

The Parallel Computing Challenge

Dave Patterson
UC Berkeley

March, 2008

A Parallel Revolution, Ready or Not

\square PC, Server: Power Wall + Memory Wall = Brick Wall
\Rightarrow End of way built microprocessors for last 40 years
\Rightarrow New Moore's Law is 2 X processors ("cores") per chip every technology generation, but same clock rate
\square "This shift toward increasing parallelism is not a triumphant stride forward based on breakthroughs ...; instead, this ... is actually a retreat from even greater challenges that thwart efficient silicon implementation of traditional solutions."

The Parallel Computing Landscape: A Berkeley View, Dec 2006
\square Sea change for HW \& SW industries since changing the model of programming and debugging
\square New "Moore's Law" is 2X processors per chip every 2 years
\square Duo core, Quad core, ...

- Goal: Productive, Efficient, Correct Programming of $100+$ cores \& scale as double cores every 2 years (!)

P.S. Parallel Revolution Likely to Fail

- 100\% failure rate of Parallel Computer Companies from 1970s, 1980s, 1990s, ...
\square Convex, Encore, Inmos (Transputer), MasPar, NCUBE, Kendall Square Research, Sequent, (Silicon Graphics), Thinking Machines, ...
■ John Hennessy, President, Stanford University: "...when we start talking about parallelism and ease of use of truly parallel computers, we're talking about a problem that's as hard as any that computer science has faced. ... I would be panicked if I were in industry."
"A Conversation with Hennessy \& Patterson," ACM Queue Magazine, 4:10, 1/07.

Suppose software stop getting faster

- What if IT goes from a growth industry to a replacement industry?
\square If SW can't effectively use $32,64, \ldots$ cores per chip
\Rightarrow SW no faster on new computer
\Rightarrow Only buy if computer wears out
\square Impact on US economy
 if end of "Moore's Law"?
\square How much productivity tied to IT?
\square How much IT tied to faster computers?
- Opportunity to lose US lead in IT if others solve the problem
\square If someone in China invents a Mandarin-based programming language that solves the parallel computing problem, then I'll need to learn Mandarin

How to succeed at the hardest problem to face computer science?
\square Recruit the best minds to help
\square Academic \& industrial research
\square Led to 19 multibillion dollar IT industries
ם"Pain killers sell; vitamins don't"
\square Try to restart federal funding?
\square Joint with industry?

Reasons for Optimism towards Parallel Challenge this time
 - End of sequential microprocessor/faster clock rates

\square No looming sequential juggernaut to kill parallel revolution
\square SW \& HW industries fully committed to parallelism
\square End of La-Z-Boy Programming Era

- Open Source Software movement means that SW stack can evolve more quickly than in past
- Field Programmable Gate Arrays as hardware prototype to ramp up parallel research vs. building custom chips (RAMP)
- Moore's Law continues, so soon can put 1000s of simple cores on an economical chip
- Communication between cores within a chip at very low latency and very high bandwidth
\square Processor-to-Processor fast even if Memory slow
- All cores equal distance to shared main memory
\square Fewer data distribution challenges for software to get performance

