  to	
  the	
  levels	
  in	
  the	
  learning	
  
trajectory	
  stacks	
  using	
  an	
  adaptive	
  model.	
  	
  For	
  each	
  learning	
  trajectory	
  stack,	
  the	
  
learning	
  scientists	
  marks	
  levels	
  that	
  introduce	
  a	
  qualitatively	
  different	
  aspect	
  of	
  the	
  
big	
  idea	
  and	
  writes	
  an	
  item	
  to	
  test	
  for	
  student	
  understanding.	
  	
  When	
  the	
  levels	
  
below	
  it	
  are	
  encapsulated	
  in	
  the	
  tested	
  level,	
  an	
  adaptive	
  protocol	
  ensures	
  that	
  test	
  
takers	
  are	
  correctly	
  associated	
  with	
  levels.t	
  Iems	
  are	
  carefully	
  designed	
  to	
  be	
  
generate	
  diagnostic	
  information.	
  For	
  instance,	
  they	
  capture	
  evidence	
  of	
  commonly	
  
held	
  misconceptions	
  and/or	
  strategies	
  used	
  to	
  solve	
  problems.	
  	
  	
  This	
  ensures	
  that	
  
students	
  and	
  teachers	
  are	
  provided	
  with	
  appropriate	
  feedback	
  to	
  inform	
  next	
  steps.	
  
	
  
A	
  strength	
  and	
  challenge	
  of	
  the	
  system	
  is	
  that	
  a	
  diagnostic	
  assessment	
  can	
  span	
  
across	
  multiple	
  grades	
  of	
  proficiency	
  levels	
  of	
  the	
  learning	
  trajectories.	
  	
  Thus	
  it	
  can	
  
allow	
  students	
  to	
  move	
  more	
  rapidly	
  or	
  slowly	
  and	
  signal	
  users	
  (students	
  and	
  
teachers)	
  whether	
  they	
  are	
  on	
  track,	
  above	
  or	
  below	
  grade	
  level	
  in	
  their	
  learning	
  
levels.	
  	
  
	
  



Assessments	
  can	
  be	
  used	
  for	
  pre-­‐testing,	
  practice	
  testing	
  or	
  as	
  a	
  diagnostic	
  
assessment	
  level.	
  	
  Results	
  of	
  the	
  assessments,	
  with	
  the	
  exception	
  of	
  justifications,	
  
can	
  be	
  accessed	
  immediately	
  following	
  the	
  testing.	
  	
  	
  Results	
  are	
  shown	
  on	
  the	
  map	
  
to	
  display	
  both	
  information	
  on	
  where	
  a	
  student	
  has	
  worked	
  on	
  activities	
  and	
  where	
  
they	
  have	
  shown	
  proficiency	
  with	
  the	
  materials.	
  
	
  
Students	
  receive	
  their	
  individual	
  data	
  and	
  can	
  review	
  their	
  progress	
  over	
  time.	
  	
  
Teachers	
  can	
  review	
  either	
  individual	
  or	
  class	
  level	
  results,	
  including	
  analyzing	
  
those	
  results	
  by	
  subgroups.	
  	
  	
  
	
  
While	
  the	
  current	
  system	
  is	
  limited	
  to	
  diagnostic	
  assessments	
  at	
  the	
  level	
  of	
  RLCs,	
  a	
  
standardized	
  reporting	
  system	
  affords	
  the	
  use	
  of	
  other	
  kinds	
  of	
  assessment	
  
including,	
  for	
  instance,	
  perceptions	
  of	
  learning	
  success	
  and	
  satisfaction.	
  
	
  
An	
  important	
  characteristic	
  of	
  the	
  assessment	
  and	
  reporting	
  system	
  in	
  this	
  DLS	
  is	
  
that	
  it	
  provides	
  a	
  variety	
  of	
  types	
  of	
  feedback	
  to	
  students	
  and	
  teachers	
  in	
  a	
  timely	
  
fashion.	
  	
  Feedback	
  can	
  be	
  delivered	
  as	
  praise,	
  as	
  correctness,	
  or	
  as	
  detailed	
  evidence	
  
on	
  process.	
  	
  It	
  can	
  be	
  delivered	
  immediately	
  or	
  delayed.	
  	
  Researchers	
  have	
  
distinguished	
  two	
  broad	
  classes:	
  	
  person-­‐oriented	
  and	
  task-­‐oriented	
  (Lipnevich	
  A.,	
  
&	
  	
  Smith,	
  J.	
  2008).	
  	
  It	
  appears	
  that	
  while	
  both	
  can	
  be	
  important,	
  the	
  task-­‐oriented	
  
feedback	
  tends	
  to	
  show	
  improved	
  effects	
  on	
  performance	
  on	
  cognitive	
  task.	
  	
  	
  	
  
However,	
  person-­‐oriented	
  feedback	
  can	
  support	
  self-­‐efficacy	
  and	
  improve	
  a	
  
student’s	
  perception	
  of	
  themselves	
  as	
  a	
  motivated	
  learner.	
  	
  	
  An	
  assessment	
  system	
  
can	
  deploy	
  feedback	
  in	
  a	
  variety	
  of	
  ways	
  in	
  order	
  to	
  permit	
  experimentation	
  on	
  
what	
  produces	
  the	
  greatest	
  gains	
  in	
  understanding.	
  
	
  
Links	
  to	
  Curriculum	
  Use	
  
	
  
The	
  map	
  can	
  be	
  linked	
  to	
  a	
  curriculum	
  by	
  one	
  of	
  two	
  methods.	
  	
  At	
  the	
  level	
  of	
  the	
  
RLC,	
  one	
  can	
  select	
  the	
  relevant	
  construct	
  or	
  constructs	
  and	
  then	
  have	
  a	
  set	
  of	
  
possible	
  links	
  addressing	
  those	
  topics	
  become	
  visible.	
  	
  Teachers	
  and	
  schools	
  can	
  add	
  
links	
  locally	
  ,	
  but	
  the	
  overall	
  map	
  has	
  links	
  that	
  are	
  curated	
  by	
  the	
  team.	
  	
  	
  	
  
Contributions	
  to	
  the	
  general	
  map	
  can	
  be	
  made	
  on	
  the	
  basis	
  of	
  enough	
  internal	
  
support	
  via	
  a	
  teacher-­‐to-­‐teacher	
  rating	
  system.	
  
	
  
In	
  addition,	
  materials	
  can	
  be	
  tagged	
  based	
  on	
  a	
  taxonomy	
  of	
  curricular	
  features	
  
including	
  whether	
  the	
  materials	
  are	
  problem/project-­‐oriented,	
  practice-­‐oriented,	
  
involve	
  problem	
  solving,	
  group	
  work,	
  individualized	
  activity,	
  include	
  or	
  don’t	
  
include	
  formative	
  assessment	
  etc.	
  	
  	
  
	
  
Another	
  means	
  of	
  accessing	
  curricula	
  is	
  through	
  a	
  tool	
  that	
  permits	
  a	
  district	
  to	
  
develop	
  a	
  scope	
  and	
  sequence.	
  	
  There	
  are	
  restrictions	
  on	
  those	
  scope	
  and	
  sequences,	
  
to	
  avoid	
  over-­‐fragmentation	
  of	
  the	
  curricula.	
  	
  	
  It	
  requires	
  the	
  curricula	
  designer	
  to	
  
work	
  across	
  the	
  year	
  sequencing	
  first	
  at	
  the	
  regional	
  or	
  “big	
  idea”	
  level	
  and	
  then	
  
within	
  that,	
  to	
  sequence	
  at	
  the	
  RLC	
  level.	
  	
