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What’s Harder  
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Cars are 100x harder to design 

than CPUs.   
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A Multitechnology Phase-Locked Loop  

Evaluating the New Technology  

• What is system performance (capture, lock, noise, etc)? 

• What is the impact of modifying technology parameters? 

• How tight must manufacturing tolerances be?  
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Manufacturable Design Time 
 Exploding with Technology Diversity 

Better Computational Tools Are the Only Solution 
– Physical Prototyping Leads to One-of Designs 

– Models needed to understand impact of process variations 

– Optimization Needed to find More Manufacturable Designs 

Years 
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Digital Mixed Signal 
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Parameterized Models 
Robust 

Optimization 

(Primal-Dual 

Interior Point 

Methods) 

Parameterized 

Model Reduction, 

Dimension 

Reduction (3-D 

2D 

Implicit 

Hession 

Approaches 
Fast Solvers 

(Multiresolution, PFFT) 

Physical Models 

Enabling Conceptual Design of 
Manufacturable Diverse Technology 

 Combine Robust Optimization with Physical Simulation 

 Generic approaches to address Diverse Technology 

 Extract parameterized models to address complex systems 



Actuation pads 

Sensing parallel  

plate capacitors 

Driving comb  

finger capacitors 

2x37 elements 
gap 1.6 m 

initial overlap 14 m 

2x60 elements 

initial gap 1.6 m 

length 360 m 

5-folded 

width 2 m 

length 250 m 

Folded springs 

Layout: overall dimensions 1000x1500 m 

optical microscope view 

Casimir Experiments (Slide thanks to R. Ardito) 



Capacitance versus voltage suggests Casimir force 

upper bound 







Computing Casimir Forces 

• Form discretized EFIE matrix M with 

imaginary k 

– Integral Operator has exponentially decaying 

REAL kernel. 

– Must compute for many values of k. 

• Compute logdet(M * Minf -1) or trace(M -1 

dM/dz) and sum over k 

– Fast methods (e.g. PFFT) form matrix-vector 

products quickly. 

– Iterative methods for f(matrix) a newer area. 

– Investigate fast inverse representations? 





Growing Variety of Nanophotonic Applications 

16 m 

in thru 

drop 

Ring Resonator (Thanks 

CIPS at MIT) Optical Switch (Thanks CIPS at MIT) 

Mach-Zehnder Interferometer 

(thanks S. Johnson) Slow light wave guide with coupler 



Photonic/Electronic System (Slide Thanks To CIPS) 
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Need Absorbers for Photonics  

16 m 

in thru 

drop 

Ring Resonator (Thanks 

CIPS at MIT) 

Optical Switch (Thanks 

CIPS at MIT) 

Slow Light Coupler 

Geometry 

Matched 

Absorber 
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Absorbers for Photonics 

Si (3*lambda_si) 

Si (3*lambda_si) 

FD/ FEM solvers, 
-having a much 

larger 

computational 

domain 

Fast Integral 

Equation 

Solvers 
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Straightforward Approach  
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Long low-loss Absorber 

Reflected wave 

dissipates in long 

absorber before 

effecting device 

Smaller 

ripples due 

to near zero 

reflections 

very low 

loss, long 

absorber 

 Fast long low-loss absorber (3-D) 
– Extremely fast circulently preconditioned 

Toeplitz solver 

– 40 Wavelengths < 1 hour 

– Slow setup (matlab prototype) 

– Solve portion under 30 seconds! 

– Works on general fast code 

 

Lossless 
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Novel Surface Absorber 
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Surface Absorber Formulation 

Modified PMCHW formulation to incorporate the 

electrical conductance on the absorber surface  

 The tangential electrical field is continuous 

 The tangential magnetic field has a jump due 
surface currents through the surface conductivity. 
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Effects of Surface Conductance Profile  

Constant 

Linear Quadratic 

Field pattern (complex 

magnitude) along 

waveguide by different 

surface conductance 

profile 



Drug Design Problem - Minimize 

Electrostatic Binding Energy 

+ 

+ 

+ 

+ 

+ 

+ 

- - 

- 

+ 
+ 

- 

- 
- 

- 

+ + 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

- - 

- 
+ 

+ 

- 

- 
- 

- 

+ + 

+ 

Higher 

energy 

Lower 

energy 
Determine the  charge distribution in the ligand 

so that it is “Energetically Optimized” to bind 

+ 

ligand receptor
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Integral equation: Interior Problem 

Macromolecular 

Surface  
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Integral equation: Exterior Problem 
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probe sphere  

“CAP”: surface of 

spherical atoms 

accessible by 

probe 

“BELT”: surface of 

a torus as probe 

rolls between 2 

atoms 

Molecular Surface Representation 

Molecule made up of spherical atoms 

Molecular surface generated by a rolling probe  

“PIT”: spherical 

triangle on probe 

sphere when 

simultaneously in 

contact with 3 

atoms 



Gauss-

Labatto 

points 

on the 

cube 

 

