
 1

Workshop on Advancing Computer
Architecture Research (ACAR-1)

Failure is not an Option: Popular Parallel
Programming

Organizers: Josep Torrellas (University of Illinois) and Mark Oskin (University
of Washington).

Steering Committee: Chita Das (NSF and Pennsylvania State University),
William Harrod (DARPA), Mark Hill (University of Wisconsin), James Larus
(Microsoft Research), Margaret Martonosi (Princeton University), Jose Moreira
(IBM Research), and Kunle Olukotun (Stanford University).

Written by: Josep Torrellas, Mark Oskin, Sarita Adve, George Almasi, Luis Ceze,
Almadena Chtchelkanova, Chita Das, Bill Feiereisen, William Harrod, Mark Hill,
Jon Hiller, Sampath Kannan, Krishna Kant, Christos Kozyrakis, James Larus,
Richard Murphy, Onur Mutlu, Satish Narayanasamy, Kunle Olukotun, Yale Patt,
Anand Sivasubramaniam, Kevin Skadron, Karin Strauss, Steven Swanson, and
Dean Tullsen.

Funded by the Computing Research Association’s (CRA) Computing Community
Consortium (CCC) as a “visioning exercise” meant to promote forward thinking in
computing research and then bring these ideas to a funded program.

Held on February 21-23, 2010 in San Diego, California
Contact: torrella@illinois.edu; oskin@cs.washington.edu
Websites: http://www.cra.org/ccc/acar.php; http://iacoma.cs.uiuc.edu/acar1

August 2010

 2

Contents
1 Executive Summary ... 4
2 Introduction ... 6

2.1 Background .. 6
2.2 Strategic Importance .. 6
2.3 The Opportunity ... 6
2.4 Limited Industry Experience and Deficient Educational Systems ... 6
2.5 Talent Abundance and Funding Scarcity ... 7

3 Workshop Objectives... 7
4 Recommendations for Computer Architecture Research Thrusts .. 8

4.1 Data Centers and Large Scale Systems .. 8
4.1.1 Problem Statement and Goals .. 8
4.1.2 Research Thrust Description .. 9
4.1.3 Why is this Research Transformative .. 11
4.1.4 What Are the Deliverables ... 11
4.1.5 Research Disciplines Involved ... 11
4.1.6 Risk to Industry and Society If Not Pursued .. 11
4.1.7 Benefits of Success to Industry and Society .. 11
4.1.8 Why Not Let Industry Do It ... 11
4.1.9 Likelihood of Success .. 12

4.2 Architectures to Enhance Programmability ... 12
4.2.1 Problem Statement and Goals .. 12
4.2.2 Research Thrust Description .. 12
4.2.3 Why Is This Research Transformative... 14
4.2.4 What Are the Deliverables ... 14
4.2.5 Research Disciplines Involved ... 14
4.2.6 Risk to Industry and Society if Not Pursued .. 15
4.2.7 Benefits of Success to Industry and Society .. 15
4.2.8 Why Not Let Industry Do It ... 15
4.2.9 Likelihood of Success .. 15

4.3 Hardware-Software Co-Design and Asymmetry .. 15
4.3.1 Problem Statement and Goals .. 15
4.3.2 Research Thrust Description .. 16
4.3.3 Why is this Research Transformative .. 17
4.3.4 What Are the Deliverables ... 17
4.3.5 Research Disciplines Involved ... 18
4.3.6 Risk to Industry and Society if Not Pursued .. 18
4.3.7 Benefits of Success to Industry and Society .. 18
4.3.8 Why not Let industry Do It .. 18
4.3.9 Likelihood of Success .. 18

4.4 Domain Specific Languages ... 19
4.4.1 Problem Statement and Goals .. 19
4.4.2 Research Thrust Description .. 19
4.4.3 Why is this Research Transformative .. 21
4.4.4 What Are the Deliverables ... 21
4.4.5 Research Disciplines Involved ... 21
4.4.6 Risk to Industry and Society If Not Pursued .. 21
4.4.7 Benefits of Success to Industry and Society .. 21
4.4.8 Why Not Let Industry Do It ... 21
4.4.9 Likelihood of Success .. 22

5 Educational Perspective ... 19
5.1 Vision ... 22
5.2 The Challenges to Making this Happen ... 22
5.3 Approaches ... 22
5.4 Recommendations .. 23

 3

6 Industry Collaboration ... 23
6.1 How Academics Can Contribute .. 23
6.2 How Industry Can Contribute .. 23

7 The Funding Landscape for Computer Architecture Research .. 24
7.1 National Science Foundation (NSF) .. 24
7.2 Defense Advanced Research Projects Administration (DARPA) .. 25

8 Next Steps .. 25
9 Acknowledgments ... 25
10 Appendix A: Call for Position Papers .. 26
11 Appendix B: Workshop Attendees ... 28
12 Appendix C: Workshop Schedule .. 29
13 Appendix D: Slides from the Working Groups .. 30

 4

1 Executive Summary
The arrival of the ubiquitous multi-core is a game-changing event for the computing industry. Much of the industry
today is relying on parallel processing becoming main-stream --- although most software is still single-threaded and
past experience consistently shows that parallelization is a difficult task. For the industry to make progress at
historical rates, the next few years will need to witness significant changes in the software and hardware of our
computing platforms. In particular, from a computer architecture perspective, multi/many-cores will have to evolve
to enable and support high-productivity parallel software development and execution.

This workshop brought together computer architecture researchers from academia, industry, and national
laboratories, and program managers from funding agencies to examine how computer architecture can help enable
ubiquitous parallel computing. The main goal was to identify the key computer architecture research challenges in
devising the programmable parallel computing platforms of years 2020-2025, and to articulate an agenda and
roadmap to address these challenges. The resulting research directions had to have broad community support, be key
for funding agencies to fund, be forward looking rather than incremental, and lead to a deep understanding of our
field.

The attendees identified four main computer architecture research thrusts. They are (1) data centers and large-scale
systems, (2) architectures to enhance programmability, (3) hardware-software co-design and asymmetry, and (4)
domain specific languages. For each thrust, the report outlines the research efforts recommended.

1. Data centers are emerging as a critical component of our IT infrastructure. In particular, they form the backbone
of cloud computing, which will likely provide the utility computing necessary to revolutionize experimental
computing techniques. Data centers will be used by billions of cost-conscious users and run applications written
by many developers. In this research thrust, our ambitious long-term goals are to reduce the cost of data-center
infrastructure to 1 Watt and $1 per month for the typical user, and to enable individual programs to efficiently
scale from a single-node system with tens of users to a full data-center deployment with millions of nodes and
billions of users.

2. The continued performance scaling of computer systems now requires extensive software and hardware
changes to exploit parallelism. Attaining a high-performance, correct 1000-core chip that is also highly
programmable is a major challenge. In this research thrust of architectures for programmability, our long-term
goal is three-fold: (1) to ensure that programming for parallel architectures is as easy as it is now for sequential
architectures; (2) to maintain Moore’s Law for performance --- namely, to double the speed-up every 2 years; and
(3) to eliminate concurrency bugs.

3. Specialization of the hardware and system-software layers eliminates inefficiencies and overheads that come
with the flexibility of general-purpose systems. It is possible to obtain orders of magnitude improvements in
performance, performance per Watt, and performance per dollar. In the past, specialization has usually been
limited to a small number of high-volume consumer applications. In this research thrust, we want to develop
technologies necessary to deliver "turn-key" specialized computing systems quickly and economically.
Specifically, our long-term goal is to design specialized architectures that deliver up to 10,000x speed-up for
particular applications for less than $10,000. The ultimate goal is a fully-automated generation of application-
specific hardware for each program.

4. Domain specific languages (DSLs) are designed to express a particular class of applications efficiently. In the
context of parallel computing, a DSL provides a set of semantics that are expressive and natural for developers of
such a class of applications, yet describe the computation at a sufficiently high enough level that it is easy to
exploit parallelism. In this research thrust, our long-term goals are to create DSL infrastructure that makes it easy
to develop new DSLs, and to attain 5-10 commercially-available DSLs in the next 10-15 years. These DSLs
should have widespread use. They should be as successful as SQL for their particular application domains.

To make progress in all of these challenges, our universities must offer a strong educational program in parallel
computing. We suggest making low-resistance changes to the curriculum to embed parallel thinking, including
augmenting existing courses with simple additions where they make sense. We should work with NSF to impart
urgency in the need to teach parallel practices throughout the curriculum.

 5

It is crucial to initiate a broad discussion between industry and academia on programming models, programming
languages, programmer productivity, applications, and the computer architectures to support them all. To make the
academia/industry relationship robust, academics should invite industry participants to panels, workshops, and other
discussion forums on parallel computing. Academics should also prepare short courses on parallel programming and
computing for professionals in industry. Industry, in turn, should provide direction and input into the critical
problems it faces, provide access to experimental data, and provide funding for academic research.

Government funding for computer architecture research should be organized along larger, more ambitious projects
that cover multiple layers of the computing stack. It should also involve a concerted, complementary effort by
multiple funding agencies, focusing on the research thrusts identified here.

The next steps involve working with our professional colleagues to publicize this report among funding agencies,
industry, academic circles, and the broad computer science and engineering community.

 6

2 Introduction

2.1 Background
The arrival of the ubiquitous multi-core has caused an upheaval in the computing industry. Hardware vendors can
no longer produce microprocessors that make yesterday’s software exponentially faster. Instead, the industry is
betting on radical changes in software and hardware for its success. The fate of much of the IT industry rests on the
success of main-streaming parallel (or concurrent) computing.

The switch to parallel hardware began, from the consumer’s perspective, around 2004. Since then, the number of
cores per chip has kept increasing. Similar to the switch from 32 to 64-bit computing, hardware and software
changes are uncoordinated. Consumer-oriented computers with eight cores are easily available for less than $1,000.
Yet, just as a vast array of systems still execute 32-bit operating systems on 64-bit capable hardware, most software
today remains single-threaded. Those applications that do take advantage of multi-core architectures do so only
tepidly --- with limited threads and little hope of scaling to the kind of parallel resources that hardware vendors will
be capable of providing in the near future. Against this disappointing background, domain-specific systems such as
GPUs, and novel concurrency models such as cloud computing flourish, but they do not use many of the bread-and-
butter multi-core designs currently planned.