  Within	
  a	
  particular	
  cluster,	
  a	
  curriculum	
  
designer	
  can	
  then	
  assign	
  web	
  resources	
  and	
  students	
  can	
  work	
  at	
  the	
  cluster	
  level	
  



among	
  those	
  resources.	
  	
  	
  In	
  this	
  scenario,	
  a	
  student	
  can	
  sign	
  into	
  the	
  DLS	
  by	
  name	
  
and	
  class	
  and	
  receive	
  information	
  about	
  their	
  assignments,	
  expectations,	
  and	
  
results.	
  
	
  
A	
  major	
  challenge	
  in	
  the	
  current	
  instantiation	
  of	
  the	
  digital	
  learning	
  system	
  is	
  how	
  
to	
  get	
  more	
  substantive	
  information	
  from	
  the	
  students’	
  experience	
  with	
  the	
  
curricular	
  materials.	
  	
  At	
  this	
  time,	
  it	
  is	
  relatively	
  easy	
  to	
  measure	
  “time	
  on	
  task”,	
  and	
  
sequence,	
  but	
  to	
  know	
  whether	
  the	
  student	
  completed	
  the	
  assignment	
  and	
  how	
  well	
  
is	
  beyond	
  the	
  capability	
  of	
  the	
  current	
  system.	
  	
  One	
  way	
  to	
  approach	
  this	
  problem	
  is	
  
to	
  set	
  up	
  a	
  standardized	
  means	
  that	
  designers	
  of	
  curricular	
  materials	
  could	
  
formatively	
  assess	
  student	
  performance	
  on	
  their	
  materials	
  and	
  pass	
  these	
  data	
  back	
  
to	
  the	
  DLS’s	
  assessment	
  system	
  in	
  a	
  standardized	
  way.	
  
	
  
Tools	
  and	
  Workspace	
  
	
  
Some	
  DLS	
  are	
  comprised	
  of	
  only	
  lesson	
  tasks	
  with	
  problems	
  asked	
  and	
  solutions	
  
submitted.	
  	
  However,	
  to	
  become	
  a	
  proficient	
  mathematician,	
  the	
  CCSS-­‐M	
  recognize	
  
the	
  importance	
  of	
  developing	
  a	
  set	
  of	
  practices	
  that	
  describe	
  how	
  mathematics	
  is	
  
done.	
  	
  One	
  element	
  of	
  a	
  sophisticated	
  DLS	
  is	
  then	
  to	
  offer	
  a	
  workspace	
  with	
  a	
  variety	
  
of	
  tools	
  that	
  can	
  be	
  a	
  performance	
  space	
  for	
  students,	
  a	
  canvas	
  on	
  which	
  they	
  can	
  
carry	
  out	
  and	
  share	
  their	
  mathematical	
  pieces	
  of	
  work	
  and	
  then	
  store	
  and	
  curate	
  the	
  
resources	
  from	
  those	
  experiences.	
  	
  To	
  date,	
  a	
  number	
  of	
  exceptional	
  tools	
  exist	
  
(DESMOS,	
  Geometer’s	
  Sketchpad,	
  Cabri,	
  Fathom,	
  Geogebra,	
  Tinker	
  Plots).	
  	
  In	
  
addition,	
  some	
  tools	
  exist	
  for	
  carrying	
  out	
  mathematical	
  work	
  and	
  even	
  for	
  creating	
  
screen	
  capture	
  of	
  it.	
  	
  Few	
  integrate	
  the	
  elements	
  of	
  a	
  collaborative	
  workspace,	
  a	
  tool	
  
set	
  and	
  a	
  means	
  to	
  create	
  a	
  portfolio	
  or	
  notebook,	
  much	
  less	
  link	
  them	
  successfully	
  
to	
  access	
  to	
  a	
  database	
  of	
  tasks	
  (see	
  Confrey,	
  2014	
  for	
  a	
  description	
  of	
  these	
  design	
  
elements.).	
  
	
  
Analytics	
  
	
  
An	
  analytic	
  engine	
  for	
  our	
  	
  DLS	
  	
  will	
  capture	
  all	
  the	
  data	
  about	
  system	
  use	
  including,	
  
but	
  not	
  limited	
  to,	
  where	
  a	
  student	
  has	
  gone	
  in	
  the	
  map,	
  how	
  long	
  he	
  or	
  she	
  has	
  
spent	
  there	
  during	
  a	
  session,	
  what	
  links	
  were	
  accessed	
  and	
  in	
  what	
  order,	
  when	
  a	
  
DA	
  was	
  taken,	
  how	
  many	
  times,	
  percent	
  correct	
  and	
  incorrect,	
  strategies	
  used	
  and	
  
results	
  on	
  an	
  item	
  by	
  item	
  basis.	
  	
  	
  Users	
  can	
  also	
  see	
  at	
  what	
  level	
  of	
  the	
  stacks	
  a	
  
learner	
  is	
  on	
  and	
  how	
  quickly	
  she	
  or	
  he	
  is	
  progressing	
  relative	
  to	
  time	
  in	
  the	
  system.	
  	
  	
  
Because	
  our	
  current	
  design	
  does	
  not	
  capture	
  the	
  actual	
  work	
  a	
  student	
  does	
  in	
  a	
  
linked	
  set	
  of	
  materials	
  and	
  we	
  do	
  not	
  have	
  the	
  workspace	
  or	
  tools	
  	
  embedded	
  in	
  the	
  
system,	
  limited	
  information	
  can	
  be	
  obtained	
  on	
  students’	
  use	
  of	
  materials.	
  	
  	
  Two	
  
variables	
  that	
  will	
  be	
  of	
  prime	
  importance	
  will	
  be	
  those	
  of”	
  time	
  on	
  task”	
  (ToT)	
  and	
  
“opportunity	
  to	
  learn”	
  (OTL).	
  	
  We	
  hope	
  in	
  the	
  future	
  to	
  gather	
  richer	
  data	
  on	
  student	
  
activity	
  either	
  from	
  what	
  is	
  done	
  using	
  the	
  digital	
  materials	
  or	
  adding	
  more	
  
opportunities	
  for	
  the	
  capture	
  of	
  samples	
  of	
  student	
  work	
  or	
  behavior	
  from	
  teacher	
  
observations	
  of	
  classroom	
  activity.	
  	
  Until	
  these	
  are	
  available,connecting	
  ToT	
  and	
  
OTL	
  measures	
  with	
  performance	
  on	
  the	
  diagnostic	
  assessments	
  may	
  prove	
  



insightful	
  especially	
  as	
  concerns	
  the	
  navigational	
  elements	
  of	
  the	
  system.	
  	
  The	
  
harder	
  problems	
  of	
  providing	
  expert	
  advice	
  to	
  the	
  user	
  of	
  what	
  to	
  do	
  following	
  
particular	
  results	
  on	
  the	
  assessments	
  will	
  likely	
  be	
  the	
  most	
  significant	
  and	
  essential	
  
challenge.	
  
