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What’s Harder

3D Fi FET

Cars are 100x harder to design
than CPUs.



A Multitechnology Phase-Locked Loop
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Evaluating the New Technology

 What 1s system performance (capture, lock, noise, etc)?
« What 1s the impact of modifying technology parameters?

* How tight must manufacturing tolerances be?



i Manufacturable Design Time
Exploding with Technology Diversity

Manufacturable ?
Design Time f)

Years

?

Months

Digital Mixed Signal Mixed Technology Diverse Technology
(digital/analog/RHigital/analog/RF/MEMS)

® Better Computational Tools Are the Only Solution
— Physical Prototyping Leads to One-of Designs
— Models needed to understand impact of process variations
— Optimization Needed to find More Manufacturable Designs



Enabling Conceptual Design of
Manufacturable Diverse Technology

MZ@E}”Q@?S;?;’”, Parameterized Models
Dimension dx (1) Robust
Reduction (343’ i = | T Optimization
(Primal-Dual
y(t) - Interior Point

Methods)

’ mingmazycqf(z,p)
= g(z,p) =0,Vp € Q

: | Implicit
Physical Models . hiz,p) <0,Vp € Q
d Fast Solvers Hession ( p) B P

(Multiresolution, PFFT)  Approaches

® Combine Robust Optimization with Physical Simulation
® Generic approaches to address Diverse Technology
® Extract parameterized models to address complex systems
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Casimir Experiments (Slide thanks to R. Ardito)
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Capacitance versus voltage suggests Casimir force
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11:(:‘ What Are Casimir Forces?

The Casimir effect is a purely quantum phenomenon and thus is not captured
by any existing NEMS modeling software.

Homer Reid: BEM Computations of Casimir Forces in NEMS

10/03,/2007



Results: Spheres, Parallel & Crossed Capsules

Validation of 3D code
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Homer Reid: Localized Basis Functions For Fast Casimir Calculations 5/14/2008




Computing Casimir Forces

 Form discretized EFIE matrix M with
imaginary Kk
— Integral Operator has exponentially decaying
REAL kernel.

— Must compute for many values of k.

« Compute logdet(M * Minf -1) or trace(M -
dM/dz) and sum over Kk

— Fast methods (e.g. PFFT) form matrix-vector
products quickly.

— Iterative methods for f(matrix) a newer area.
— Investigate fast inverse representations?
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Growing Variety of Nanophotonic Applications

Ring Resonator (Thanks
CIPS at MIT)

- -

Active Region

Mach-Zehnder Interferometer
(thanks S. Johnson)

hitless

input | | | © | " hitless
port :------:—_-_-_-_-_-_-_:-----------,::::i:i::::::-_-_-_-_-_:-_ ________ " output
0 por
reconfigurable optical device, D1 I:'.::I " other ports
(a)

Optical Switch (Thanks CIPS at MIT)

Slow light wave guide with coupler



Photonic/Electronic System (Slide Thanks To CIPS)
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Need Absorbers for Photonics

Optical Switch (Thanks

Ring Resonator (Thanks CIPS at MIT)
CIPS at MIT)
Geometry
S Matched
Absorber

Slow Light Coupler
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Absorbers for Photonics

FD/ FEM solvers,

-having a much
larger
computational
domain

Fast Integral
Equation
Solvers
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Straightforward Approach

Smaller -
ripples due. es
::f:‘:;‘ir >0 | ® Fast long low-loss absorber (3-D)

— Extremely fast circulently preconditioned Reflected wave
very low Toeplitz solver dissipates in long
loss, long — 40 Wavelengths < 1 hour absorber before
absorber — Slow setup (matlab prototype) effecting device

— Solve portion under 30 seconds!
— Works on general fast code
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Novel Surface Absorber

waveguide absorber

\

Cross Section
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Surface Absorber Formulation

Modified PMCHW formulation to incorporate the
electrical conductance on the absorber surface

i ¢ [Efpe + Eg (T, Mg, I3 ME)| = 7 [EF (37 M 37 M)

nc

o [BR, + BEE ME 3R MR) R (E ME,9F ME) | @GER)

® The tangential electrical field is continuous

® The tangential magnetic field has a jump due
surface currents through the surface conductivity.
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Effects of Surface Condqctanc Profile
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Drug Design Problem - Minimize
Electrostatic Binding Energy
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—
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Determine the |charge distribution in the ligand \

so that it is “Energetically Optimized” to bind




Integral equation: Interior Problem

Macromolecular

Surface Q

o

Translation
invariant Green’s

/ | function




Integral equation: Exterior Problem

Match bound




Molecular Surface Representation

Molecule made up of spherical atoms
Molecular surface generated by a rolling probe

probe sphere “PIT”: spherical

triangle on probe

“BELT”: surface of

a torus as probe sphere when
rolls between 2 simultaneously in
atorps e contact with 3

- toms

“CAP’’: surface of
spherical atoms
accessible by

“v‘kﬁ



“Meshless” Approach by Picture




Higher Order Meshless Method For Molecular

Surfaces
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Multiphysics Example — Battery Packs

Extract
Repeated
Structure

Extract
Battery

é

Repeated Structure ROM
Inputs/Outputs
*Pipe Velocities and
Pressures
Surface Temperatures and
heat fluxes




Cooled Battery with 1-D Electrochem Model

= NTGK Electrochemistry model

1= f(¢+ — ¢, DOD)
4DOD = f(¢ — é—. DOD)

= Electrical Conductivity Model
ﬁev2@+ =1
0 V2h_ = —i

= Thermal Conductivity Model
oV?T = (¢py — ) *i
= Sheet Flow Model
o0V2Ty+ MFR - VT, =0o- (Ts —T)