2.2 Strategic Importance
The Information Technology (IT) sector has been a leading driver of economic growth in the modern world. As
recent downturns have shown, a significant drop in the IT sector has widespread ramifications for all areas of our
economy. At the center of the IT growth and innovation is the ability for hardware to provide the core building
block of the industry, the processor, in a form that is exponentially more efficient --- either faster or lower power ---
each year. Historically, the computing industry has used this exponential efficiency gain to provide the world with
ever richer software environments, more powerful portable devices, and faster communication links. Multi-core
changes this. These efficiencies are no longer applied to products automatically. Instead, software developers are
expected to be an integral component in the exponential efficiency gains we hope to see going forward. It is for this
reason that popularizing parallel programming is of strategic importance to the IT industry and nation at large.

2.3 The Opportunity
As with all great challenges, there comes a great opportunity: if software can be successfully adapted to execute on
multi-core devices, then new levels of performance and efficiencies can be obtained. If one task can be parallelized
across multiple cores, those cores can finish that task sooner or, for the same total execution time, with significantly
less energy.

In practice, many applications can deliver new capabilities if one can provide orders of magnitude improvement in
performance, performance per unit of power, or performance per unit of cost. This is true in all types of computer
systems, from embedded and mobile systems to supercomputers. Examples in the mobile space include speech
recognition, language translation, data analysis or situational awareness. For example, these could benefit
firefighters, police, doctors, or soldiers in real-time field work. In the desktop, notebook, or workstation space,
some examples of applications include video processing, rich user interfaces or virtual reality interfaces, and
interactive problem solving and data analysis. As local storage capacities grow, the types of important problems that
can be solved in a personal computing environment also grow. For example, the entire human genome fits in
approximately 4 GB, allowing a single workstation to perform significant computations. Finally, at data-center or
super-computer scale, problems that can benefit from the efficiencies of multi-cores include computational fluid
dynamics, drug discovery, simulation and modeling (e.g., weather, geology, and tsunami prediction), data mining,
machine learning, and graph analytics.

2.4 Limited Industry Experience and Deficient Educational Systems
The fact that parallel programming has never been widespread in the IT industry complicates the ability to solve this
challenge. Parallel programming has traditionally been a niche --- successful in a few important domains such as

 7

scientific computing, graphics computations, and server workloads. There are lessons to be learned from these
successes. Specifically, parallel programming is possible with relatively small code bases written by a handful of
domain experts (such as in scientific computing); where the interactions between threads are limited (such as in
many server workloads); or where the programming model is sequential in nature, with parallelism occurring under
the hood (such as in graphics). Unfortunately, these key enablers of a small set of expert programmers, of limited
communication, and of sequential abstractions, do not generalize to all applications.

A second, almost chicken-and-egg problem exists with parallel computing. Few university professors are competent
to teach concepts in parallel computing. Professors with specialties in machine learning or graphics have expert
knowledge in those domains --- not in the craft of parallel computing. For this reason, when they create projects and
homework assignments for students in classes on those subjects, there is no expectation that students will design a
parallel solution. Hence, our universities do not produce undergraduate computer science majors with much
expertise in parallel computing. This means that employers cannot hire the type of engineer they need to build
products that successfully utilize multi-core devices.

2.5 Talent Abundance and Funding Scarcity
There is an outdated sense in computer science, and hence in the levers of computer science funding, that computer
architecture is a solved problem. The fact that the multi-core was unleashed in 2004 without any software co-design
consideration is ample proof that this is not the case. If anything, computer architecture is undergoing a period of
profound revolution like when the single-chip microprocessor was invented or the von-Neumann model itself was
conceived. Far from being a solved problem, computer architecture stands at an inflection point. With the right
talent, funding, and will, it is a field poised to bring about lasting revolutionary changes to the hardware/software
interface.

Of the necessary ingredients for progress, the talent component is abundant: the last five years have seen a great
increase in the number of new faculty members who are actively doing research in computer architecture. Our
community now includes a large number of assistant professors, many of them overflowing with new ideas and
plans. The funding component is lacking. Specifically, the general trend in the last few years at NSF has been only
very modest funding increases (or perhaps no increases) for computer architecture, and the large majority of funded
projects are small and very modest in ambition. DARPA has recently started an initiative on Extreme Scale
computing, but its size is small. DOE focuses its limited efforts in computer architecture on Petascale/Exascale
systems, which relate to a relatively small fraction of our community. Finally, other funding agencies have little
interest in funding computer architecture research.

Against this backdrop, industry (e.g., Intel and Microsoft) has funded centers that focus on the whole computing
stack for parallelism. This is a measure of the importance of the problem and the perceived lack of support from the
funding agencies. In reality, solving the challenges facing the IT industry will likely need placing funding bets on as
many researchers and worthy topics as possible.

3 Workshop Objectives
The Computing Research Association’s (CRA) Computing Community Consortium (CCC) convened a workshop of
computer architecture researchers and funding agencies to address the challenge of attaining popular parallel
programming. The goal of the workshop was two-fold:

1. Articulate an agenda and roadmap for computer architecture research to devise the programmable parallel
computing platforms of years 2020-2025. The recommended research directions must meet the following tests: (a)
have broad community support as (some of) the most important research questions to address; (b) be key for
academic researchers to explore and national agencies to fund; (c) lead to significant changes in and/or deep
understanding of our field; (d) be forward looking and not incremental extensions of the status quo; (d) be critical to
solve for the health of our IT industry.

2. Create excitement within the computer architecture community and help build new bridges and collaborations.

 8

The workshop had to be inclusive of enough voices in the research community that the results are legitimately
viewed as coming from the community, speaking with a unified voice. Moreover, the workshop should include as
many junior researchers in our community as possible to ensure continuous leadership.

A call for position papers was issued and publicized widely. Appendix A shows the Call for Position Papers. The co-
organizers and the Steering Committee selected a total of 16 position papers among them. The workshop took place
on February 21-23, 2010 in San Diego, California, and 25 individuals attended. Appendix B lists the attendees and
Appendix C shows the schedule of the workshop. The workshop had keynotes from George Almasi (IBM Research)
and James Larus (Microsoft Research). It also had a panel of funding agency directors chaired by Sampath Kannan
(NSF). In the morning of the first day, the authors of the selected position papers presented them. The rest of the
workshop consisted of breakout sessions (where the attendees broke into small working groups) and plenary
sessions (where the findings of the groups were presented and critiqued).

The workshop converged into and fleshed out four research thrusts, namely (1) data centers and large scale systems,
(2) architectures to enhance programmability, (3) hardware-software co-design and asymmetry, and (4) domain
specific languages. In addition, there were discussions on educational issues, industry collaboration, and funding
collaboration.

The rest of this report documents the findings. Appendix D shows the slides of the working groups, on which this
report is based.

4 Recommendations for Computer Architecture Research Thrusts
We identify four key computer architecture research thrusts. They are (1) data centers and large scale systems, (2)
architectures to enhance programmability, (3) hardware-software co-design and asymmetry, and (4) domain specific
languages. We present each in turn.

4.1 Data Centers and Large Scale Systems

4.1.1 Problem Statement and Goals

Data Centers (DCs) are emerging as a critical component of our IT infrastructure. These large-scale systems provide
the computation power and storage necessary for online services ranging from webmail and search, to social
networking and customer-relationship management tools. Moreover, DCs form the backbone of cloud computing,
which is viewed as the prominent way provide the utility computing necessary to revolutionize experimental
techniques for biology, neuroscience, drug discovery, and other scientific disciplines.

DCs are in many ways similar to traditional supercomputers, which support large-scale scientific experiments. Both
include tens of thousands of nodes, implement distributed memory and storage schemes, and involve hierarchical
networks. However, as both the enterprise and the scientific community strive toward utility computing, a new set of
requirements is emerging. DCs will now be used by billions of users, either directly through services like social
networks or indirectly through services like bioinformatics. The number of data center application developers will
also be significantly higher, including developers of online services and scientists using analytical techniques.
Moreover, the vision of utility computing requires low cost, for both capital and operational expenses.

We offer two grand challenges or goals for research in enterprise DCs and next generation supercomputers: (1)
Reduce the cost of DC infrastructure to 1 Watt and $1 per month for the typical user; and (2) Enable individual
programs to efficiently scale from a single-node system with tens of users to a full DC deployment with millions of
nodes and billions of users.

The first challenge comes from the need for low cost, utility computing. It is an aggressive goal that requires
cooperative research in hardware architecture, system software, and resource management. If we put all aspects of
our lives and all scientific experiments on DCs using current approaches, we will probably be off by factors of 100x
to 1,000x from the goal of 1 Watt and $1 per month per user.

 9

The second challenge stems from the need for scalable capabilities and ease-of-use. It requires significant
improvements to the hardware infrastructure, programming models, and system software used in DCs.

4.1.2 Research Thrust Description
To address these challenges, we propose several research vectors that systematically revisit all aspects of a DC. The
key is to view and optimize the DC in the same way we optimize an individual computer, with energy efficiency as
the crosscutting theme. The five, interacting research vectors are: (1) Chip architecture --- what new features are
needed for chips used in DCs? (2) Node architecture --- what is the most efficient node organization for DCs? (3)
Memory and storage --- what are the hardware and software mechanisms for DC-scale memory and storage
hierarchies? (4) Operating and runtime systems --- what is the management layer for the whole data center? and (5)
Energy-efficient DC design --- a crosscutting theme across all layers.

4.1.2.1 Chip Architecture for Data Centers
Our vision is to enable many-core chips that are efficient building blocks for DCs. The key research question we aim
to answer is how do we design a many-core chip from the ground up to enable a mini supercomputer/DC on a chip?