	
  
Mislevy	
  et	
  al,	
  warn	
  that	
  educational	
  data	
  mining	
  (EDM)	
  would	
  benefit	
  from	
  
considering	
  how	
  it	
  links	
  to	
  the	
  underlying	
  cognitive	
  models	
  of	
  the	
  system	
  it	
  is	
  
mining,	
  	
  as	
  they	
  write,	
  “It	
  is	
  easy	
  to	
  amass	
  rich	
  and	
  voluminous	
  bodies	
  of	
  low-­‐level	
  
data,	
  mouse	
  clicks,	
  cursor	
  moves,	
  sense-­‐pad	
  movements,	
  and	
  so	
  on,	
  and	
  choices	
  and	
  
actions	
  in	
  simulated	
  environments.	
  Each	
  of	
  these	
  bits	
  of	
  data,	
  however,	
  is	
  bound	
  to	
  
the	
  conditions	
  under	
  which	
  it	
  was	
  produced,	
  and	
  does	
  not	
  by	
  itself	
  convey	
  its	
  
meaning	
  in	
  any	
  larger	
  sense.	
  We	
  seek	
  relevance	
  to	
  knowledge,	
  skill,	
  strategy,	
  
reaction	
  to	
  a	
  situation,	
  or	
  some	
  other	
  situatively	
  and	
  psychologically	
  relevant	
  
understanding	
  of	
  the	
  action.	
  We	
  want	
  to	
  be	
  able	
  to	
  identify	
  data	
  patterns	
  that	
  recur	
  
across	
  unique	
  situations,	
  as	
  they	
  arise	
  from	
  patterns	
  of	
  thinking	
  or	
  acting	
  that	
  
students	
  assemble	
  to	
  act	
  in	
  situations.	
  It	
  is	
  this	
  level	
  of	
  patterns	
  of	
  thinking	
  and	
  
acting	
  we	
  want	
  to	
  address	
  in	
  instruction	
  and	
  evaluation,	
  and	
  therefore	
  want	
  to	
  
express	
  in	
  terms	
  of	
  student	
  model	
  variables.”	
  	
  P35-­‐6	
  
	
  
With	
  respect	
  to	
  the	
  cognitive	
  student	
  model	
  underlying	
  the	
  SUDDS	
  DLS,	
  our	
  analytic	
  
model	
  would	
  be	
  helpful	
  if	
  it	
  could	
  inform	
  us	
  on	
  the	
  degree	
  to	
  which	
  we	
  are	
  able	
  to	
  
achieve	
  student-­‐centered	
  instruction.	
  	
  While	
  the	
  primary	
  purpose	
  of	
  our	
  work	
  is	
  to	
  
see	
  students	
  make	
  progress	
  on	
  learning	
  the	
  big	
  ideas	
  successfully	
  as	
  demonstrated	
  
by	
  successful	
  movement	
  in	
  the	
  learning	
  trajectory	
  stacks	
  and	
  within	
  the	
  RLCs,	
  a	
  
secondary	
  purpose	
  is	
  for	
  students	
  to	
  become	
  self-­‐regulating	
  learners	
  who	
  are	
  aware	
  
of	
  their	
  progress	
  and	
  able	
  to	
  make	
  successful	
  choices	
  and	
  collaborations	
  towards	
  
learning	
  and	
  pursuing	
  mathematics.	
  	
  	
  
	
  
With	
  this	
  interpretation	
  of	
  their	
  challenge	
  set	
  in	
  the	
  context	
  of	
  our	
  work,	
  I	
  hope	
  to	
  
have	
  provided	
  an	
  example	
  of	
  future	
  learning	
  environments	
  and	
  how	
  they	
  can	
  be	
  
understood	
  as	
  more	
  than	
  a	
  delineation	
  of	
  a	
  domain	
  to	
  be	
  learned.	
  	
  Such	
  student-­‐
centered	
  models	
  can	
  hopefully	
  be	
  considered	
  	
  and	
  discussed	
  at	
  the	
  upcoming	
  
conference.	
  	
  The	
  iterative	
  nature	
  of	
  the	
  work	
  supports	
  the	
  ability	
  to	
  get	
  smarter	
  as	
  
the	
  system	
  is	
  built,	
  but	
  like	
  an	
  iterative	
  function,	
  converging	
  to	
  robust	
  solutions	
  also	
  
depends	
  on	
  beginning	
  with	
  a	
  strong	
  “seed”.	
  	
  A	
  student-­‐centered	
  DLS	
  may	
  provide	
  
such	
  a	
  seed.	
  	
  	
  The	
  question	
  is:	
  how	
  can	
  the	
  empirical	
  techniques	
  of	
  mining	
  large	
  
scale	
  data	
  provide	
  insights	
  into	
  digital	
  learning	
  systems,	
  and	
  in	
  particular,	
  how	
  can	
  
they	
  inform	
  models	
  of	
  those	
  systems	
  with	
  specific	
  student	
  models	
  and	
  an	
  explicit	
  
purpose	
  of	
  strengthening	
  student	
  –centered	
  learning?	
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Overview	
  
While	
  learning	
  analytics	
  as	
  a	
  field	
  has	
  developed	
  quickly,	
  it	
  has	
  largely	
  borrowed	
  
expertise	
  from	
  other	
  disciplines	
  and	
  has	
  failed	
  to	
  develop	
  analytics	
  products	
  and	
  
platforms	
  specifically	
  for	
  the	
  education	
  sector.	
  Toolsets	
  are	
  being	
  developed	
  
piecemeal	
  and	
  often	
  have	
  little	
  interoperability	
  with	
  other	
  tools	
  or	
  datasets.	
  To	
  
create	
  a	
  new	
  science	
  of	
  learning,	
  personal	
  knowledge	
  graphs	
  and	
  open	
  learning	
  
analytics	
  platforms	
  are	
  required.	
  This	
  paper	
  introduces	
  these	
  concepts	
  and	
  details	
  
the	
  structure	
  of	
  both	
  and	
  the	
  importance	
  of	
  funding	
  to	
  support	
  their	
  advancement.	
  
	
  
Introduction	
  
Learning	
  analytics	
  have	
  to	
  date	
  primarily	
  imported	
  concepts	
  from	
  big	
  data,	
  
computer	
  science,	
  some	
  machine	
  learning,	
  and	
  related	
  fields.	
  As	
  a	
  result,	
  many	
  of	
  
the	
  methods	
  of	
  experimentation	
  and	
  research	
  are	
  not	
  native	
  to	
  the	
  learning	
  space,	
  
but	
  rather	
  applications	
  from	
  sociology	
  (social	
  network	
  analysis),	
  language	
  studies	
  
(discourse	
  analysis),	
  computer	
  science	
  (data	
  mining,	
  artificial	
  intelligence	
  and	
  
machine	
  learning),	
  and	
  statistics	
  (analytic	
  methods).	
  While	
  this	
  has	
  enabled	
  LA	
  to	
  
develop	
  in	
  influence	
  and	
  impact,	
  it	
  has	
  not	
  produced	
  the	
  types	
  of	
  insight	
  that	
  can	
  be	
  
expected	
  from	
  a	
  new	
  knowledge	
  domain	
  that	
  synthesizes	
  and	
  integrates	
  insight	
  
from	
  numerous	
  fields	
  while	
  developing	
  its	
  own	
  methodologies.	
  
	
  
With	
  the	
  broad	
  aim	
  of	
  redefining	
  educational	
  research	
  –	
  where	
  we	
  move	
  from	
  “dead	
  
data”	
  to	
  “live	
  data”	
  –	
  two	
  critical	
  needs	
  exist:	
  	
  
	
  

1. Development	
  of	
  personal	
  learning	
  knowledge	
  graphs	
  (PLKG)	
  to	
  capture	
  
learner	
  profile,	
  knowledge,	
  learning	
  patterns,	
  and	
  learning	
  history	
  

2. Creation	
  of	
  an	
  open	
  learning	
  analytics	
  architecture	
  to	
  enable	
  academics	
  to	
  
collaboratively	
  develop	
  analytics	
  products	
  and	
  evaluate	
  LA	
  algorithms	
  and	
  
test	
  claims	
  made	
  by	
  researchers	
  and	
  corporate	
  providers.	
  	