/



Linearized Systems

= Fluids (descriptor) % Mi(t) = AZ(t) + B i(t)
» Pressure-Velocity y(t) = CE(t) + Dii(t)

s Mech (2" Order) Mj—;f(t) = F%f‘(t) + KZ(t) + B (t)

» Force-Displacement y(t) = CZ(t) + Du(t)

s Electromag (frequency dependent)
W A(jw)Z(jw) + jwF (jw)T(jw) + K (jw)Z(jw) + B(jw) @(jw) = 0
= Currents-Voltages  y(jw) = C(jw)#(jw) + D(jw)i(jw)
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Projection Framework

X=Ax+bu, y=c'x =% =Ax +bu, y =c ' x
Equation Testing Change of variables

T -
Vqsz_. X~

A =
V, space r . U, space

Galerkin — ;e=U, space
i 1



Forming the Reduced Matrix

= No explicit A need, Only Matrix-vector products

For each column of U
Multiply by 4, then dot result with columns of

i



Projection For Descriptor Systems

i

q

dx dx,

M — = 4x+ 3u _ T T
” E V, . dt = AU x. + ' Bu
y= X+ u y="Ux, + Ju

rT
% M,=""MU,
T
ra;;;_4x+5,u where Ar_ QAUQ
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Picking U and V

= Use Eigenvectors (Modes)

s Use Time Series Data (Snapshot Method, POD)
» Use the SVD to pick g < kimportant vectors

X Ly , X 1 ,0

s Use Frequency Domain Data (Freq. Domain POD, PMTBR)
= Use the SVD to pick g < kimportant vectors

X s ,X s, o

= Krylov subspace Vectors
= Again use SVD to pick g < k important vectors

= Use Singular Vectors of System Grammians (Too Costly)

i



Krylov For Fluids and Mech
= Standard Krylov Subspace
span{A~'B,A7°B,A™°B, ..., A7*B}
= Must back orthogonalize at each step
= Krylov for Descriptor Systems with Singular M
span{A~'MA~'B, (A=1M)* A='B, (A='M)’ A1B, ... (A~'M)" A'B}
= Still must back orthogonalize at each step

= Krylov for Mech M%(é f?{) Ae(% 11;)

span{A"'MA='B, (A='M)* A='B, (A~'M)* A~1B, ... (A~'M)" A~1B}

.m_c_)nly Keep Top Half of the vectors



Problems with MOR for nonlinear

d

Sub: x= "z to —= "(x)+ u
dt

Reduced 4%

u z \

system: E: V' f(Vz)+ 7 Bu

Problem: W' f(Vz): R! — V—>l N ’
Sma arge arge SIma
q=10 q=10

Using Wf(1z) is too expensive!

i



Projection Assumption 1
s For all inputs of interest

z(t) =€ span{lU, Uy ...U,} q<<n

= U’s could be generated from
= SVD of time series data,

» Krylov subspaces from linearizations, etc.
i



Projection Assumption 2
= There is a space:v = {V, ..., 17(‘1} such that:

s If the residual is forced orthogonal to \%
SN S
r(t)_dter(t)—(f(er )) + bt )

with Z,.(t) such that VT#(t) =0

a Then the U-restricted DE is almost satisfied

F(t) = %U:E’T(t) (£ UEWD) +Bu(n) ~ 0
if



U =V a common choice

= In General ]
VUL E, (1) = VT (UE (1) + VTF (1)
s fU=VandU" U =1
CE(t) = UT f (UZ, (1)) + UTF (1)

m Good for systems from self-adoint PDE’s:

» Spatial discretization of nonlinear heat conduction
0 .

5, 2(t) = v [ (V) +b 2(1)

» Spatial discretization of the Poisson-Boltzmann

iy %f(t) = 2z (t) + £ (1) + b 2(t)



Assumption 3 (For DEIM)

s For x's generated by all inputs of interest
f (z(t)) ~€ span{U! U ... (7;} qg<<mn

f (%)

i



Assumption 3 Implies:
= We can replace “Galerkin”

fo= (V) ruz,)

s With "Gappy Collocation”
PTU’ f, = PTf(UZ)
s Where P selects:

s A few rows of U
= a few elements of f

= S. Chaturantabut and D. C. Sorensen, several publications
= Empirical interpolation method: M. Barrault et a/., Comp. Rend. Math., 2004.
= Missing point estimation: P. Astrid and A. Verhoeven, Int. Symp. MTNS, 2006.

i



Plcture for a 2-D PDE
f (Uz,)

ST 11— b7 A .
P UZCT ] ] o - )
sites.uclouvain.be o

Evaluate f at approximately g points (black)

*To eval f, need values for x at more points (red)
iy



Discrete Empirical Interpolation Method

i



Cooled Battery with 1-D Electrochem Model

= NTGK Electrochemistry model

1= f(¢+ — ¢, DOD)
4DOD = f(¢ — é—. DOD)

= Electrical Conductivity Model
ﬁev2@+ =1
0 V2h_ = —i

= Thermal Conductivity Model
oV?T = (¢py — ) *i
= Sheet Flow Model
o0V2Ty+ MFR - VT, =0o- (Ts —T)

/



Transient Results for Fluid Cooled Battery

= Inputs are terminal currents and mass flow rate

= Output is average temperature of fluid out

Discharging
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A New Technique for Every New
Technology

« Job security for my students....

 Does Not Scale?

— Powerful Scripting languages reducing
barrier for new techniques.

— But new “blocks” are not emerging
— Generalized Fast Solver Software
— Generic FEM

— Maybe the issue is interfacing.
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