Pixels Everywhere Media Tech and How it Changed the World

Pat Hanrahan Department of Computer Science Stanford University

Transforming Media From Analog to Digital

From Analog to Digital

Traditional media

- Desktop publishing and printing
- Digital audio, music and radio
- Digital photography
- Digital video, HDTV and movies

Timelines

Bravo WYSIWYG text editor (1974)

First laser printer (1969)

Aldus Pagemaker (1985)

Audio

Photography

CCD imager (1969) First digital paint system (1974) CMOS imager (1993)

Discrete-cosine transform

Research						
Products						
19	85	1990	1995	2000	2005	2010

Adobe Photoshop 1.0 (1990)

Nikon D1 digital SLR (1999)

flickr.com photosharing (2004)

TV and Movies

NHK demo of analog HDTV (1969) Motion-compensated image compression (-1993) NSF STC Computer graphics and vis (1991-2002)) First feature-length computer-generated movie (1995) Research Products 1985 1990 1995 2000 2005 2010

ATSC standard ratified (1998 Analog broadcast ends (June 12, 2009)

TIVO time-shifted video (1999) 3D digital projectors

Media & Technology

|Size| of media determines when it was transformed

Media poses science & technology problems

Storage

- CD, DVD, Flash
- Networking

Gigabyte networks, internet caching

Processing

GPUs, signal and media processors

Invention of New Media

Games

Multimedia computers and media servers

Networked graphics (flash) and the WWW

- Sharing music (iTunes), photos (flickr, phototourism), videos (youtube)
- Virtual worlds (Google Earth, Second Life, WoW) Electronic books (Amazon Kindle)

Research Trends

Research Trends

Supercomputers on a chip Reinventing photography and cameras Building planetary-scale virtual worlds New interaction devices

Challenges

Architectures that support 1000s of cores Programming environments for 1000s of cores Applications beyond graphics and media

One of the most pressing current problems in computer science

folding@home

Hypersonic vehicle

From Glass to Digital Lenses

From Glass to Digital Lenses

Focus in Software

conventional photograph, main lens at f / 4

conventional photograph, main lens at f / 22

light field, main lens at f / 4, after all-focus algorithm [Agarwala 2004]

Light Field Microsope

Challenges

Planetary distributed object system (Web 10.0?)

- Real-time response
- Scalable (100B objects)
- Robust and secure

Scalable simulation

- Simulating physics across a world
- Simulating evolving eco/social system

Laboratory for studying social science

Ocarina by Smule on the iPhone

Image courtesy of Ge Wang, Stanford Music Department

Multi-touch Display

Thinsight, Hodges et al. Microsoft

Figure 4: Top: the front side of the sensor PCB showing the 7x5 array of IR optosensors. The transistors that enable each detector are visible to the right of each optosensor. Bottom: the back of the sensor PCB has little more than a PIC microcontroller, a USB interface and the FETs that drive the rows and columns of IR emitting LEDs. Three such PCBs are used in our ThinSight prototype.