There are several key topics to research to enable this vision. First, we need to enable mechanisms for flexible on-
chip resource management. This includes on-chip support for isolation and privacy, to eliminate interference
between multiple tasks or virtual machines. It also includes prioritization and partitioning mechanisms to enable
flexible allocation of on-chip resources (e.g., cores, caches, interconnects, memory, and bandwidth) among threads
or applications. Second, we need to enable mechanisms for flexible scaling down of on-chip and memory resources.
This is essential for the scalability and energy proportionality of the data center. It can be attained with flexible
modes for energy/performance levels, possibly with configurable or heterogeneous designs, and for different on-chip
resources. Third, we need to enable fast messaging and synchronization support for both on- and off-chip
communication, as well as mechanisms for safe and efficient remote memory and storage access. Fourth, we need to
provide mechanisms for end-to-end monitoring of application performance. This is essential for understanding,
tuning, and optimizing applications running on the large-scale system. Fifth, we need to enable efficient execution of
dynamic languages. Finally, we need to provide chip-level mechanisms for manageability, reliability, and
upgradability to enable easier management of the entire DC. For each of these topics, we need to consider the
hardware/software interface, virtualization mechanisms, and practical hardware implementations.

4.1.2.2 Node Architecture for Data Centers
Current DC nodes are a direct evolution of personal computers. As such, they are not optimal for the parameters of
large-scale DCs. Therefore, a rethinking of the node is necessary to build an optimal DC.

A number of questions need to be researched to enable efficient node architectures. One is how to compose the chips
and memory into a flexible node. The node can be homogeneous with simple cores, homogeneous with complex
cores, or heterogeneous with a mix of cores of varying degrees of complexity and energy/performance levels. The
node can include accelerators or, instead, acceleration can be performed at the chip level. The memory system and
interconnect should be designed to enable trade-offs between throughput and quality of service. Different design
choices have implications for the programming languages and the operating and runtime systems of the DC. It is
therefore important to investigate the node design in conjunction with the design of such software.

Another key research question is memory and communication system organization at the node level. We need to
understand how to organize node-level memory and storage among different chips (e.g., shared or partitioned). We
also need to research what are the best mechanisms to enable efficient sharing and resource management. Most
existing systems solely use commodity DRAM, which has high idle power consumption. The role of solid state
disks and emerging non-volatile technologies need to be researched to enable large improvements in energy
efficiency. It is also important to re-think the communication substrate at the node level to enable efficient and high-
bandwidth communication and synchronization. An important avenue of investigation is using new technologies for
communication, such as photonics.

 10

4.1.2.3 Memory and Storage Hierarchy
The memory and storage hierarchy for DCs must provide software developers with fast, high-bandwidth access to
peta-bytes of data, hiding its distributed implementation nature and all its consequences (i.e., latency and bandwidth
bottlenecks, synchronization, and consistency issues).

There are several key topics to research to enable this vision, including hardware and software issues at the node and
global level. To reduce latency, a significant percentage of DC services store data in DRAM. This creates a need to
revisit the balance of processing and memory within each node. Current and new solid-state memory technologies
must also be utilized to alleviate the challenges due to the cost or volatility of DRAM. At the system level, we need
to consider locality optimizations that will hide latency. Depending on the application characteristics, DC-level
prefetching and caching mechanisms may be possible. Alternatively, we can employ runtime techniques that move
computation to data. In any case, locality optimizations must interact well with isolation, availability, and energy
management considerations.

4.1.2.4 Operating and Runtime Systems
The operating and runtime systems of the DC play a critical role in managing the distributed resources to ensure the
right provisioning to the right activity at the right time. This software stack has to necessarily scale to thousands of
nodes, handling multiple levels of parallelism --- from tightly knit cores on a chip to multiple sockets in a node and
to the hundreds of nodes connected by a loosely coupled network --- and ensuring that the computational,
communication and storage resources are allocated to meet the different needs. These needs include (1) response
time and/or throughput requirements of the applications, (2) availability requirements (e.g., five 9’s of availability),
(3) security and privacy assurances to insulate the set of running applications, and (4) compliance for regulation and
auditability.

There are several dimensions to the research that is needed for the development of this software stack, namely
scalability, end-to-end monitoring, and multi-tenancy. Scalability is of paramount concern to accommodate millions
of nodes under performance, availability and power vagaries. The assumptions about parallelism possible at a node
level do not hold under the loosely-coupled distributed environment of a DC, mandating dynamic adaptation to
errors, performance, and resource availability.

To build a software stack that makes dynamic adaptation decisions, we need end-to-end monitoring of resource
usage, performance, and availability. The software stack should also accommodate graceful degradation and scale-
down based on resource availability.

Finally, multi-tenancy is an inherent feature of these systems, and accommodating the different applications and
users temporally and spatially mandates extensive support for isolation from the performance, security and failure
perspectives. This not just a software problem, but includes the entire stack from the silicon to the runtime system.

4.1.2.5 EnergyEfficient Data Center Design
Energy efficiency is a crosscutting theme across all the layers of a DC. By optimizing hardware and software within
and across nodes, we can improve energy efficiency in terms of requests/sec/Watt by a factor of 100—1,000x or
more over what conventional technology scaling can provide. The research highlighted above applied to commodity
chips for compute, memory, and storage can improve energy efficiency by at least a factor of 10--100x. The
improvements come from optimizing the balance and organization of chips in the system, the type of chip used for
each task, and how tasks are moved close to data or vice versa. They also come from static and dynamic compilation
techniques that reduce the software bloat of online services, which directly contributes to energy overheads. If we
use chips optimized for data centers, we can expect another factor of 10--100x in energy efficiency. These
improvements stem primarily from eliminating the overhead of complex software protocols for messaging, remote
access, or isolation, reducing the overhead of checks for dynamic languages, and providing lower-power active
modes for storage and network components that can be exploited by the runtime to achieve energy proportionality.

Energy proportionality is important in order to avoid waste during periods of low utilization. The active portion of
the DC should be scaled down to match the lower utilization. While such scale-down approaches are already popular

 11

for stateless computations, they are currently impossible for most services because each node stores gigabytes to
terabytes of state. To achieve state-aware scale-down, we need new low-power active modes for all DC resources
(including on-chip resources, chips, and memory/storage resources) and runtime techniques that can manage scale-
down without compromising quality of service or availability.

Beyond energy efficiency, environmental sustainability is also a noteworthy goal for DCs. Current DC hardware is
replaced every three years. We should build data center chips and memory/storage systems such that the hardware
continues to be useful for a long time --- even in the presence of high failure and wear-out rates. We should (re)use
materials that are environmentally friendly.

4.1.3 Why is this Research Transformative
Application requirements are growing at a very rapid pace, both in terms of problem scale and
resolution. Evolutionary technology scaling is woefully inadequate to meet these requirements, since (1) voltages
are not likely to be reduced much further, (2) as a result, it is no longer possible to power all the transistors on the
chip, and (3) wires and interconnect do not scale with feature size reduction. Instead, these requirements can only be
met with disruptive innovations at all levels of hardware and software. The research proposed here will enable DCs
and supercomputers that are 1,000x more energy efficient and higher performance than what is possible with
evolutionary technology scaling and known energy-efficient design techniques. This will enable new applications
that require major improvements in energy efficiency and compute power.

The growing size of DCs introduces several new challenges related to large scale infrastructure management and
operational costs associated with power delivery and distribution systems, cooling, space, and asset management.
Only innovative architectural solutions can help address these issues, reducing power consumption and real estate
footprint, doing more with less, and extending the lifetime of the infrastructure. In addition, integrated management
at all levels can significantly lower the management and administration costs of DCs, enhance their availability and
lower the bar on enabling widespread usage across a diverse user base.

4.1.4 What Are the Deliverables
The deliverables are DCs and supercomputers that, for the same level of performance, are 1,000x more energy
efficient than what evolutionary technology scaling can provide, measured in requests/sec/Watt.

4.1.5 Research Disciplines Involved
The research proposed requires comprehensive, whole-system research. It includes the areas of computer
architecture (chip design, platform architecture, and memory and storage systems), systems software, parallel
programming, and new technologies.

4.1.6 Risk to Industry and Society If Not Pursued
The inability to solve the more complex and larger problems that are critical to the well-being of mankind --- such
drug discovery and climate change adaptation --- will have a large negative impact on society. Even if one could
solve larger problems by relying on evolutionary technology scaling, it will not be a cost-effective and scalable
option, since the cost will increase significantly faster than economically desirable.

4.1.7 Benefits of Success to Industry and Society
The well-being of mankind critically depends on being able to solve key problems in the medical and physical
sciences. The research proposed, by delivering more cost-effective DCs and supercomputers, can help us solve these
problems.

4.1.8 Why Not Let Industry Do It
Industry is typically bound by concerns for backward compatibility. To make faster progress, we need research that
breaks backward compatibility barriers and is not bound by possible short-term product concerns. Even if industry

 12

performed some of this research internally, it might not make it available widely outside its organization. This would
have a limiting effect on the advancement of science and technology.

4.1.9 Likelihood of Success
The proposed vision is very ambitious and requires advances in many areas, including chip design, platform
architecture, memory and storage systems, systems software, parallel programming, and new technologies. We are
confident that there will be rapid progress in all of these areas. We also hope that there will be breakthroughs in
device technologies and materials that will significantly reduce energy consumption and will prove to be useful
building blocks. Fortunately, the community is highly aware of the need to improve the energy efficiency of IT
components.

4.2 Architectures to Enhance Programmability

4.2.1 Problem Statement and Goals

Historically, the computer industry has delivered sustained performance increases without asking programmers for
significant software changes. However, continued performance scaling now requires extensive software and
hardware changes to exploit parallelism. It is now much harder to get programmability, performance and
correctness. This research thrust addresses the challenge of attaining a highly-programmable, high-performance, and
correct 1000-core chip. Our long-term, ambitious goals are: (1) to ensure that programming for parallel architectures
is as easy as it is now for sequential architectures; (2) to maintain Moore’s Law for performance --- namely, to
double the speedup every 2 years; and (3) to eliminate concurrency bugs.

