Computing & Sustainable Energy

Randal E. Bryant Carnegie Mellon University

http://www.cs.cmu.edu/~bryant

Proposed Coverage

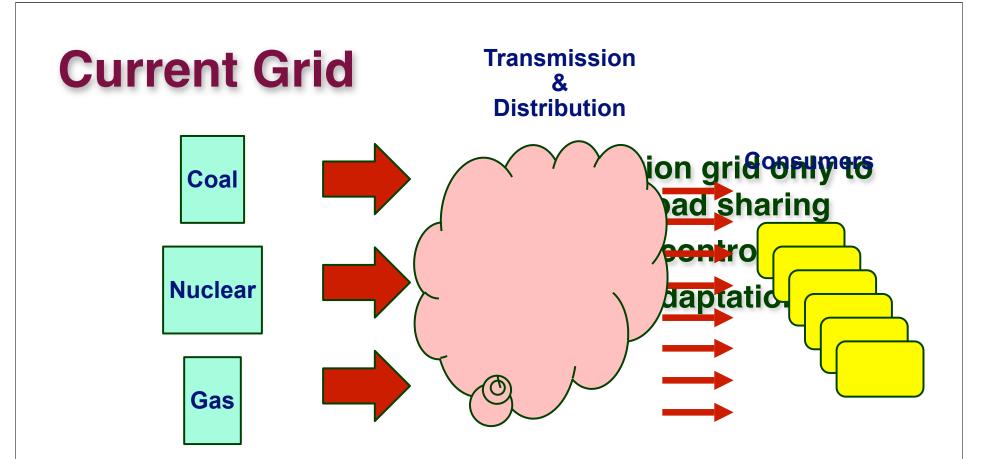
How can CS research support drive for sustainable energy?

Topics

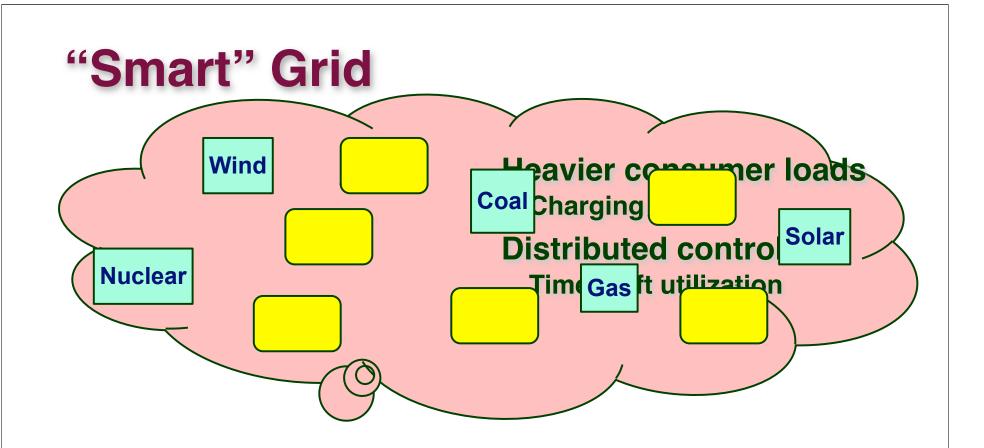
Generation

- Wind, solar, ...
- Transmission & Storage
 - Making the grid more effective
- Consumption
 - Homes & businesses
 - Transportation

Not Included


- More general issues of environment & sustainability
- Making computers & data centers more energy efficient

US Energy Basics: Generation


Data from 2007, extracted from report NSB-09-55

US Energy Basics: Consumption

Data from 2007, extracted from report NSB-09-55

- Large, monolithic sources
- Increase / decrease output at will

Small to large sources

Including from "consumer"

Non-steady sources

• wind, sunlight

Changing Conditions

Generation / Transmission

- Range of sources
- Generation not always when needed
 - Calm weather, night time
- Generation not always where needed
 - High plains, offshore, deserts