  

	
  
Personal	
  Learning	
  Knowledge	
  Graph	
  
Educators	
  require	
  a	
  better	
  profile	
  of	
  what	
  a	
  learner	
  knows	
  than	
  currently	
  exists.	
  The	
  
previous	
  experiences	
  and	
  knowledge	
  of	
  individual	
  learners	
  are	
  inconsistently	
  
acknowledged	
  in	
  educational	
  settings.	
  Courses	
  focus	
  on	
  what	
  has	
  been	
  determined	
  
to	
  be	
  important	
  for	
  learners	
  to	
  know,	
  rather	
  than	
  personalizing	
  to	
  what	
  an	
  
individual	
  learner	
  already	
  knows.	
  As	
  a	
  result,	
  limited	
  progress	
  has	
  been	
  made	
  
around	
  personalized	
  and	
  adaptive	
  learning.	
  Initiatives	
  such	
  as	
  CMU/Stanford’s	
  OLI2	
  
and	
  several	
  corporate	
  providers	
  have	
  gained	
  attention,	
  but	
  are	
  largely	
  confined	
  to	
  
courses	
  with	
  a	
  clear	
  right/wrong	
  answers	
  (such	
  as	
  statistics	
  and	
  math	
  courses).	
  In	
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  Thanks	
  to	
  previous	
  publications:	
  Siemens,	
  G.,	
  Gasevic,	
  D.,	
  Haythornthwaite,	
  C.,	
  Dawson,	
  S.,	
  Shum,	
  S.	
  
B.,	
  Ferguson,	
  R.,	
  ...	
  &	
  Baker,	
  R.	
  S.	
  J.	
  D.	
  (2011).	
  Open	
  Learning	
  Analytics:	
  an	
  integrated	
  &	
  modularized	
  
platform	
  (Society	
  for	
  Learning	
  Analytics	
  Research).	
  
2	
  http://oli.cmu.edu/	
  	
  



these	
  instances,	
  the	
  learner’s	
  knowledge	
  profile	
  is	
  kept	
  within	
  an	
  existing	
  software	
  
system	
  or	
  within	
  a	
  corporate	
  platform.	
  	
  In	
  education	
  a	
  Personal	
  
Learning/Knowledge	
  Graph	
  (PLKG)	
  is	
  needed	
  where	
  a	
  profile	
  of	
  what	
  a	
  learner	
  
knows	
  exists.	
  Where	
  the	
  learner	
  has	
  come	
  to	
  know	
  particular	
  concepts	
  is	
  irrelevant	
  
–	
  work,	
  volunteering,	
  hobbies,	
  personal	
  interest,	
  formal	
  schooling,	
  or	
  MOOCs.	
  What	
  
matters	
  is	
  that	
  all	
  members	
  involved	
  in	
  an	
  educational	
  process,	
  including	
  learners,	
  
faculty,	
  administrators,	
  are	
  aware	
  of	
  what	
  a	
  learner	
  knows	
  and	
  how	
  this	
  is	
  related	
  to	
  
the	
  course	
  content,	
  concepts,	
  or	
  curriculum	
  in	
  a	
  particular	
  knowledge	
  space.	
  PLKG	
  
shares	
  attributes	
  of	
  the	
  semantic	
  web	
  or	
  Google	
  Knowledge	
  Graph:	
  a	
  connected	
  
model	
  of	
  learner	
  knowledge	
  that	
  can	
  be	
  navigated	
  and	
  assessed	
  and	
  ultimately	
  
“verified”	
  by	
  some	
  organization	
  in	
  order	
  to	
  give	
  a	
  degree	
  or	
  designation	
  (see	
  figure	
  
1).	
  
	
  

	
  
Figure	
  1:	
  Matching	
  Knowledge	
  Domains	
  to	
  Learner	
  Knowledge	
  
	
  
As	
  education	
  systems	
  continue	
  to	
  diversify,	
  offering	
  a	
  greater	
  set	
  of	
  educational	
  
products	
  and	
  engaging	
  with	
  a	
  broader	
  range	
  of	
  students	
  than	
  in	
  the	
  past,	
  the	
  
transition	
  to	
  learner	
  knowledge	
  graphs,	
  instead	
  of	
  focusing	
  on	
  the	
  content	
  within	
  a	
  
program,	
  can	
  enable	
  the	
  system	
  to	
  be	
  far	
  more	
  intelligent	
  than	
  it	
  currently	
  is.	
  For	
  
example,	
  in	
  a	
  learning	
  system	
  based	
  on	
  a	
  learner	
  knowledge	
  graph,	
  the	
  career	
  path	
  
alone	
  would	
  be	
  greatly	
  enhanced	
  –	
  a	
  learner	
  could	
  know	
  where	
  she	
  is	
  in	
  relation	
  to	
  
a	
  variety	
  of	
  other	
  fields	
  based	
  on	
  the	
  totality	
  of	
  her	
  learning	
  i.e.	
  “this	
  is	
  your	
  
progress	
  toward	
  a	
  range	
  of	
  careers”	
  –	
  see	
  Figure	
  2.	
  A	
  student	
  returning	
  to	
  university	
  
would	
  have	
  a	
  range	
  of	
  course	
  options,	
  each	
  personalized	
  to	
  her	
  knowledge	
  and	
  
skills,	
  rather	
  than	
  be	
  pushed	
  through	
  a	
  pre-­‐established	
  curriculum	
  without	
  regard	
  
for	
  existing	
  knowledge.	
  With	
  PLKG,	
  returning	
  to	
  university	
  to	
  up-­‐skill	
  and	
  enter	
  new	
  
fields	
  –	
  an	
  increasing	
  requirement	
  as	
  entire	
  fields	
  of	
  work	
  risk	
  automation	
  –	
  will	
  
create	
  a	
  transition	
  from	
  a	
  learner	
  having	
  a	
  four-­‐year	
  relationship	
  with	
  a	
  university	
  
to	
  one	
  where	
  a	
  learner	
  has	
  a	
  forty-­‐year	
  relationship	
  with	
  a	
  university.	
  In	
  this	
  model,	
  



learners	
  continue	
  to	
  learn	
  in	
  online	
  or	
  blended	
  settings	
  while	
  employed	
  and	
  move	
  to	
  
intensive	
  on-­‐campus	
  learning	
  when	
  transitioning	
  to	
  a	
  new	
  career.	
  
	
  

	
  
Figure	
  2:	
  Returning	
  and	
  Advancing	
  Degrees	
  
	
  
Pedagogically,	
  PLKG	
  affords	
  new	
  opportunities	
  for	
  individuals	
  to	
  take	
  personal	
  
control	
  of	
  their	
  learning	
  (see	
  Figure	
  3).	
  In	
  this	
  model,	
  a	
  learner	
  can	
  simultaneously	
  
engage	
  with	
  structured	
  course	
  content	
  and	
  create	
  networked,	
  connective,	
  
knowledge	
  structures3.	
  This	
  approach	
  is	
  reflective	
  of	
  the	
  networked	
  world	
  of	
  
learning	
  and	
  the	
  personal	
  lives	
  of	
  individuals	
  as	
  mobiles	
  and	
  wearable	
  computing	
  
develop	
  as	
  critical	
  technologies	
  for	
  knowledge	
  work.	
  In	
  addition	
  to	
  algorithmically	
  
guided	
  personalized	
  learning,	
  socially	
  navigated	
  personal	
  learning	
  provides	
  
opportunities	
  for	
  serendipity	
  and	
  creative	
  learning.	
  Learning	
  pathways,	
  within	
  
PLKG,	
  are	
  established	
  by	
  machine	
  learning/algorithmic	
  models	
  and	
  by	
  personal	
  
learning	
  networks	
  and	
  social	
  interactions.	
  