Given Points 

on 

Molecular 

Surface 

Spherical Harmonics 

to Map Sphere to 

Molecular Surface 

Simple projection to 

map Sphere to 

Cube 

“Meshless” Approach by Picture 



3 sig. fig.  

convergence 

in 8502 basis 

3 sig. fig. 

convergence 

in 488 basis 
 TSA 

molecule, 

26 atoms 

 MSMS 

triangulati

on 

Higher Order Meshless Method For Molecular 

Surfaces 

 Flat-panel 

versus higher-

order + 

meshless 

 Coupled 

Poisson, 

Possion-

Boltzmann 

Equation 

 CPU Time < 

Hour (Matlab 

Prototype) 

 S. Kuo 

 

 

 
 Limited Impact on biological computations. 



Multiphysics Example – Battery Packs 

Extract  

Repeated 

Structure 

Extract 

Battery 

Cell 

Repeated Structure ROM 

Inputs/Outputs 

•Pipe Velocities and 

Pressures 

•Surface Temperatures and 

heat fluxes 

 

 

 



Cooled Battery with 1-D Electrochem Model 

 NTGK Electrochemistry model  

 

 

 Electrical Conductivity Model 

 

 

 Thermal Conductivity Model 

 

 Sheet Flow Model 

 



Linearized Systems    

 Fluids (descriptor) 

 Pressure-Velocity 

 

 Mech (2nd Order) 

 Force-Displacement  

 

 Electromag (frequency dependent) 

 

 Currents-Voltages 
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T

qV

 No explicit A need, Only Matrix-vector products 

 

 
For each column of qU

Multiply by ,  then dot result with columns of qA V

qU

rA

qxq 

A = 

NxN 

Forming the Reduced Matrix 



Projection For Descriptor Systems 
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 Use Eigenvectors (Modes) 

 Use Time Series Data (Snapshot Method, POD) 

 Use the SVD to pick q < k important vectors 

 

 

 Use Frequency Domain Data (Freq. Domain POD, PMTBR) 

 Use the SVD to pick q < k important vectors 

 

 

 Krylov subspace Vectors 

 Again use SVD to pick q < k important vectors 

 Use Singular Vectors of System Grammians (Too Costly) 

Picking U and V 

0 1, , , kx t x t x t

1 2, , , kX s X s X s



 Standard Krylov Subspace 

 

  Must back orthogonalize at each step 

 Krylov for Descriptor Systems with Singular M 

 

 Still must back orthogonalize at each step 

 Krylov for Mech 

 

 

 Only Keep Top Half of the vectors 

 

Krylov For Fluids and Mech 



 Sub: Vzx to Buxf
dt

dx
)(

 Using WTf(Vz) is too expensive! 

Problems with MOR for nonlinear Problems with MOR for nonlinear   

 Reduced 
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Projection Assumption 1 
 For all inputs of interest 

 

 

 

 

 

 

 U’s could be generated from 

 SVD of time series data,  

 Krylov subspaces from linearizations, etc. 

 

 



Projection Assumption 2 

 There is a space:                         such that: 

 

  If  the residual is forced orthogonal to 

            

 

              with           such that  

 

 Then  the U-restricted DE is almost satisfied 

 

 

 



 In General 

 

 If U = V and UT U = I 

 

 

 Good for systems from self-adoint PDE’s: 

 Spatial discretization of nonlinear heat conduction 

 

 Spatial discretization of the Poisson-Boltzmann 

U = V a common choice 



Assumption 3 (For DEIM) 
 For x’s generated by all inputs of interest 

 

 

 

 

 

 

 

 

 



Assumption 3 Implies: 
 We can replace “Galerkin” 

 

 

 With “Gappy Collocation” 

 

 Where P selects: 

 A few rows of U 

 a few elements of f 
 S. Chaturantabut and D. C. Sorensen, several publications 

 Empirical interpolation method: M. Barrault et al., Comp. Rend. Math., 2004. 

 Missing point estimation: P. Astrid and A. Verhoeven,  Int. Symp. MTNS, 2006. 

 

 



Picture for a 2-D PDE 
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¢

sites.uclouvain.be 

•Evaluate f at approximately q points (black) 
•To eval f, need values for x at more points (red) 
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Cooled Battery with 1-D Electrochem Model 

 NTGK Electrochemistry model  

 

 

 Electrical Conductivity Model 

 

 

 Thermal Conductivity Model 

 

 Sheet Flow Model 

 



Transient Results for Fluid Cooled Battery 

 Inputs are terminal currents and mass flow rate 

 Output is average temperature of fluid out 

Discharging 

Charging 

Discharging 

Fluid speedup 



A New Technique for Every New 

Technology 

44 

• Job security for my students…. 

• Does Not Scale? 

– Powerful Scripting languages reducing 

barrier for new techniques. 

– But new “blocks” are not emerging 

– Generalized Fast Solver Software 

– Generic FEM 

– Maybe the issue is interfacing. 

 

 

 