4.2.2 Research Thrust Description
We have identified the following research vectors: programming model, correctness, introspection, scalable
memory, and communication fabric, and resource management. We now detail them.

4.2.2.1 Programming Model
The von Neumann programming model supports advances of sequential computer architectures and programming
languages. No such consensus facilitates progress for parallel architectures and languages. Instead, many current
architectures and languages more or less expose multiple von Neumann processors, which burdens programmers and
constrains architects.

Our vision of future parallel computers is that we should co-evolve programming models and architectures to
facilitate the rapid development of correct, high-performance programs, i.e., enhance "programmability." The long
term challenge is to determine the best ways to abstract locality, communication, and coordination so that
programmers understand the "big picture" without being unduly burdened by details. We must co-develop several
programming models and architectures as either an end or as a means to a possible consensus on "the" programming
model for parallel architectures.

We should start by developing architectures for existing programming models --- data parallel, task parallel,
functional, and sequential --- and co-evolving them. In particular, we should look for methods to express locality,
communication (e.g., producer-consumer or pipelined), and coordination. We should ask how language restrictions
(data-race-free, memory safety, and language features to be developed) can simplify hardware, improve
performance, and reduce power. We should work with colleagues to develop new programming models and their
corresponding architectures. We should study how to model hardware asymmetries (e.g., CPU vs. GPU). We should
explore the role of explicit and implicit speculation. We should facilitate systems that allow the rapid development
of correct programs and then enable a successive refinement of performance and resource use.

 13

4.2.2.2 Correctness
Correctness should be treated as a first class citizen. Radical advances in architectures and programming models are
required to increase the chance of having a correct program execution.

One of the grand challenges is to design a computer system where concurrency bugs do not affect correctness. One
possible approach to achieve this can be a programming model and a runtime system that guarantee sequential
semantics to a parallel program execution without sacrificing efficiency. Is non-determinism essential for
performance? In addition, the same techniques that address software correctness can be used to ensure hardware
correctness in spite of hardware design bugs, transient and hard faults.

In the near term, we should develop a wide range of software correctness checkers, debugging and testing tools. Idle
cores could be used to improve the efficiency of these tools. Beyond support for a few watch-point registers, modern
processors provide little to no support for testing and debugging tools. Advances in hardware primitives (e.g., bloom
filters and hashes) could significantly help us develop efficient tools, and perhaps allow us to efficiently check the
correctness of production runs. We should promote inter-disciplinary research that brings in ideas from various
domains such as machine learning to help build efficient correctness checkers that leverage those hardware
primitives. Such efficient correctness checkers could help us proactively stop the program on a bug or even skip
incorrect parts of an execution.

4.2.2.3 Introspection
Given the complexity and programmability challenges of future systems, we should develop introspection
mechanisms to enable continuous adaptation for performance, correct behavior, and energy efficiency in future
systems. We envision a scenario where the hardware provides a set of detailed, precise and pervasive data collection
mechanisms at a low cost. The information collected by these mechanisms will percolate up to the right levels of the
system stack for automatic adaptation, fault management, and analysis. To support this vision, we need two main
research avenues: (1) designing the mechanisms and their interface; and (2) using them to dynamically adapt system
behavior.

The longer term goals of this research are to develop flexible and efficient ways to collect information about system
behavior, from low-level architectural events to higher-level algorithmic events. The longer term goals also include
how to use this information for performance, reliability, and energy efficiency. Interesting avenues of exploration
here include support for machine learning to digest all of the information collected from the lower levels, and
support for efficient online analysis of real-time information.

The shorter-term goals involve understanding the design space of introspection support and start exploring it. For
example: When should collection be turned on/off? How is the information communicated up to the runtime
system? How does the runtime system inform the hardware mechanisms of higher-level application properties for
more targeted event collection? What information do we need to collect to allow the system to be constantly aware
of what resource is in the critical path? What is the best way to visualize that information to understand complex
systems?

4.2.2.4 Scalable Memory and Communication Fabric
We envision a highly-scalable memory and communication fabric for a 1000-core chip that provides performance,
scalability, power efficiency, and flexibility. The memory and communication fabric is likely to be the bottleneck in
many of the parallel applications in the time frame considered.

The long term research topic in this area is the design of the memory hierarchy and interconnection network for a
1000-core chip, including the cache coherence protocol, memory consistency issues, synchronization, and the
support for task management. Such a design should provide high performance, be scalable to a 1000 cores, be power
efficient in its operation, and provide flexibility to adapt the hardware to the actual needs of the programmer or
application. Adaptation is challenging because there are different types of programmers, such as the one for whom
safety is paramount, the one who wants high performance, and the expert one who needs no safety nets. The first

 14

type of programmer --- which may include beginner programmers or those coding for mission-critical operations ---
may require full cache-coherence support, a conservative memory consistency model, and various debugging checks
turned on. The second one may relax some of these issues. The final one may want a completely programmer-
managed data coherence, a relaxed memory consistency model, and no debugging checks.

There are several topics to be covered on our way to that vision. One of them is an analysis of the real needs of the
different types of programmers. Another one is a re-structuring of the memory hierarchy and communication fabric
where a program only pays the performance overhead and the power consumption of the resources that it uses. This
“pay only what you use” approach requires lean structures for the memory hierarchy and network. Finally, the
memory hierarchy and network should be designed for energy proportionality.

4.2.2.5 Resource Management
Compared to existing systems, emerging systems will contain far more resources, more tunable and adaptable
resources, increased heterogeneity, and the potential for far more inter-application interaction. Expecting naïve users
to manage these aspects is unworkable, and involving the programmer heavily in them only increases the difficulty
of parallel programming. However, the programmer should be able to express goals (e.g., performance or energy
efficiency) and access primitives that allow him/her to reach those goals. We should strive to provide highly flexible
and informed management and allocation of resources, including the ability to provide for the isolation of software
and hardware components for programmability, correctness and performance.

We should create architectural designs that attain composable performance and power in a highly multiprogrammed
environment. We need to be able to sandbox programs from other running programs --- the programmer should
continue to be able to code as if her program is the only one running on the hardware. This also involves isolating
communication between threads in the same program and across programs. Architectural support is critical to these
goals; it increases the security of the system and enables the enforcement of quality of service even on commodity
systems.

We need to rethink virtual memory and protection in the era of ubiquitous concurrent systems. Moreover, systems
software and runtime system need significantly-enhanced communication with hardware and software monitors,
managing the global environment in a heterogeneous system, for potentially diverse performance, reliability, and
energy goals.

4.2.3 Why Is This Research Transformative

Society and large segments of our national economy have come to depend on substantial, continuous increase in
performance with each microprocessor generation. We have managed to maintain this scaling for nearly four
decades, doubling performance every 2 years. By significantly lowering the barrier to effective and productive
parallel programming, this research will enable the rapid generation of new parallel software. This will allow
computing to continue on the performance scaling path by harnessing available hardware parallelism.

4.2.4 What Are the Deliverables

The deliverables are architectural concepts and programming models to attain highly-programmable, high-
performance, and correct 1000-core chips.

4.2.5 Research Disciplines Involved

Addressing the parallel programming problem is a multi-disciplinary challenge. It requires significant advances in
computer architecture as well as other fields, including programming languages, compilers and operating systems.
This is a unique opportunity for tight collaboration across several computer science disciplines. Computer architects
will bring research innovation in execution cores, memory hierarchies and communication fabrics. Programming
language research will be instrumental in developing the programming models. Compiler research will be necessary

 15

to map the language features to the novel hardware mechanisms developed. Finally, operating system research will
need to keep up with the scale of hardware, as well as virtualize and manage the new hardware resources developed
to support better programmability.

4.2.6 Risk to Industry and Society if Not Pursued
Users in education, science, government, industry and commerce have come to depend on the repeated doubling of
computer performance and cost-performance. This doubling will dramatically slow for sequential programmers. No
longer can researchers or practitioners dream up a new idea whose sequential performance is too slow or costly and
know that in four years technologists and architects will quadruple sequential performance. This will remove an
important decades-old "yellow-brick road" for innovative ideas to improve society.

4.2.7 Benefits of Success to Industry and Society

The "yellow-brick road" to better performance and cost-performance can be extended by effective programming of
parallel architectures. If successful, researchers and practioners can dream up ideas that are too slow or expensive
today as long as they can express their solution to run on parallel architectures. While it is hard to predict the exact
inventions to come, the past suggests that they may come at an increasingly rapid rate.

4.2.8 Why Not Let Industry Do It
The challenge of developing new models for parallel architectures requires a scientific examination of possibilities
that change the landscape beyond the purview of any one company, and with the stops and starts that make the work
pre-competitive. A chip company does not control software; a software company does not control the chips; a
service company does not sell to most consumers; a search company seeks commodity hardware; and all successful
companies are limited by backward compatibility. Consequently, it is very unlikely that industry alone will develop
the new models required.

4.2.9 Likelihood of Success

The likelihood of success varies with computing platform and application domain. Parallel architectures for servers,
cloud, and data center will likely succeed and scale. This is because they operate on vast parallel work, even as there
are many challenges to maximize effectiveness and minimize costs. Parallel architectures for client and embedded
devices will likely succeed at the small scale (e.g., ten cores) because of the data parallelism in some important
applications. Success for client and embedded computers with large core counts will be challenging due to the very
constrained energy requirements and the open questions about the nature of parallelism in their future workloads.

In practice, however, transformative technology typically comes from unexpected sources. By putting parallel
programming in the hands of the masses, rather than an elite corps of highly-trained programmers (our current state),
we will likely significantly accelerate the path to the next big transforming applications.