	
  
In	
  order	
  for	
  PLKG	
  to	
  be	
  effective,	
  it	
  needs	
  to	
  be	
  developed	
  as	
  an	
  open	
  platform	
  
where	
  learners	
  are	
  able	
  to	
  share	
  knowledge,	
  personal	
  profiles,	
  and	
  learning	
  
practices	
  with	
  universities	
  and	
  corporations.	
  The	
  model	
  is	
  envisioned	
  to	
  be	
  similar	
  
to	
  the	
  IMS	
  Learning	
  Tools	
  Interoperability4	
  protocol	
  where	
  API	
  access	
  to	
  certain	
  
types	
  of	
  information	
  are	
  brokered	
  in	
  a	
  trusted	
  environment.	
  Essentially,	
  learners	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3	
  Siemens,	
  G.	
  (2007)	
  “Connectivism:	
  Creating	
  a	
  Learning	
  Ecology	
  in	
  Distributed	
  Environment,”	
  in	
  
Didactics	
  of	
  Microlearning:	
  Concepts,	
  discourses,	
  and	
  examples,	
  in	
  T.	
  Hug,	
  (ed.),Waxmann	
  Verlag,	
  
New	
  York,	
  pp.	
  53-­‐68	
  
4	
  http://www.imsglobal.org/toolsinteroperability2.cfm	
  	
  



would	
  own	
  their	
  PLKG	
  and	
  standards	
  would	
  be	
  established	
  that	
  permits	
  trusted	
  
sharing	
  with	
  education	
  providers.	
  	
  

	
  
Figure	
  3:	
  Flexible	
  and	
  Variable	
  learning	
  Pathways	
  
	
  
Open	
  Learning	
  Analytics	
  Platform	
  
	
  
The	
  open	
  learning	
  analytics	
  platform	
  addresses	
  the	
  need	
  for	
  integrated	
  toolsets	
  
through	
  the	
  development	
  of	
  four	
  specific	
  tools	
  and	
  resources	
  (see	
  figure	
  4	
  for	
  visual	
  
representation):	
  
	
  

1. Learning	
  analytics	
  engine	
  
2. Adaptive/personalization	
  engine	
  
3. Intervention	
  engine:	
  recommendations,	
  automated	
  support	
  
4. Dashboard,	
  reporting,	
  and	
  visualization	
  tools	
  

	
  
Learning	
  Analytics	
  Engine	
  
The	
  analytics	
  engine	
  is	
  the	
  central	
  component	
  in	
  the	
  OLA	
  system.	
  The	
  analytics	
  
engine	
  incorporates	
  data	
  from	
  learning	
  management	
  systems,	
  social	
  web,	
  and	
  
physical	
  world-­‐data	
  (such	
  as	
  classroom	
  attendance,	
  use	
  of	
  university	
  resources,	
  
GPS-­‐data	
  when	
  completing	
  activities	
  such	
  as	
  surveying),	
  mobile	
  and	
  wearable	
  
technologies,	
  and	
  will	
  leverage	
  best	
  practices	
  from	
  both	
  the	
  learning	
  analytics	
  and	
  
educational	
  data	
  mining	
  communities.	
  This	
  is	
  essentially	
  the	
  “Apache”	
  of	
  learning	
  
analytics	
  –	
  an	
  open	
  platform	
  where	
  researchers	
  can	
  build	
  their	
  products	
  and	
  share	
  
as	
  plugins	
  with	
  other	
  researchers.	
  Rather	
  than	
  engaging	
  with	
  a	
  range	
  of	
  different	
  
tools,	
  each	
  with	
  a	
  distinct	
  interface,	
  the	
  analytics	
  engine	
  provides	
  a	
  consistent	
  space	
  
for	
  interaction	
  with	
  data	
  and	
  various	
  types	
  of	
  analysis.	
  This	
  is	
  similar	
  to	
  libraries	
  
within	
  Python	
  or	
  as	
  plugins	
  in	
  WordPress.	
  The	
  platform	
  stays	
  the	
  same,	
  but	
  the	
  
functionality	
  is	
  extended	
  by	
  plugins.	
  This	
  then	
  serves	
  as	
  a	
  framework	
  for	
  identifying	
  



and	
  then	
  processing	
  data	
  based	
  on	
  various	
  analysis	
  modules	
  (see	
  Figure	
  5).	
  For	
  
example,	
  the	
  analysis	
  of	
  a	
  discussion	
  forum	
  in	
  an	
  LMS	
  would	
  involve	
  identifying	
  and	
  
detailing	
  the	
  scope	
  of	
  the	
  forums	
  and	
  then	
  applying	
  various	
  techniques,	
  such	
  as	
  
natural	
  language	
  processing,	
  social	
  network	
  analysis,	
  process	
  mining	
  (to	
  consider	
  
the	
  degree	
  of	
  compliance	
  between	
  instructional	
  design	
  and	
  the	
  log	
  data	
  of	
  learner	
  
activities),	
  trace	
  analysis	
  of	
  self	
  regulated	
  learning,	
  the	
  development	
  of	
  prediction	
  
models	
  based	
  on	
  human	
  assessment	
  of	
  interactions,	
  identification	
  of	
  at-­‐risk	
  
students,	
  or	
  the	
  process	
  of	
  concept	
  development	
  in	
  small	
  peer	
  groups.	
  	
  
	
  
As	
  LA	
  develops	
  as	
  a	
  field,	
  plugins	
  developed	
  by	
  other	
  researchers	
  or	
  software	
  
vendors	
  can	
  be	
  added	
  as	
  modules	
  for	
  additional	
  analysis.	
  Having	
  a	
  global	
  research	
  
community	
  creating	
  modules	
  and	
  toolsets,	
  each	
  compatible	
  with	
  the	
  Analytics	
  
Engine	
  will	
  prevent	
  the	
  fragmentation	
  that	
  makes	
  research	
  difficult	
  in	
  numerous	
  
academic	
  fields.	
  If	
  researchers	
  share	
  data,	
  algorithms,	
  and	
  toolsets	
  in	
  a	
  central	
  
environment	
  (Open	
  Learning	
  Analytics	
  Platform),	
  we	
  expect	
  to	
  see	
  the	
  rapid	
  growth	
  
of	
  educational	
  dataming	
  and	
  learning	
  analytics.	
  This	
  growth	
  will	
  in	
  turn	
  contribute	
  
to	
  the	
  formation	
  and	
  development	
  of	
  a	
  new	
  science	
  of	
  learning	
  research	
  that	
  
provides	
  rapid	
  feedback	
  on	
  realtime	
  data	
  to	
  learners,	
  academics,	
  and	
  institutions.	
  	
