Big Data in OpenTopography

Vishu Nandigam
San Diego Supercomputer Center

NSF Big Data in Education Workshop

Jan 28-29 2015

Presentation Overview

- Lidar and OpenTopography
- Data and Workflow
- Cyberinfrastructure
- Data Growth and Challenges
- Data Insights
- Research and Development

LIDAR

- Light Detection And Ranging (aka airborne laser swath mapping)
- Billions of of accurate distance measurements with a scanning laser rangefinder + GPS + Inertial Measurement Unit (IMU)

Point cloud (x,y,z coordinates) = fundamental LIDAR data product

Image: David Haddad, AGS

OpenTopography

- NSF Earth Science Facility: 3 year support in 2009.
 Renewed in 2012

 (Award No. 1226353 & 1225810 EAR/IF)
- CI and Science Collaboration
 - SDSC, ASU & UNAVCO
- Related research efforts
 - NASA ROSES: Extend to Satellite-based LIDAR (waveform data)
 - NSF SI2 CyberGIS: OpenTopo as an exemplar of cyber GIS
 - NSF CluE: Investigate Computer Science issues in big data
- Partnerships with state and local agencies to support data hosting and processing capabilities

OpenTopography Facility Overview

Data Volume, Computational Demands

OpenTopography Data

OpenTopography
Multi-Tiered Data Products

- Large user community with variable needs and levels of sophistication.
- Goal: maximize access to data to achieve greatest scientific impact.
- Big data
 - treat data as an asset that can be used and reused
 - Co-locate data with on-demand processing

Data Workflow

- 1. Original Source Data from Collector (eg. NCALM)
- 2. Extract relevant data products
- 3. Source data is archived in Chronopolis digital preservation network
 - 1. UCSD Library (Library of Congress)
 - 2. Three geographically distributed copies of the data
- 4. Extracted data products go through QA/QC
- 5. Data transformation and optimization
 - 1. Error correction
 - 2. Projection conversion
- 6. Update Metadata ISO 19115 (Data)
- 7. Generate additional derived products (e.g. GE hillshades)

Data available via OT

Catalog Service for the Web / DOI

(8 &9 of the Data Workflow)

- CSW Catalog ESRI Geoportal Server
- ISO 19115 (Data)
- CZO, CyberGIS, Thomson Reuters Web of Science

Current Data Holdings

- Lidar Point Cloud Datasets
 - 770 Billion+ lidar returns.
 - Each return has additional attributes
 - On-demand processing capabilities
- SRTM, Raster (multiple layers)
 e.g. Sonoma several intensity products, canopy height, bare earth, hydro-enforced bare earth, canopy top, etc.
- 30+ TB of on-demand online data
 (Excluding big custom job runs, original archived data, pre processing data and user generated products)

OT CyberInfrastructure

OT Challenges

(Keeping pace with data and user growth and advancing science!)

LIDAR Point Cloud Data Growth

Sensor Hardware Technology

- Rapid Evolution of Laser Scanner Technology
- Data is being collected on multiple channels (different wavelengths) and capturing full waveform data.
- Early datasets collected with scanners operating at less than 33Khz. Current systems collect data at ~900Khz

Greater Resolution = Larger Data Volumes

Diverse and complex datasets support

- Discrete return lidar
- Full waveform lidar
- Optical imagery (R,G,B orthophotography)
- Hyperspectral imagery

NEON Hyperspectral Imagery collected light reflected across the electromagnetic spectrum for a total of 426 bands of information. Image: Nathan Leisso, NEON AOP

User Growth

OT registered user growth

CyberGIS, NASA/UNAVCO communities Service Level Access

Pluggable Services Infrastructure

- Methods for scientific data processing are evolving
- Users demanding more processing services
- Pluggable services infrastructure
 - OT development sandbox
 - Assist researchers with their code
 - Deployment of the algorithm as a service
 - Update processing workflow and UI

Increase in user Generated Derived products!

Data Insights

What can we learn from:

40,000+ custom PC jobs

1.2 trillion lidar points processed

15,000+ custom raster jobs (past year)

Data Access Patterns

Source: http://www.businessinsider.com/chart-of-the-day-the-lifecycle-of-a-youtube-video-2010-5

Access Patterns in LIDAR Scientific Datasets

B4 – San Andreas Fault

Access Patterns in LIDAR Scientific Datasets

Event based datasets - El Mayor-Cucapah Earthquake

Access Patterns in LIDAR Scientific Datasets

Event based datasets – Haiti Earthquake

Data Usage Analytics

Northern San Andreas Fault

Social networking with data Recommendation system

Understanding Traffic Patterns

Impact of dataset releases and workshops on traffic

Tiered storage based on Data Access

Activity based data ranking and tiered cloud integrated storage

Cloud Computing

- Cost effectiveness & feasibility of data science facilities on the cloud
- Microsoft Azure for Research Award Integration of cloud based ondemand geospatial processing services into community earth science data facilities.

Leveraging HPC

Dedicated Gordon nodes via XSEDE (democratization of supercomputing resources)

GEO Data and Cyberinfrastructure Imperative: Harness the Power of Computing and Computational Infrastructure.

- GEO Priorities and Frontiers: 2015-2020

Summary

- OpenTopography is an modern agile data facility
- Cyberinfrastructure driven by science use cases Cl and science collaboration
- Big Data needs to be usable Community not only wants access to data but also wants tools for processing these data.
- Concept of OT can be used as a template for other large data facilities

Thank You!

viswanat@sdsc.edu info@opentopography.og