4.3 HardwareSoftware CoDesign and Asymmetry

4.3.1 Problem Statement and Goals
Specialization of the hardware and system-software layers eliminates inefficiencies and overheads that come with
the flexibility of general-purpose systems. It is possible to obtain orders of magnitude improvements in performance,
performance per Watt, and performance per dollar. However, specialized hardware has previously been too
difficult, too slow, and too expensive to develop, even when the hardware substrate itself is reconfigurable. Truly
custom hardware such as ASICs also entails very high manufacturing costs. These obstacles have prevented the use
of specialization even for applications of high strategic value, in cases where the software or algorithms are still
evolving, as is the case with many important application categories, such as data mining, feature detection,

 16

bioinformatics, and modeling and simulation. As a result, specialization has usually been limited to a small number
of high-volume consumer applications.

Our goal is the development of the technologies necessary to deliver "turn-key" specialized computing systems
quickly and economically. Specifically, we want to design specialized architectures that deliver up to 10,000x
speed-up for particular applications for less than $10,000. The manufacturing costs should be no greater than they
are for conventional commodity computing systems. Further, the methodology should scale across form factors and
enable specialized systems ranging from handhelds to datacenters. From the user perspective, the specialized
system should integrate seamlessly into existing software systems so that programmers can leverage the specialized
hardware with minimal engineering overhead. The ultimate goal is a fully automated generation of application-
specific hardware for each program.

4.3.2 Research Thrust Description
To attain our goals, we propose to (1) leverage existing reconfigurable hardware and programmable accelerators, (2)
collaborate with Electronic Design Automation (EDA) researchers, (3) identify of the correct software abstractions,
and (4) focus on important real-world applications.

4.3.2.1 Leverage Existing Reconfigurable Hardware and Programmable
Accelerators

To date, architects have devised accelerators for many domains ranging from signal processing to biological
simulation to computer graphics to climate modeling. These accelerators are generally purpose-built and require
extensive, custom software support, but they also embody solutions to many problems that turn-key accelerators
must face. These include, for instance, approaches to optimizing particular memory access patterns and methods for
exploiting parallelism at fine and coarse granularities. In addition, many architectures include reconfigurable
components that can provide large performance gains across many applications --- although smaller than full-custom
accelerators.

Turn-key accelerators must integrate and extend these approaches where appropriate. Providing a widely applicable
turn-key accelerator synthesis capability will also require, however, a careful rethinking of the interfaces that
existing accelerators provide. This is so that they can work “fist in glove” with the CAD tools, software, and other
components required to seamlessly build and integrate turn-key accelerators into existing computer systems.

4.3.2.2 Collaboration with Electronic Design Automation (EDA) Researchers
Many toolchains already exist for automatically generating hardware description language (HDL) implementations
of a given function or code segment. However, significant challenges remain if we are to achieve our goal of turn-
key custom processing.

First, most existing toolchains provide an architectural “schema” for the accelerators they generate. If the
computation at hand is not a good fit for that schema, the resulting architecture may be suboptimal. This problem is
especially difficult if the targeted computation is not a good candidate for conventional accelerator architectures.

Second, automatically integrating the hardware implementation into an existing system can be challenging,
especially if the accelerator requires low-latency communication with other system components (e.g., the processor
or shared memory). In this case, it is difficult to ensure that the design “meets timing” without introducing
excessive delays.

Finally, to achieve turn-key customization, designs will either have to be “correct by construction,” or the toolchain
will have to thorough test benchmarks automatically (which, themselves must be correct).

Meeting these goals will require new tools and new approaches to well-known and long-standing problems in EDA.
Solving these problems in the context of turn-key optimization will require an orchestrated effort between architects
and tool builders. It may be necessary to craft architectures that are amenable to practical EDA techniques.

 17

4.3.2.3 Identification of the Correct Software Abstractions
For turn-key optimizers to be useful and provide maximum performance, they must satisfy two conflicting needs.
First, it must be easy for programmers to use and to integrate into existing systems. Since turn-key optimizers, by
definition, target existing code or an existing problem, system designers are tightly constrained in the software-level
interface the accelerator must ultimately present. Second, maximizing flexibility in accelerator design (and
therefore performance gains), will require decoupling the architecture’s interface from the software-level interface.

The key to resolving these conflicting requirements lies in the compiler/runtime and the specification of both the
baseline, unoptimized system and the optimizer itself. The compiler or runtime must be able to bridge the gap
between the interface that the software requires and the interface that an efficient accelerator can present. For
instance, a compiler might perform function inlining or outlining, identify parallelism, eliminate data sharing
through coherent memory, or refactor key loops.

Furthermore, the compiler must be robust for any turn-key accelerator that the tool chain produces. This will require
both remarkable flexibility and reliability. Recent work on provably correct optimizations may be of use in
achieving this goal. As with the EDA challenges that turn-key accelerators present, close collaboration between
compiler designers and architects will aid in providing tractable solutions.

4.3.2.4 Focus on Important RealWorld Applications
While there are many basic research questions that are motivated by specialization, it is vital that the research be
pursued in the context of strategically important real-world applications. Refining the design of turn-key
accelerators will take some time, and will require close attention to the many concerns that arise in production
computer systems. Focusing on the needs of these “real world” users will provide a positive feedback loop.

As researchers deploy a sequence of prototype turn-key accelerators across a range of domains, they will necessarily
refine the architecture, tool chain, and software interface that the accelerators provide. The ultimate goal of the turn-
key research program is to amortize the development cost and effort required to build these initial accelerator across
a large number of future accelerators across a wide range of domains. If the initial accelerator targets are not
representative of real-world applications, then this will not be possible.

4.3.3 Why is this Research Transformative?
Hardware specialization would allow orders of magnitude improvements in performance, performance per Watt, and
performance per dollar. This has been a goal for decades. What has changed in recent years in the advent of multi-
core and heterogeneous systems, including FPGAs with sufficient resources to implement a multitude of complex
functions. Another important change in the landscape is the increasing severity of the power and memory walls,
coupled with the likely end of Moore's Law. Straightforward replication of conventional general-purpose cores
simply will not be sustainable. Specialization is necessary in any case to cope with these limitations, and fits
naturally in the emerging ecosystem of solutions to these limits.

Reducing the design costs associated with specialization, and eventually achieving turn-key specialization, will
bring the order-of-magnitude benefits of specialization to increasing numbers of applications. Automating
specialization also allows it to be employed before software becomes stable, allowing the hardware to evolve with
each stage of the software's development.

4.3.4 What Are the Deliverables
In the first three years, we will perform a full analysis of several strategically-important applications or application
domains running on general-purpose machines, identifying their bottlenecks and major inefficiency sources. We will
also manually design specialized systems to run each of these applications more efficiently. Within five years, we
will propose an approach to build a custom supercomputer-in-a-rack. Within seven years, we will perform full
analysis of additional applications or application domains, and complete the design and implementation of one or

 18

more applications targetting the custom supercomputer-in-a-rack. After that, we would like to build a prototype of a
multi-application customizable cloud supercomputer.

4.3.5 Research Disciplines Involved
Building robust, easily-designed, specialized systems requires coordinated efforts across a wide range of disciplines.
The first discipline is applications. We need input from experts on the initial set of target applications. The second
discipline is software engineering. We need to define the crisp boundaries to cleanly separate the accelerated
portions of the code from unaccelerated portions. In addition, we must define the right software-level interfaces for
communicating with the specialized hardware. The third discipline is system architecture. We need advances in
hardware interfaces to integrate specialized processors into the larger system in an automated way. We need to
specify a set of common interfaces that building block components can implement to facilitate easy integration. The
fourth discipline is processor architecture. The architecture and microarchitecture of the specialized processors will
influence their ultimate performance and efficiency. Ideally, a set commonly applicable design practices and
primitives will emerge. The final discipline is automated design and verification. We must develop and refine tool
flows that make it easy to construct specialized circuits for particular applications. Full automation is desirable, but
there is a trade-off between the level of automation and the breadth of applicability.

4.3.6 Risk to Industry and Society if Not Pursued
The country (or countries) that masters designing high-efficiency, heterogeneous platforms in a fully automated
fashion with rapid problem-to-system turn-around time has a high potential of being the new world leader in this
area (the tools and hardware will drive high value exports). This country also has a high potential of being a leader
in cloud computing services as well, as it would be able to provide higher efficiency at a significantly lower cost.

In addition, the past scaling of processor performance has driven advances in an enormous range of disciplines both
within computing and in society at large. Although performance will continue to improve, continued scaling of
performance at historic rates is in grave doubt as physical limitations become more severe. As a result, although
scientists, engineers, and corporations will continue to find and develop new ideas using computer systems, they will
be less able to quickly reduce those ideas to practice and less able to solve bigger and larger problems. The long
term consequence will be a slowing of innovation and growth in computational sciences and compute-intensive
business sectors.

4.3.7 Benefits of Success to Industry and Society
The benefits to society will be widespread and direct. Turn-key development and deployment of specialized, high-
performance processors will enable corporations, researchers, and governments to quickly and affordably focus
enormous computing power on critical problems in short order. Example applications include: climate
modeling, drug discovery, advanced (real-time) image recognition, simulation of biological processes, simulation of
a new products/prototypes, analyzing large social (and other) networks, and implementing/accelerating new business
intelligence algorithms. The benefits to the computing industry in particular will be even larger.

4.3.8 Why not Let industry Do It?
The proposed vision is too high-risk for businesses to attempt. It requires coordinated efforts across many different
disciplines and aims to develop a capability that might be deployed in 10-15 years. This is far beyond the planning
horizon for most companies.

4.3.9 Likelihood of Success
The proposed vision is very ambitious and will require basic advances across many areas in order to be successful.
As a result, the vision will drive valuable research even if the entire vision is not fully realized. Given the extremely
aggressive goals set by the vision, complete success is by no means assured. However, even if we missed our target
by an order of magnitude in cost, time-to-design, and performance, the project would still provide great benefits.