  
	
  
	
  

	
  
Figure	
  4:	
  Conceptual	
  Framework	
  for	
  Open	
  Learning	
  Analytics	
  Platform	
  



	
  

	
  
Figure	
  5:	
  OLA	
  Function	
  areas	
  
	
  
Adaptive/Personalization	
  Engine	
  
The	
  learning	
  adaptation	
  and	
  personalization	
  will	
  include	
  adaptivity	
  of	
  the	
  learning	
  
process,	
  instructional	
  design,	
  and	
  learning	
  content.	
  For	
  example	
  this	
  adaptation	
  
engine	
  could	
  connect	
  the	
  analytics	
  engine	
  with	
  content	
  developers.	
  Developers	
  
could	
  include	
  existing	
  publishers	
  such	
  as	
  Pearson	
  or	
  McGraw-­‐Hill	
  as	
  well	
  as	
  
institutional	
  developers	
  such	
  as	
  instructional	
  designers	
  and	
  any	
  implemented	
  
curriculum	
  documentation	
  processes	
  and	
  tools.	
  When	
  learning	
  materials	
  are	
  
designed	
  to	
  reflect	
  the	
  knowledge	
  architecture	
  of	
  a	
  domain,	
  the	
  content	
  delivered	
  to	
  
individual	
  learners	
  can	
  be	
  customized	
  and	
  personalized.	
  The	
  personalization	
  and	
  
adaptation	
  engine	
  draws	
  from	
  the	
  learner’s	
  profile	
  as	
  defined	
  in	
  the	
  learning	
  
management	
  system	
  and	
  social	
  media	
  sources	
  (when	
  permitted	
  by	
  the	
  learner).	
  
	
  
Intervention	
  Engine	
  
The	
  intervention	
  engine	
  will	
  track	
  learner	
  progress	
  and	
  provide	
  various	
  automated	
  
and	
  educator	
  interventions	
  using	
  prediction	
  models	
  developed	
  in	
  the	
  analytics	
  



engine.	
  For	
  example,	
  a	
  learner	
  will	
  receive	
  recommendations	
  for	
  different	
  content,	
  
learning	
  paths,	
  tutors,	
  or	
  learning	
  partners.	
  These	
  soft	
  interventions	
  are	
  nudges	
  
toward	
  learner	
  success	
  by	
  providing	
  learners	
  with	
  resources,	
  social	
  connections,	
  or	
  
strategies	
  that	
  have	
  been	
  predictively	
  modeled	
  to	
  assist	
  others.	
  Recommendations	
  
have	
  become	
  an	
  important	
  part	
  of	
  finding	
  resources	
  online,	
  as	
  exemplified	
  by	
  
Amazon	
  (books),	
  Spotify	
  (music),	
  and	
  Bing	
  or	
  Google	
  (search).	
  In	
  education,	
  
recommendations	
  can	
  help	
  learners	
  discover	
  related,	
  but	
  important,	
  learning	
  
resources.	
  Additionally,	
  the	
  intervention	
  engine	
  can	
  assist	
  learners	
  by	
  tracking	
  
progress	
  toward	
  learning	
  goals.	
  
	
  
Automated	
  interventions	
  also	
  include	
  emails	
  and	
  reminders	
  about	
  course	
  work	
  or	
  
encouragement	
  to	
  log	
  back	
  in	
  to	
  the	
  system	
  when	
  learners	
  have	
  been	
  absent	
  for	
  a	
  
period	
  of	
  time	
  that	
  might	
  indicate	
  “risky	
  behavior”.	
  
	
  
Interventions	
  will	
  also	
  be	
  triggered	
  for	
  educators	
  and	
  tutors.	
  When	
  a	
  learner	
  has	
  
been	
  notified	
  by	
  automated	
  email,	
  but	
  has	
  failed	
  to	
  respond,	
  the	
  intervention	
  engine	
  
will	
  escalate	
  the	
  situation	
  by	
  sending	
  educators	
  and	
  tutors	
  notices	
  to	
  directly	
  
contact	
  the	
  student.	
  The	
  value	
  of	
  direct	
  intervention	
  by	
  a	
  teacher	
  as	
  a	
  motivating	
  
condition	
  for	
  return	
  to	
  learning	
  tasks	
  is	
  well	
  documented	
  by	
  existing	
  education	
  
research.	
  
	
  
Dashboard/Reporting	
  
The	
  dashboard	
  is	
  the	
  sensemaking	
  component	
  of	
  the	
  LA	
  system,	
  presenting	
  
visualized	
  data	
  to	
  assist	
  individuals	
  in	
  making	
  decisions	
  about	
  teaching	
  and	
  
learning.	
  The	
  dashboard	
  consists	
  of	
  four	
  views:	
  learner,	
  educator,	
  researcher,	
  and	
  
institutional.	
  Learners	
  will	
  be	
  able	
  to	
  see	
  their	
  progress	
  against	
  that	
  of	
  their	
  peers	
  
(names	
  will	
  be	
  excluded	
  where	
  appropriate),	
  against	
  learners	
  who	
  have	
  previously	
  
taken	
  the	
  course,	
  against	
  what	
  they	
  themselves	
  have	
  done	
  in	
  the	
  past,	
  or	
  against	
  the	
  
goals	
  that	
  the	
  teacher	
  or	
  the	
  learner	
  herself	
  has	
  defined.	
  Educators	
  will	
  be	
  able	
  to	
  
see	
  various	
  representations	
  of	
  learner	
  activity,	
  including	
  conceptual	
  development	
  of	
  
individual	
  learners,	
  progress	
  toward	
  mastering	
  core	
  concepts	
  of	
  the	
  course,	
  and	
  
social	
  networks	
  to	
  identify	
  learners	
  who	
  are	
  not	
  well	
  connected	
  with	
  others.	
  
Analytics	
  for	
  educators	
  will,	
  depending	
  on	
  the	
  context,	
  be	
  generated	
  real	
  time	
  as	
  
well	
  as	
  hourly	
  or	
  daily	
  snapshots.	
  The	
  dashboard	
  will	
  provide	
  institution-­‐level	
  
analytics	
  for	
  senior	
  administrators	
  to	
  track	
  learner	
  success	
  and	
  progress.	
  When	
  
combined	
  with	
  academic	
  analytics,	
  this	
  module	
  will	
  be	
  valuable	
  for	
  analyzing	
  
institutional	
  activities	
  (business	
  intelligence).	
  
	
  
Based	
  on	
  criteria	
  established	
  through	
  research	
  of	
  the	
  learning	
  analytics	
  system	
  
(such	
  as	
  the	
  impact	
  of	
  social	
  connectivity	
  on	
  course	
  completion,	
  warning	
  signals	
  
such	
  as	
  changes	
  in	
  attendance	
  patterns,	
  predictive	
  modeling),	
  automated	
  and	
  
human	
  interventions	
  will	
  be	
  activated	
  to	
  provide	
  early	
  assistance	
  to	
  learners	
  
demonstrating	
  a)	
  difficulty	
  with	
  course	
  materials,	
  b)	
  strong	
  competence	
  and	
  
needing	
  more	
  complex	
  or	
  different	
  challenges,	
  and	
  c)	
  at	
  risk	
  for	
  drop	
  out.	
  
	
  
Conclusion	
  



All	
  stakeholders	
  in	
  the	
  education	
  system	
  today	
  have	
  access	
  to	
  more	
  data	
  than	
  they	
  
can	
  possibly	
  make	
  sense	
  of	
  or	
  manage.	
  In	
  spite	
  of	
  this	
  abundance,	
  however,	
  learners,	
  
educators,	
  administrators,	
  and	
  policy	
  makers	
  are	
  essentially	
  driving	
  blind,	
  
borrowing	
  heavily	
  from	
  techniques	
  in	
  other	
  disciplines	
  rather	
  than	
  creating	
  
research	
  models	
  and	
  algorithms	
  native	
  to	
  the	
  unique	
  needs	
  of	
  education.	
  New	
  
technologies	
  and	
  methods	
  are	
  required	
  to	
  gain	
  insight	
  into	
  the	
  complex	
  abundant	
  
data	
  encountered	
  on	
  a	
  daily	
  basis.	
  This	
  paper	
  proposes	
  the	
  development	
  of	
  Personal	
  
Learning	
  Knowledge	
  Graphs	
  and	
  an	
  Open	
  Learning	
  Analytics	
  Platform	
  as	
  critically	
  
needed	
  innovations	
  to	
  contribute	
  to	
  and	
  foster	
  a	
  new	
  culture	
  of	
  learning	
  sciences	
  
research.	
  The	
  proposed	
  integrated	
  learning	
  analytics	
  platform	
  attempts	
  to	
  
circumvent	
  the	
  piecemeal	
  process	
  of	
  educational	
  innovation	
  by	
  provided	
  an	
  open	
  
infrastructure	
  for	
  researchers,	
  educators,	
  and	
  learners	
  to	
  develop	
  new	
  technologies	
  
and	
  methods.	
  In	
  today’s	
  educational	
  climate	
  –	
  greater	
  accountability	
  in	
  a	
  climate	
  of	
  
reduced	
  funds	
  –	
  suggests	
  new	
  thinking	
  and	
  new	
  approaches	
  to	
  change	
  are	
  required.	
  
