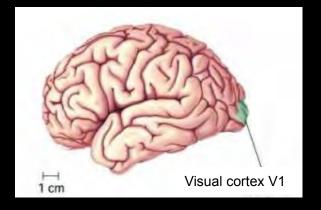
Neuroscienceinformed Artificial Intelligence Andrew Ng Artificial Intelligence


The brain's algorithm

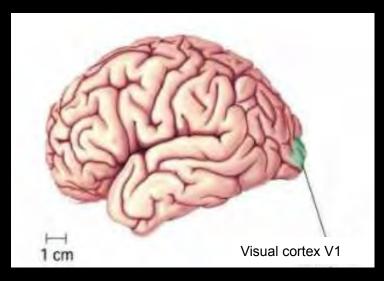
Some suggestion that the mammalian brain (neocortex) may use essentially *the same algorithm* to understand many different input modalities. (e.g., Fukushima, Hinton, Hawkins, etc.)

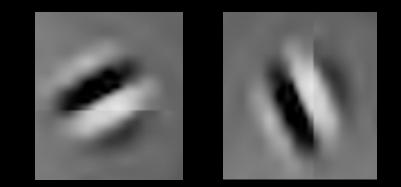
- Example: Ferret experiments, in which the "input" for vision was plugged into auditory part of brain, and the auditory cortex learns to "see." [Roe et al., 1992]
- Example: Sensory remapping in humans.
 - Visual cortex used by blind persons for touch.
 - Tapping out images on tongue, which is then used to "see."

Can we discover or approximate the brain's learning algorithm, and build a small piece of an "artificial human brain"?

Artificial Intelligence

Is it feasible?


Current work


Example: Visual cortical area V1

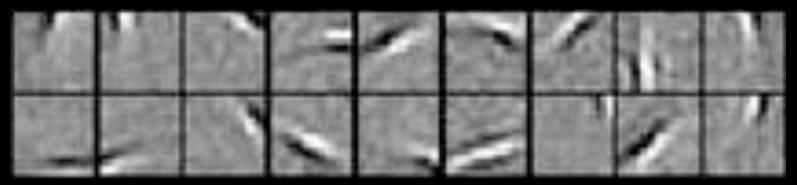
To what extent can learning algorithms today mimic computations in the brain?

V1 is the first stage of the visual cortex.

Known to act as "edge detectors."

V1: "Edge detectors."

Model of V1


Learning algorithm for V1.

Interpret as finding a "sparse code" of the input image. (Olshausen & Field, 1996) Example:

Decompose an input image x into a sum of simpler "basic images" ϕ_{I} .

Example of learned bases

Examples of basis patches $\phi_i 2 <^{n \text{ fn}}$ learned. Many basis looks like edge detectors.

- Method hypothesizes that edge-like patches are the most "basic" elements of a scene, and represents an image in terms of the edges that appear in it.
- Algorithm has "invented" edge detection.
- Learned model corresponds fairly closely on many dimensions to measurements of V1. (van Hataren & van de Schaaf, 1998)

Learning from audio

[Evan Smith & Mike Lewicki, 2006]

Learning from audio

[Evan Smith & Mike Lewicki, 2006]

... and much more.

Community

Academic:

- Growing interest in machine learning/AI communities.
- Existing academic workshops/meetings, etc.

Government.

Industry: IBM cognitive computing initiative. Numenta.

Popular imagination: Singularity (Kurzweil), On Intelligence (Hawkins & Blakeslee).

Didn't we do this before?

Brain's learning algorithm

An order-of-magnitude argument:

Your brain has 10¹⁴ synapses (connections).

You'll live for 10⁹ seconds.

If each synapse requires just 1 bit to parameterize, you need to learn 10¹⁴ bits in 10⁹ seconds.

That's 10⁵ bits/second.

Most of human learning is unsupervised.

(Geoff Hinton, pers. comm.)

Basic science COal Understanding the brain

Engineering COal Neuroscienceinformed

The Aldream