 19

4.4 Domain Specific Languages

4.4.1 Problem Statement and Goals
The new era of explicit and heterogeneous parallelism presents a tremendous challenge to software development.
Current parallel programming models are hardware-centric and require a different programming model for each
flavor of parallel architecture (e.g., threads, locks, vectors, streaming data parallel, message passing, or specialized
functions). This current state of affairs makes programming difficult and non-portable from one parallel architecture
to the next. For explicit parallelism to be successful, we need programming models that allow the application
developer to use a high level of abstraction, while still achieving very high parallel performance. To attain this goal,
we examine Domain Specific Languages (DSLs) and the new parallel architectures that they will enable.

A DSL is a concise programming language with a syntax that is designed to naturally express the semantics of a
narrow problem domain. DSLs can be used to improve the productivity of application developers and the efficiency
and performance of the applications. This is because the DSL implementation can take advantage of high-level
domain-specific optimizations that are inaccessible to general-purpose compilers for general-purpose software
written at a lower level of abstraction. In particular, a high-level DSL compiler can exploit the semantics of the
domain to compile efficient code for a given type of parallel machine or even generate specialized hardware.
Example DSLs are languages (e.g., SQL, Matlab, Latex, Verilog, SPICE, make and sh) or libraries (e.g., OpenGL,
DirectX, and Grand Central Dispatch) designed to express a particular class of applications or application
components efficiently. In the context of parallel computing, a DSL provides a set of semantics that are expressive
and natural for developers of a class of applications, yet describe the computation at a sufficiently high enough level
that it is easy to exploit parallelism from the resulting code.

DSLs such as SQL, Matlab, make and OpenGL/DirectX are provably successful at enabling the exploitation of
parallelism. SQL is used for database processing. SQL queries describe how to interface to a database in a way
abstract enough to enable the optimization and parallelization of the query, and to substantially increase the
productivity of application writers. Matlab is used by scientists and engineers to perform mathematical
transformations involving matrices and linear algebra. It has matrix processing primitives that expose vast amounts
of data parallelism. This has enabled companies to provide automatic parallelization tools for Matlab codes. Make is
a simple language to describe process flows and is typically used in building systems. Pmake is a way of extracting
very coarse grain parallelism from the dependencies in a make file. Finally, OpenGL and DirectX have traditionally
been used for graphics rendering, although they are now growing into a general-purpose streaming computation
language. Initially, both of these libraries provided only limited, but standardized, access to hardware for graphics
rendering. Currently, many scientific problems are recast into the specialized type of data parallelism available in
these DSLs and run on Graphics Processing Units (GPUs).

In this research thrust, our goal is to attain 5-10 commercially available DSLs in 10-15 years. These DSLs should
have widespread commercial availability, and be used in industrial, academic and scientific settings. They should be
“as successful as SQL” for the particular application domain covered. Another goal is the creation of DSL
infrastructure that makes new DSLs easier to develop, and enables an optimization framework with compilation and
mapping techniques to be used by multiple DSLs.

4.4.2 Research Thrust Description
DSL research requires an interdisciplinary team of experts that includes application domain experts, language
designers, compiler researchers, and architects. We focus on the components of this research where computer
architects are likely to be involved. We have identified the following research vectors: (1) identification of DSL
application domains, (2) a DSL infrastructure for creating DSLs, (3) generation of prototype DSLs, and (4) push-
button DSL acceleration. We now detail them.

4.4.2.1 Identification of DSL Application Domains
While existing successful DSLs cover databases, matrix-based programming, and graphics programming (extending
into stream-based processing), there remains a wealth of significant application domains without DSLs to enable the

 20

exploitation of parallelism. Among these domains are machine learning, speech recognition, graph-based
computations and image and media processing.

We should perform research to characterize these domains and identify the characteristics of the DLSs that will be
successful there. We can learn the elements of a successful DSL by examining past successes. For example, SQL is
high-level enough to permit database optimization irrespective of the application supported. Implementers can write
solutions that scale from the simplistic (e.g., access to a text file) to the most sophisticated (e.g., systems for airline
reservations or stock markets). Moreover, SQL has enabled new storage and I/O architectures, which is largely
where the bottlenecks lay for this domain.

Matlab is easy to use for matrix-based programming. It is forgiving of bad software engineering practices, enables
incremental development, and provides a rich set of primitives well suited for its users.

Finally, OpenGL/DirectX has provided a standard method of accessing a 3D graphics accelerator. Critical to the
success of this DSL has been the co-evolution of graphics architectures, which provide orders of magnitude
performance gains compared to writing rendering algorithms in other languages that utilize the main CPU
only. Hardware and DSL are continuing to evolve to expand support for these application classes.

From this list of successful DSLs, we can distill a few common features. One is that a successful DSL supports the
programmer community it targets; it is much easier to use the DSL than not for that application domain. Another is
that a DSL enables scalable parallelism if its semantics are crafted so that the parallelism is hidden from the
developer. Finally, a DSL is particularly effective if it co-evolves with accelerator hardware that solves an important
need.

4.4.2.2 A DSL Infrastructure for Creating DSLs
The history of successful DSLs has shown that success did not come with the first version of the DSL.
Consequently, progress will be stymied if every version and every new DSL requires a significant investment of
infrastructure resources. In addition, the actual semantics of the resulting DSLs are typically prone to subtle errors.
Therefore, we should create a single meta-DSL embedding language with well defined semantics, which enables
experimentation in both application creation and hardware/software architecture design and optimization. Such a
DSL requires a supporting infrastructure, including compiler, runtime, and front-end development tools.

We hope that after some years of research and development, there can be widely-available open source DSL
infrastructure and associated tools. This transfer of technology from research to product will foster further
widespread DSL use. We would expect one or two research efforts to develop DSL infrastructure consisting of DSL
embedding languages rooted in general-purpose languages (e.g., C++ or Scala), and an associated optimization
framework for exploiting domain knowledge to generate optimized mappings to existing or new architectures.
Other researchers involved in DSL development and architecture research would make use of these DSL
infrastructures to create new DSLs and new architectures based on these DSLs.

4.4.2.3 Generation of Prototype DSLs
We should create 3-5 separate efforts to prototype new DSLs. These efforts should be carried out in parallel by
different research groups. They should lead to the creation of a handful of new DSLs within five years. These DSLs
will be a mixture of new application domains and rethinking of earlier work and domains. Each group should form
an interdisciplinary team of experts. The result should be the DSL itself and a collection of candidate architectures
that support them. Some of these architectures will be traditional multi-cores with small changes, while others will
be GPUs, or hybrids of what we build today, or completely new architectures. Such DSLs and hardware
architectures need to prove themselves useful by providing 10–100x efficiency gains. As with past DSL languages,
fewer architectures than DSLs will be successful. A small number of architecture designs with sufficient generality,
when implemented together with DSLs, may prove to be successful.

4.4.2.4 PushButton DSL Acceleration
After sufficient expertise is available on a DSL, its use, and its architecture acceleration, an intriguing research
direction is to automatically create and specialize candidate architectures. This research involves collecting several

 21

sample applications, understanding what trade-offs are available in the architecture, and creating a hardware-
software framework for automatic generation of a customized architecture. Automatic customization will enable
lower power and less expensive deployment of hardware resources.

4.4.3 Why is this Research Transformative
Despite the availability of multi-core CPUs for several years, and parallel machines for several decades, commodity
software makes tepid use of the available parallel resources. The creation of several new DSLs that unlock the
ability to write software for a wide collection of domains has the potential to transform the industry and scientific
landscapes. A properly designed DSL enables a relatively unsophisticated software engineer to write complex
applications where parallelism is much more easily exploited than general-purpose languages.

4.4.4 What Are the Deliverables
The deliverables include both research goals, achievable through widespread community effort, and commercial
goals, achieved through success in the research domain and technology transfer. Specifically, during years 1-5, our
deliverables are 3-5 prototype DSL projects and 1-3 DSL infrastructure projects for creating DSLs. During years 6-
10, our deliverables are 10-15 prototype DSLs, push-button DSL acceleration, and commercially-available or
widely-distributed open-source DSL-creation tools. Finally, during years 11-15, the deliverables are 5-10
commercially-available DSL languages.

4.4.5 Research Disciplines Involved
Research into DSLs requires a vertically-integrated approach. Only through a close collaboration between
application domain experts, language and systems researchers, and architects will useful DSLs evolve. Architects
will play a key role in DSL research because they have traditionally focused on the design of the hardware-software
interface.

4.4.6 Risk to Industry and Society If Not Pursued
Commodity applications have had only limited success in exploiting the threads and locks programming model.
DSLs offer a promising path forward for applications to exploit parallel resources. The risks to industry and society
if research into DSLs is not carried out are the continued inability of mainstream software to easily exploit
mainstream hardware.

4.4.7 Benefits of Success to Industry and Society
The success of this research program will have significant impact in both industrial and scientific areas. On the
scientific side, the successful history of DSLs such as Matlab and OpenGL (with accompanying high-performance
GPUs) suggests that newly crafted DSLs will unlock new scientific discoveries as programmers are able to explore
ever more complex problems. On the industrial side, having an established set of DSLs and hardware accelerators
for popular application areas will enable new products with scalable performance and improved capabilities. This
will also foster more parallel hardware innovation because it will be possible to use the DSL infrastructure to create
optimized mappings from the existing DSL software to new parallel hardware.

4.4.8 Why Not Let Industry Do It
 Academic research into DSLs has an important role that is both distinct and in some respects advantaged compared
to industry. Academics are in a unique position to collaborate with application scientists to learn about their
application domains and work in tight collaboration with them on DSL creation. Industry is generally more
successful at creating DSLs for industrial purposes (e.g., game development or database interfacing). Moreover, as
with all academic research efforts, the horizon can be longer. There is no need for hardware to be ready for sale in
the first few years of language development, where new ideas are being explored with software developers. In other
words, DSL research requires a longer horizon for development than industry can typically take.