Consumption

Higher loads

Charging electric car = 1 – 2 X household load

Willingness to time shift load

Willingness to make cost / consumption tradeoffs

Impediments

Fragmentation

- Different industries for generation, distribution, equipment, appliances, ...
- Many rules, regulations, laws; controlled by many entities

Costs

- Large scale, complex system
- Long-term payoffs
- Lack of incentive for regulated monopolies
 - Payed based on output generation
 - Guaranteed profit

Reimagining the Grid

Berkeley LoCal Project

- (1) pervasive information about energy availability and use,
- (2) interactive load/supply negotiation protocols,
- (3) controllable loads and sources, and
- (4) logically packetized energy, buffered and forwarded over a physical energy network.

Lots of focus on data center power management

Technical Challenges

Energy Storage

- Batteries, compressed air, raised water tanks
- ~50% loss to store & retrieve
- Current grid tries to continually match supply to load

An Internet-Style Grid?

- Much harder to transmit or store joules than watts
- No Moore's Law

Tracking Energy Consumption

Lester Lavé (CMU public policy) Analogy

Go to supermarket. There are no prices on any products. You take what you think you need & can afford. You get sent a bill one month later.

Measuring Consumption

- Appliances that report their energy consumption
 - Via wireless connection or over power lines
- Machine learning to recognize power signatures
 - Individual appliances; entire rooms

Issues

- Cost
- Privacy
- Ease of deployment

Household Consumption Control

PG&E "Smart" Meter

- Monthly, hourly, daily usage
- Notify you of up to 15 "smart days" per year
 - Rates set higher than normal from 2pm to 7pm
 - Up to you to decide whether / how to conserve

GE "Smart Appliances"

- Receive signal from power company when peak pricing in effect
- Appliance can be programmed to reduce load then

Problems

- People don't want to yield control
- People worry about their privacy
- It's not flexible/scalable

Enlightened Household Consumption

Your Home Knows You

- Who is there; what you are doing
- Your preferences and habits

Power Company & House Negotiate

- Electricity price changes based on load conditions
- Company provides futures market
 - When should it charge the car or wash the dishes
- House makes cost / convenience / comfort trade-offs
- Also detects and diagnoses anomalies

What About Privacy?

- House serves as consumption firewall
- Could add obfuscation, but at a price

Electric Vehicles

Current

- Try to duplicate performance of gasoline car
 - 200+ mile range
- Requires lots of expensive batteries
 - Frequent replacement

Alternative

- Illah Nourbakhsh, CMU, Charge Car Project
- 71% of commutes are < 24 km.</p>
 - Build lower cost commuter cars with less range
- Batteries wear out with charge/discharge cycle
 - Add supercapacitor as energy cache
- Learn driving patterns
 - Where are hills, stoplights, slow vs. fast travel

Tapping into the ARPA-E?

2009: Open Solicitation \$151M

- 3700 concept papers
- 334 full proposals
- 37 funded projects

Funded Projects

- Solar, wind, & biomass-based energy generation
- Batteries, capacitors
- Energy conversion, waste heat capture
- Gas-powered engines, fuel cells
- Carbon capture
- Low-cost LED lighting
- Energy efficient desalination
- Sensor-rich buildings (Stanford, \$5M)

Tapping into the ARPA-E?

Recent Solicitatiions

2009 (\$100M)

- Generating fuel from CO₂ with microorganisms
- Carbon capture
- Batteries

2010 (\$100M)

- Cost-effective, grid-scale energy storage
- Materials for magnetics, switches, charge storage
 - Apply to power conversion
- Efficient cooling (air conditioning, refrigeration)

Promising CS Research Areas

Cyberphysical systems

- Sensors
- Self-monitoring, self-diagnosing systems

Machine Learning / Operations Research

- Optimizing placement / design of infrastructure
- Learning preferences & patterns
- Market-based pricing and allocation

Human-Computer Interaction

- Capturing user preferences
- Balancing information availability & privacy