Analytics	
  hold	
  the	
  prospect	
  of	
  serving	
  as	
  a	
  sensemaking	
  agent	
  in	
  navigating	
  
uncertain	
  change	
  by	
  offering	
  leaders	
  with	
  insightful	
  data	
  and	
  analysis,	
  displayed	
  
through	
  user-­‐controlled	
  visualizations.	
  
	
  
	
  



Data-Intensive Research on Immersive Simulations for Learning 

Chris Dede, Harvard University 

Multi-user virtual environments (MUVEs) and augmented realities (ARs) offer ways for students to 
experience richly situated learning experiences without leaving classrooms or traveling far from school 
(Dede, 2014). By immersing students in authentic simulations, MUVEs and AR can promote two deeper-
learning strategies, apprenticeship-based learning and learning for transfer, that are very important in 
developing cognitive, intrapersonal, and interpersonal skills for the 21st century (National Research 
Council, 2012). However, complex tasks in open-ended simulations and games cannot be adequately 
modeled using only classical test theory and item response theory (Quellmalz, Timms, & Schneider. 
2009). More appropriate measurement models for open-ended simulations and games include Bayes nets, 
artificial neural networks, and model tracing; new psychometric methods beyond these will be needed. 

Illustrative Cases 

EcoMUVE as an example of immersive authentic simulations in multi-user virtual environments 

The EcoMUVE middle grades curriculum teaches scientific concepts about ecosystems while engaging 
students in scientific inquiry (both collaborative and individual) and helping them learn complex causality 
(http://ecomuve.gse.harvard.edu). The curriculum consists of two MUVE-based modules, allowing 
students to explore realistic, 3-dimensional pond and forest ecosystems. Each module consists of ten 45-
minute lessons and includes a complex scenario in which ecological change is caused by the interplay of 
multiple factors (Metcalf et al., 2013). Students assume the role of scientists, investigating research 
questions by exploring the virtual environment and collecting and analyzing data from a variety of 
sources over time (Figures 1, 2). In the pond module, for example, students can explore the pond and the 
surrounding area, even venturing under the water; see realistic organisms in their natural habitats; and 
collect water, weather, and population data. Students visit the pond over a number of virtual "days" and 
eventually make the surprising discovery that, on a day in late summer, many fish in the pond have died. 
Students are then challenged to figure out what happened—they travel backward and forward in time to 
gather information to solve the mystery and understand the complex causality of the pond ecosystem. 

  

Figure 1. Students can collect pond and weather data  Figure 2. Summarizing and interpreting data 
The EcoMUVE curriculum uses a “jigsaw” pedagogy, in which students have access to differing 
information and experiences; they must combine their knowledge in order to understand what is causing 
the changes they see. Working in teams of four, students are given roles that embody specific areas of 
expertise (naturalist, microscopic specialist, water chemist, private investigator) and that influence how 
they participate and solve problems. Using the differing methods of their roles, students collect data, share 
it with teammates via tables and graphs that they create within the simulation, and then work 



collaboratively to analyze the combined data and figure out how a variety of inter-connected parts come 
together to produce the larger ecosystem dynamics. The module culminates with each team creating an 
evidence-based concept map—representing their understanding of the causal relationships at work in the 
ecosystem—which they present to the class. 

The types of “big data” about motivation and learning for each student that EcoMUVE can generate 
include: time-stamped logfiles of movements and interactions in the virtual world (with artifacts, 
computer-based agents, data sources, guidance systems, other students), chat-logs of utterances, and 
tables of data collected and shared. Other digital tools can provide data from concept maps that chart the 
flow of energy through the ecosystem and, for each team of students, that document their group’s 
assertions about its systemic causal relationships, with adduced supporting evidence. Using Go-Pro 
cameras, students’ collaborative behaviors outside of digital media can be documented. Combined, these 
data are “big” in their collective volume, velocity, variety, and veracity. We would like to use this data to 
provide near-real time feedback to students and teacher, which requires various forms of visualization.  

This guidance about instruction and learning could include “low hanging fruit” types of feedback 
relatively easy to implement, such as: 

Paths and heat maps. The paths that a student takes in exploring a virtual world to determine the 
contextual situation, identify anomalies, and collect data related to a hypothesis for the causes of an 
anomaly are an important predictor of the student’s understanding of scientific inquiry. In our prior River 
City curriculum (Ketelhut, Nelson, Clarke, & Dede, 2010), we used log file data to generate event paths 
(Figure 3) for both individual students and their three person teams. Students and teachers found this a 
useful source of diagnostic feedback on the relative exploratory skills—and degree of team 
collaboration—that these performances exhibited.  

Dukas (2009) extended this research by developing an avatar log visualizer (ALV), which generates a 
series of slides depicting the relative frequency events of one or more subpopulations of students, 
aggregated by user-specified location and time bins. Figure 4 displays an ALV visualization that contrasts 
the search strategies of the high-performing and low-performing students in a class, displaying the top 10 
scores on the content post-test (in green) and the lowest 10 scores (in pink).  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  

Figure 3. Event paths in RC for a three-person team       Figure 4. A heat map showing high-performing 
                                                                                                         and low-performing students in RC. 



The high performing students’ preferred locations provide an expert model usable in diagnostic feedback, 
formative about their search strategies, to students in subsequent classes. The low performing students’ 
locations may offer insights into what types of understanding they lack.  

Path analysis is a potentially powerful form of unobtrusive assessment, although choosing the best way to 
display student paths through a learning environment is a complex type of visualization not well 
understood at present (Dukas, 2009). The utility of this diagnostic approach also depends on the degree to 
which exploration in the virtual world is an important component of learning. 

Accessing an individualized guidance system. Nelson (2007) developed a version of River City 
that contained an interwoven individualized guidance system (IGS). The guidance system utilized 
personalized interaction histories collected on each student’s activities to generate real-time, customized 
support. The IGS offered reflective prompts about each student’s learning in the world, with the content 
of the messages based on in-world events and basic event histories of that individual. As an example, if a 
student were to click on the admissions chart in the River City hospital, a predefined rule stated that, if the 
student had previously visited the tenement district and talked to a resident there, then a customized 
guidance message would be shown reminding the student that they had previously visited the tenement 
district, and asking the student how many patients listed on the chart came from that part of town.  

Multilevel multiple regression analysis findings showed that use of this guidance system with our 
MUVE-based curriculum had a statistically significant, positive impact (p < .05) on student learning 
(Nelson, 2007). In addition to using the log files to personalize the guidance provided to each student, we 
conducted analyses of guidance use. We knew when and if students first chose to use the guidance 
system, which messages they viewed, where they were in the virtual world when they viewed them, and 
what actions they took subsequent to viewing a given guidance message. This potentially provides 
diagnostic information that could guide instruction in immersive simulations. 