 22

4.4.9 Likelihood of Success
The history of successful DSLs suggests that a concerted effort to create new DSLs for as-yet unsupported
application domains may be successful. However, the fact that these DSLs do not yet exist or, more worrisome, that
some exist but do not expose scalable performance (e.g., php/ruby for web processing, perl for text file processing,
or python for scripting automation tasks) provides a note of caution.

5 Educational Perspective
The professionals who will develop the future parallel hardware and software systems need to be properly trained.
This requires that our universities offer a strong educational program in parallel systems. In this section, we outline
our vision in this area, the challenges that we face to augment the undergraduate curriculum with parallelism, the
approaches we might take, and our recommendations.

5.1 Vision
It has been true for a long time that computer hardware is an example of parallel implementation, although educators
have not always emphasized this. On the other hand, most of the software written has been sequential software.
Moving forward, we expect that much of the programming in the future will involve some form of parallel
programming. Writing such software will require parallel thinking. Consequently, to prepare graduates of computer
science and engineering, we need to ensure that all of the core concepts of parallel thinking are included in the
required curriculum paths, and that programming assignments include substantial parallel programming.

To accomplish this, we need to integrate parallelism concepts across the entire curriculum, starting in the freshman
year. Further, it would be helpful to encourage high schools to teach some very basic concepts of parallelism in
their computer science curricula, so as students are aware of parallelism before reaching the freshman year.

5.2 The Challenges to Making this Happen
There are several obstacles to integrating parallelism into the preparation of computing professionals. The first one
is that there is no universal agreement among educators as to what parallel concepts and techniques should be taught
and when they should be taught. For example, should we start in the freshman course? If so, how do we need to
change the freshman course to enable the concepts taught to be meaningful?

A second obstacle is that the pace of curriculum change in the university is very slow. Part of this is due to the need
to build consensus. Part is unfortunately due to the inherent human resistance to change. Some faculty do not
understand the value of teaching parallel thinking. Others have no experience doing so.

Finally, a third obstacle is that there is a lack of tools available to teach parallel programming. For example, tools
for software debugging are still very primitive.

5.3 Approaches
There are opportunities to teach parallelism throughout the curriculum, from the introduction of fundamentals in
early courses such as threads, locks, communication, and streaming, to the exploitation of parallelism in later
courses such as data structures, algorithms, and theory.

With respect to fundamentals, core principles appear to be best explained within the context of a simple, low-level
model, where the student uses a simple ISA augmented with fork/join and synchronization via spin locks. At the
data structures level, one can easily introduce data structures that can handle parallel access. At the algorithm level,
one can emphasize the inherent parallelism of some algorithms and the sequentiality of others. In theory courses,
one can introduce models such as PRAM, which can be used to show the intrinsic value of parallel algorithms.

Educators should learn from approaches to add parallelism to the undergraduate curriculum that have already been
tried successfully, or that can be tried with little danger of being disruptive to the entire curriculum. For example,
computer architecture and operating systems are courses that already have parallelism built-in, wherein it may

 23

simply be a matter of providing additional emphasis. In addition, a senior elective in parallel programming provides
an opportunity for students to embrace parallelism in large software systems --- and, since the course comes late in
the curriculum, it does not cause ripples in the pre-requisite structure. Finally, a parallelism course for non-majors
with an emphasis on applications is a popular option, and has the potential to impact a large group of students.

5.4 Recommendations
We suggest several steps to making parallelism an integral part of the undergraduate curriculum.

First, we suggest making low-resistance changes to the curriculum to embed parallel thinking. These changes
include (1) augmenting existing courses with simple additions where they make sense, (2) working with theory
faculty so that they teach parallel algorithms, (3) adding senior electives as a function of individual faculty interests,
and (4) teaching a non-majors course for those with applications amenable to parallel implementation.

Second, we should survey the university landscape for approaches that have been used to teach parallelism, looking
for what has worked, and subsequently aggregating that information into an understanding of what is done now.

Finally, we should work with CRA, NSF, and other funding agencies to impart urgency in the need to teach parallel
practices throughout the curriculum. This includes getting endorsement on the value of including parallelism already
in the first courses.

6 Industry Collaboration
Traditionally, the work of academic computer architecture researchers has influenced the computer industry and
vice-versa. As we reach what has been called the “parallelism crisis”, many business models in industry are at risk.
Consequently, it is now especially critical to maintain a strong and productive relationship between industry and
academic computer architecture researchers. It is now a key time to maintain a broad discussion between industry
and academia on programming models, programming languages, programmer productivity, applications, and the
computer architectures to support them all. In this section, we provide some thoughts on how to make this
relationship more robust.

6.1 How Academics Can Contribute
Academics need to take a proactive approach and seek to influence industry in areas such as architecture, emerging
programming models, emerging languages, emerging applications, software productivity issues, and key data center
issues. There are several ways to accomplish this. One is to invite industry participants to panels, workshops, and
other discussion forums on parallel computing that academics organize. Another way is for academics to prepare
weak-long courses on parallel programming and computing for computer practitioners with little experience in
parallelism. These courses can be taught at an academic institution, at an industrial site, or remotely over the
internet. Finally, it is also possible to organize a few academics into a team that tours industrial sites, giving short
talks to educate computer professionals about upcoming architectural challenges or trends.

6.2 How Industry Can Contribute
Industry can provide key input to academics. First and foremost, it can provide direction and input into the critical
problems it faces in the areas mentioned; the academics can then orient their work appropriately. Industry can also
provide access to experimental data, traces, or large data centers. It can help open avenues for technology transfer,
by taking ideas and designs from academia. Finally, it can provide funding for academic research, given that many
companies’ futures ride heavily on solving the problem of parallelism. Such funding and interaction could be
modeled on the two Intel-Microsoft UPCRC centers, but it should include a much broader audience, with many
more universities.

One short-term step toward this broad discussion forum between industry and academia that we seek could be
industry tours. These would be a few key people from industry traveling together to several schools to discuss
important issues on parallelism and programming models. These visits could be instrumental to educating faculty

 24

about the urgent need to make progress in the area of parallel computing, and could have a catalyzing effect on the
revamping of the course curricula to include concepts on parallelism.

7 The Funding Landscape for Computer Architecture Research
As part of the ACAR workshop, we held a panel in which Program Directors from NSF and DARPA discussed
funding prospects and approaches with the workshop participants. The panel was asked for feedback on the
workshop and on the current and near-future funding landscape.

Both NSF and DARPA agreed that the research topics documented in this report were appropriate for funded
programs. However, there is a significantly different approach to programs between NSF and DARPA. NSF does
not often start new programs, but funds ongoing, dynamically changing research within its core programs. This
stems from NSF's charter to fund basic research rather than mission-oriented research. DARPA strategy, on the
other hand, is centered on new game-changing ideas through the institution of new programs.

Overall, there was a consensus that funding for computer architecture research should be organized along larger,
more ambitious projects that cover multiple layers of the computing stack. It should also involve a concerted,
complementary effort by several funding agencies, focusing on the research thrusts identified here.

7.1 National Science Foundation (NSF)
Current computer architecture research is primarily supported in two divisions within the CISE Directorate, namely
Computing and Communication Foundations (CCF) and Computer and Network Systems (CNS). CCF support for
computer architecture resides in two clusters, namely Software and Hardware Foundations (SHF), which supports
VLSI, design automation, hardware architectures, compilers, programming languages, software, HPC, and emerging
architectures, and Algorithm Foundations (AF), which supports aspects of algorithms research. CNS maintains two
core programs, namely the Computer Systems Research (CSR) and the Networking Technology and Systems
(NeTS) programs. The former supports computer architecture research. Funding for computer architecture research
increased over the last two years, primarily in the multi-core area and will continue at least at the current level with
possibly moderate growth.

NSF has crosscutting programs supporting collaboration among several directorates. Examples include the
Expeditions in Computing, Cyber-Enabled Discovery and Innovation, and the Cyber-Physical Systems programs.
NSF also supports special programs that have been initiated outside of core, such as the High-End Computing
University Research Activity supporting middleware research, Multi-core Chip Design and Architecture, as well as
the Engineering Centers and the NSF Supercomputing Centers.

Two themes that run through these programs are captured by the Science and Engineering beyond Moore's Law
(SEBML) and the Climate Research Initiative thrusts. SEMBL is an effort among four Directorates (CISE, Math and
Physical Sciences, Engineering, and the Office of Cyber-infrastructure) to coordinate investment in the following
areas: architectures, 3D and optical interconnects, reliability with unreliable components, power and energy
considerations, abstract models, programming languages and software environments, algorithms, multi-core, and
pervasive, distributed and mobile computing. SEBML supports research on multi-core as well as on non-silicon
substrates such as quantum, bio, and nano. SEBML is not run as a separate program; it is funded out of existing
areas. SEBML is already receiving significant funding increases.

Multi-core research is a well-recognized topic within the core of the CCF and CNS divisions, and is the subject of a
large fraction of the proposals entertained at present. Rather than creating a new program for multi-core
architectures, this research need is represented by the SEBML thrust.

The computer architecture research community can assist NSF by continuing to identify the key challenges in the
area. It should take the time to present a clearer picture of the landscape --- what approaches may work and what are
the hard challenges. One important point is that we should engage in research across the technology layers.
Computer architecture research cannot be isolated from the higher-level layers such as system software and
applications.

 25

Moreover, while the computer architecture research community is very good at small research ideas and projects, it
needs to think of ambitious research problems and strive for large projects --- Research Expedition-scale problems.
Moreover, it needs to reach out to other disciplines for collaborative research.

At all times, the research community should identify fundamental research themes critical to parallel computer
architecture and tie them to questions of national importance. In light of the interest in supporting cross-agency
collaborative programs, it could make sense to explore the proposal of large inter-agency programs in this area.

7.2 Defense Advanced Research Projects Administration (DARPA)
DARPA is currently organized into seven offices. The most relevant ones for computer architecture research are the
Information Processing Techniques Office (IPTO), which supports research, development, and prototyping that
spans the information lifecycle of sense, process, understand, and apply, and the Transformational Convergence
Technology Office (TCTO), which advances new crosscutting capabilities derived from a broad range of emerging
technological and social trends, particularly in areas related to computing and computing-reliant subareas of the life
sciences, social sciences, manufacturing, and commerce.

DARPA is structured around proposed projects supported by program managers. To work with DARPA it is
important to become familiar with the challenges and opportunities of National Security. The way to obtain funding
from DARPA involves putting novel ideas in a white paper and approach a program manager. The ideas need to be
bold and risky. An unofficial set of questions that one should ask oneself as guidance for the items to be addressed
in a proposal are known as Heilmeier's Catechism. They include: (1) What are you trying to do? (2) How is it done
today? (3) What is new in your approach and why do you think it will be successful? (4) If you're successful, what
difference will it make? (5) What are the risks and the payoffs? (6) How much will it cost? (7) How long will it
take? and (8) What are the checks for determining success?

DARPA funding opportunities appear in Requests for Proposals (RFPs) and Broad Agency Announcement (BAAs)
solicitations at its website.

8 Next Steps
Workshop participants identified four major research areas in parallel computer architecture that need investment,
namely, (1) data centers and large-scale systems, (2) architectures to enhance programmability, (3) hardware-
software co-design and asymmetry, and (4) domain specific languages. We recommend that each of these areas be
the nucleus of research programs, or at least be consciously incorporated as elements of mission-oriented programs.
The next steps involve working with our professional colleagues to publicize this report among funding agencies,
industry, academic circles, and the broad computer science and engineering community.

We hope to reignite a sense of excitement for the entire computer architecture research community. We also hope to
help blossom the abundant talent that exists among the many young faculty members who are now actively doing
research in computer architecture --- many of them are overflowing with new ideas and plans. Finally, we hope to
help the funding agencies steer the funding for computer architecture research to the most promising areas.

9 Acknowledgments
The organizers thank the CRA and the CCC for providing advice, direction and funding to make this workshop and
report possible. In particular, we thank Bill Feiereisen, Andrew Bernat, and Erwin Gianchandani. Thanks also goes
to the Steering Committee of this workshop, all of the workshop participants, and all of the researchers that sent in a
position paper.

 26

10 Appendix A: Call for Position Papers

Call for Position Papers
Advancing Computer Architecture Research
Computing Community Consortium (CCC)

http://www.cra.org/ccc/acar.php

Overview
Discontinuity-inducing trends such as the arrival of multi/many-cores, the reduced reliability of semiconductors, and
the ever-presence of power constraints, are transforming the field of computer architecture. In particular, the
ubiquity of multi-cores and the fact that much of the IT industry is relying on main-streaming parallel processing for
survival is a truly seismic event. Momentous changes are about to happen in all domains, including portable clients,
home and business computing, and datacenter/petascale computing. Multi/many-cores will have to evolve to enable
and support high-productivity parallel software development and execution. At the same time, there remains a huge
gap between the theoretical limits of instruction-level parallelism (ILP) and what processors actually attain. One has
to wonder about the sequential execution model, is this really as good as it gets? While it may appear that way,
novel robust techniques that effectively push ILP further may yet be invented. In this environment, we ask
ourselves:

-What will be the computing platforms in 2020-2025?
-What are the major research challenges that must be overcome to create these platforms?
-What will be the impacts to and from the broader society at large?

To answer these questions, it is appropriate to organize a sequence of workshops that, building on the 2005 CRA
workshop on Revitalizing Computer Architecture Research, focus on what role computer architecture research plays
going forward. The goals of these workshops are:

- Clearly articulate an agenda and roadmap for computer architecture research. Such an agenda must be broadly
endorsed by the research and industrial communities as well as be an effective vehicle for communicating to
technical and non-technical national leaders.
- Create excitement and community building for computer architecture research and form lasting research
partnerships between multiple computer architecture researchers.
- Unlock the potential of the many junior researchers in our community and ensure the continuous leadership of our
nation in this area.
- Suggest how to structure funding and research programs in a way that is commensurate with computer
architecture's central role in computer science, the IT industry, and the US economy.

Failure is not an Option: Popular Parallel Programming
This Call for Position Papers is for the first of two workshops and focuses on Popular Parallel Programming; the
second workshop will focus on Extending the Current Sequential Programming Model. For this first workshop,
members of the computer architecture community are invited to submit a 1-page position paper outlining their
thoughts on the following Questions:

- How can computer architecture help enable ubiquitous parallel software development?
- How does the architecture most-effectively interact with the different layers of the software stack in parallel
systems?
- What are the key parallel programming models requiring support; how to support multimodal parallelism?
- What is the role of re-configurability and heterogeneity in parallel systems: GPUs and other special-purpose
parallel systems versus general-purpose parallel systems?
- How to effectively support continuous run-time optimization in parallel systems?
- What is the proper role of academic and state-sponsored research in parallel systems?
- How and whether to support parallel system building and prototyping efforts?

Potential contributors are encouraged to be brief, and keep the following in mind:

 27

- The position paper should not be about what you are working on currently; it should be about a vision for parallel
computing platforms available 10-15 years from now.
- Focus the paper on one of the following three areas: (1) Portable clients, (2) Home and business computing, and
(3) Datacenter and peta-scale. Do not try and cover all three in one brief position statement.
- Keep the challenges of parallel computing central.
- The position paper should include: (1) Name, position and organization; (2) Area of focus among the three, and (3)
Answer to the workshop Questions.
- The steering committee will select the workshop invitees based on the responses. The committee is looking for a
wide range of insightful views.

Submit a 1-page PDF file to acar@cs.uiuc.edu by 6pm CST, Monday November 30, 2009.

Workshop Format, Dates and Location
The workshop will focus on the topic of Popular Parallel Programming, allowing the participants ample time for
discussion. Attendees will be both academic researchers and representatives of industry and funding agencies. The
workshop will be February 22-23, 2010 in San Diego, CA.

Organizing Committee
Organizers:
Josep Torrellas (Univ. of Illinois) and Mark Oskin (Univ. of Washingon).
Steering Committee:
Chita Das (NSF), William Harrod (DARPA), Mark Hill (Univ. of Wisconsin), James Larus (Microsoft), Margaret
Martonosi (Princeton), Jose Moreira (IBM), Kunle Olukotun (Stanford), Mark Oskin (Univ. of Washington) and
Josep Torrellas (Univ. of Illinois).

 28

11 Appendix B: Workshop Attendees
Almadena Chtchelkanova, NSF
Anand Sivasubramaniam, Pennsylvania State University
Bill Feiereisen, CRA
Chita Das, Pennsylvania State University and NSF
Christos Kozyrakis, Stanford University
Dean Tullsen, University of California, San Diego
George Almasi, IBM Research
James Larus, Microsoft Research
Jon Hiller, ST Associates
Josep Torrellas, University of Illinois
Karin Strauss, Microsoft Research
Kevin Skadron, University of Virginia
Krishna Kant, NSF
Kunle Olukotun, Stanford University
Luis Ceze, University of Washington
Mark Hill, University of Wisconsin
Mark Oskin, University of Washington
Onur Mutlu, Carnegie Mellon University
Richard Murphy, Sandia National Laboratory
Sampath Kannan, NSF
Sarita Adve, University of Illinois
Satish Narayanasamy, University of Michigan
Steven Swanson, University of California, San Diego
William Harrod, DARPA
Yale Patt, University of Texas

 29

12 Appendix C: Workshop Schedule

Schedule of the ACAR Workshop

Sunday, February 21st

6:00pm : Dinner

• Welcome, goals and charter.
• Keynote #1: George Almasi (IBM Research): “What were they thinking? - a system programmer's

approach to bridging the gap between software and hardware “

Monday, February 22nd

8:30am : Introduction

9:00-9:45am : Keynote #2: Jim Larus (Microsoft Research): “Should We Fear Concurrency?”

10:00am-noon : Attendees introduce their position papers with presentations (7 min each)

12:00-12:30pm : Lunch

12:30-2:30pm : Breakout in groups to address the key questions

• General questions: (2-3 slides)
o What are the computer architecture (CA) challenges to be solved by 2020-25 to enable ubiquitous

parallel software systems?
 What do the platforms look like?
 What do the programming models look like?
 What are the big questions that must be addressed?

o What role do CA academics have in enabling ubiquitous parallel software systems?
 On what horizon do we research?
 What methodologies?
 How do we make our output (ideas, students) relevant?
 With what resources? If public funding, what is the case-for?

• Questions about the particular area assigned: (4 slides)
o What is the detailed research program and roadmap?
o What will the deliverables be at the program level?
o Is the assigned area one of the 4-6 Recommended Research Thrusts by itself / should we combine

/ not discuss it?
• Optional: Are there other areas we should be focusing on (1-2 slides)?

3:00-4:30pm : Plenary with one presentation per group

4:30-5:45pm : Groups reconvene. Possible group reassignment

• Rework based on feedback
• Expand and structure the material for the final report

6:15pm : Working dinner

 30

• Panel: Funding agency perspectives for parallel CA research in the next 10-15 years
• Panelists: Sampath Kannan, NSF (Chair); Almadena Chtchelkanova, NSF; Bill Feiereisen, CRA; Chita

Das, Penn State University and NSF; Krishna Kant, NSF; William Harrod, DARPA

Tuesday, February 23rd

8:30am : Reconvene, converge on the proposed Research Thrusts

8:45-10:00am : Breakout in groups.

In addition to the several Research Thrusts groups, add three more groups:

• Educational Perspective
• Industry Collaboration
• Funding Collaborators (Bill Feiereisen, lead)

10:15am-12:15pm : Plenary:

• Each group presents
• Group discussion and feedback

12:15-1:00pm : Lunch

1:00-3:30pm : Breakout

• Each group finishes up the slides and the chapter of the report

3:45-4:45pm : Plenary: Critique and assembly

4:45-5:00pm : Discussion and social (Beer and wine)

• Feedback and next steps

13 Appendix D: Slides from the Working Groups
These are attached in a separate document.