Asking and answering questions of an agent.  Animated pedagogical agents (APAs) are 
“lifelike autonomous characters [that] co-habit learning environments with students to create rich, face-to-
face learning interactions” (Johnson, Rickel, & Lester, 2000, p. 47). Beyond engaging students and 
providing a limited form of mentoring, APAs have advantages for interwoven diagnostic assessment in 
immersive authentic simulations in two respects: First, the questions students ask of an APA are 
themselves diagnostic—typically learners will ask for information they do not know, but see as having 
value. A single question asked by a student of an APA may reveal as much about what that learner does 
and does not know than a series of answers the student provides to a teacher’s diagnostic questions. Both 
EcoMUVE and EcoMOBILE can embed APAs of various types for eliciting a query trajectory over time 
that reveals aspects of students’ understanding and motivation, as well as aiding learning and engagement 
by the APA’s responses. 

Second, APAs scattered through an immersive authentic simulation can draw out student performances in 
various ways. In EcoMUVE and EcoMOBILE, a student can meet an APA who requests the student’s 
name and role. Even a simple pattern recognition system could determine if the student made a response 
indicating self-efficacy and motivation (“ecosystems scientist” or some variant) versus a response 
indicating lack of confidence or engagement (“sixth grader” or some other out-of-character reply). As 
another example, an APA can request a student to summarize what the student has found so far, and some 
form of latent semantic analysis could scan the response for key phrases indicating understanding of 
terminology and relevant concepts. The design heuristics of this method for evoking performances are 
that (a) the interaction is consistent with the overall narrative, so not disruptive of flow, (b) the 
measurement is relatively unobtrusive, and (c) the interactions themselves deepen immersion. 

But what about more complex types of feedback based on “big data” less easily analyzed? As examples, 
teachers and researchers would benefit from analyses of aggregated data that delineated learning 
trajectories of sophisticated skills (e.g., causal reasoning) in relation to which individual students’ 
progress could be diagnostically assessed. In turn, students would benefit from multi-modal data analysis 



that could be used to alter, in real time, the context and activities of the immersive simulation to make 
salient what each student needs to understand next in their learning trajectory. Further, over a series of 
learning experiences, students’ growth in intrapersonal and interpersonal skills (e.g., engagement, self-
efficacy, tenacity, collaboration) could be assessed. These functionalities are well beyond current 
capabilities, but are aspirational within the next decade. 

EcoMOBILE as an example of augmented realities 

Designed to complement EcoMUVE, the EcoMOBILE project explores the potential of augmented reality 
(as well as the use of data collection “probeware,” such as a digital tool that measures the amount of 
dissolved oxygen in water), to support learning in environmental science education 
(http://ecomobile.gse.harvard.edu). The EcoMOBILE curriculum is a blend of the EcoMUVE learning 
experiences with the use of geo-located digital experiences that enhance students’ real-world activities 
(Kamarainen et al., 2013). As an example of a three day curriculum, during the first class period, a group 
of middle school students participated in an EcoMUVE learning quest, completing a 5–10 minute on-line 
simulation in which they learned about dissolved oxygen, turbidity, and pH. The following day, the 
students went on a field trip to a nearby pond, in order to study the relationship between biological and 
non-biological factors in the ecosystem, practice data collection and interpretation, and learn about the 
functional roles (producer, consumer, decomposer) of organisms in the life of the pond. At a number of 
spots around the pond, students’ handheld devices showed them visual representations—overlaid onto the 
real environment—of the natural processes at work in the real environment, as well as interactive media 
including relevant text, images, audio, video, 3D models, and multiple-choice and open-ended questions. 
Students also collected water measurements using Vernier probes (Figures 5, 6).  

On the next school day after the field trip, back in the classroom, students compiled all of the 
measurements of temperature, dissolved oxygen, pH, and turbidity that had been taken during the field 
trip. They looked at the range, mean, and variations in the measurements and discussed the implications 
for whether the pond was healthy for fish and other organisms. They talked about potential reasons why 
variation may have occurred, how these measurements may have been affected by environmental 
conditions, and how to explain outliers in the data. Our research shows that virtual worlds and augmented 
realities are powerful complements to enable learning partnerships for real-world, authentic tasks. 

  

Figure 5. Handheld device delivering information      Figure 6. Collecting water data on turbidity  

Parallel to EcoMUVE, EcoMOBILE devices capture and store “big data” about motivation and learning 
for each student that includes time-stamped logfiles of paths through the real world and data collected in 
that ecosystem (e.g., images, sound-files, probeware), as well as geo-located interactions with digital 
augmentations (e.g., simulations, guidance systems, assessments). Using Go-Pro cameras, students’ 
collaborative behaviors outside of digital media can be documented. Other digital tools can provide data 
from concept maps charting the flow of energy through the ecosystem and, for each team of students, 



documenting their group’s assertions about its systemic causal relationships, with adduced supporting 
evidence. As with EcoMUVE, these data combined could support rich types of feedback to students, 
teachers, and researchers. 

The Challenge 

Quellmalz, Timms, and Schneider (2009) examined issues of embedding assessments into games and 
simulations in science education. Their analysis included both tightly-structured and open-ended learning 
experiences. After studying several immersive games and simulations related to learning science, 
including River City, they noted that the complex tasks in simulations and games cannot be adequately 
modeled using only classical test theory and item response theory. This shortfall arises because these 
complex tasks have four characteristics (Williamson, Bejar, & Mislevy, 2006). First, completion of the 
task requires the student to undergo multiple, nontrivial, domain-relevant steps and/or cognitive 
processes. Second, multiple elements, or features, of each task performance are captured and considered 
in the determination of summaries of ability and/or diagnostic feedback. Third, the data vectors for each 
task have a high degree of potential variability, reflecting relatively unconstrained work product 
production. Fourth and finally, evaluation of the adequacy of task solutions requires the task features to 
be considered as an interdependent set, for which assumptions of conditional independence do not hold.  

Quellmalz et al. (2009) concluded that, given the challenges of complex tasks, more appropriate 
measurement models for simulations and games—particularly those that are open-ended—include Bayes 
nets, artificial neural networks, and model tracing. They added that new psychometric methods beyond 
these will likely be needed. Beal and Stevens (2007) used various types of probabilistic models in 
studying students’ performance in simulations of scientific problem solving. Bennett, Persky, Weiss, and 
Jenkins (2010) described both progress in applying probabilistic models and the very difficult challenges 
involved. Behrens, Frezzo, Mislevy, Kroopnick, and Wise (2007) described ways of embedding 
assessments into structured simulations; and Shute, Ventura, Bauer, and Zapata-Rivera (2009) delineated 
a framework for incorporating stealth assessments into games. 

In summary, immersive learning experiences can collect an impressive array of evidence about what a 
learner knows (and does not know), what he or she can do (and cannot do), and whether he or she knows 
when and how to apply disciplinary frames and prior knowledge to a novel problem. Immersive 
environments—because of their situated nature and because they generate log files—make it easy to elicit 
performances, to collect continuous data, and to interpret structures of evidence. In a virtual world, the 
server documents and timestamps actions by each student: movements, interactions, utterances, saved 
data, and so on. In an AR, the mobile device can save moderately detailed information about movements 
and actions, and using Go-Pro cameras to record learners’ visual perspectives and verbal utterances as 
their team interacts can provide another resource for analysis. Given the engagement, evocation, and 
evidence immersive learning provides, these media are among the most powerful and valid 
instructional/assessment experiences available—but we can realize their full potential only via new 
methods for collecting, analyzing, and communicating findings from complex types of big data. 
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