

GENI Exploring Networks of the Future

> Status update for the CCC March 22, 2010

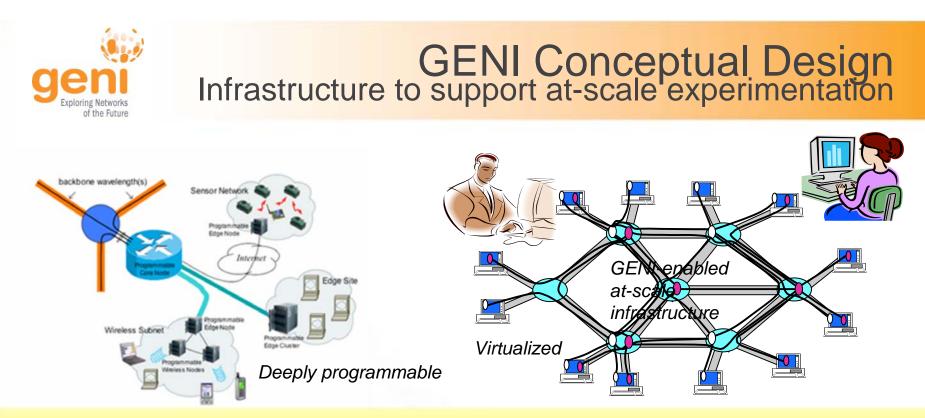
> > Chip Elliott GENI Project Office www.geni.net

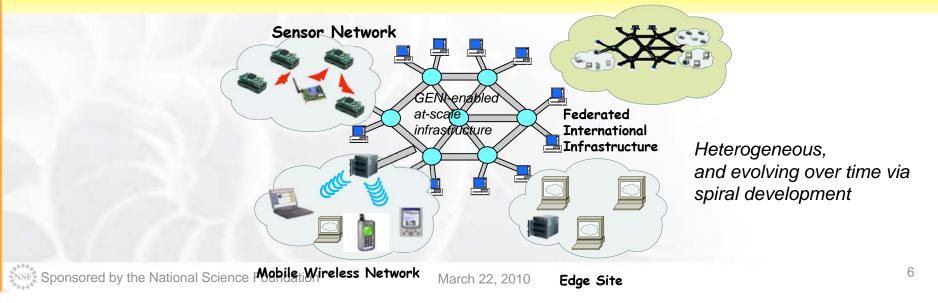
Sponsored by the National Science Foundation

GENI – Exploring future internets at scale

- Current status and plans: GENI Spiral 2
 - System integration and refinement
 - Meso-scale buildout
 - Starting experimentation
- GPO program activities
 - Retasking & reorganization
 - GENI Solicitation 3
- Wrap-up

What is **GENI**?


- GENI is a virtual laboratory for exploring future internets at scale.
- GENI creates major opportunities to *understand, innovate, and transform* global networks and their interactions with society.
- GENI opens up new areas of research at the frontiers of network science and engineering, and increases the opportunity for significant socio-economic impact.


Global networks are creating extremely important new challenges

Programmable & federated, with end-to-end virtualized "slices"

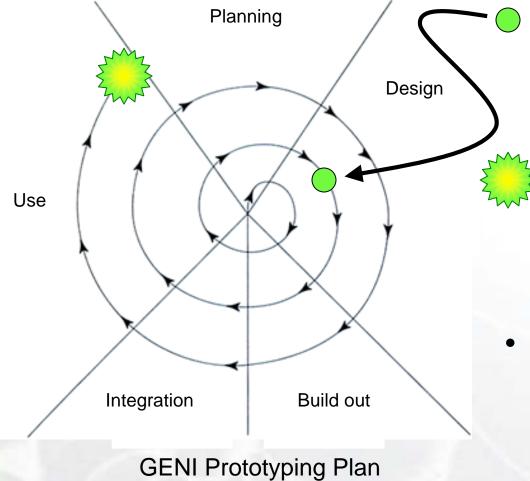
• GENI is enabling two classes of "at scale" experiments:

- Controlled and repeatable experiments, to help improve scientific understanding of complex, large-scale networks; and
- "In the wild" trials of services that piggyback or connect to today's Internet and engage large numbers of participants.
- With instrumentation and data archival / analysis tools for both

• How can we afford / build GENI at sufficient scale?

- Clearly infeasible to build research testbed "as big as the Internet"
- Therefore we are "GENI-enabling" testbeds, commercial equipment, campuses, regional and backbone networks
- Key strategy for building an at-scale suite of infrastructure

- GENI Exploring future internets at scale
- Current status and plans
 - GENI Spiral 2
 - Meso-scale buildout
 - Starting experimentation
- GPO program activities
 - Retasking & reorganization
 - GENI Solicitation 3
- Wrap-up


Current status & plans

- "GENI is a virtual laboratory for exploring future internets at scale"
 - How are we doing?
- Rapid progress to date
 - GENI community appears highly energized and surprisingly happy
 - System architecture is taking shape via spiral development
 - Meso-scale build has considerable buy-in from PIs, campus CIOs, national backbones, regionals
 - We are executing plans for getting a number of research experiments started on the GENI suite
- What are the next steps (Spiral 3)?
 - Converge upon interoperable control frameworks & tools
 - Aggressively grow the meso-scale build, adding "GENI racks"
 - Transition to "operations" to support large-scale, continuous experiments

Spiral Development

GENI grows through a well-structured, adaptive process

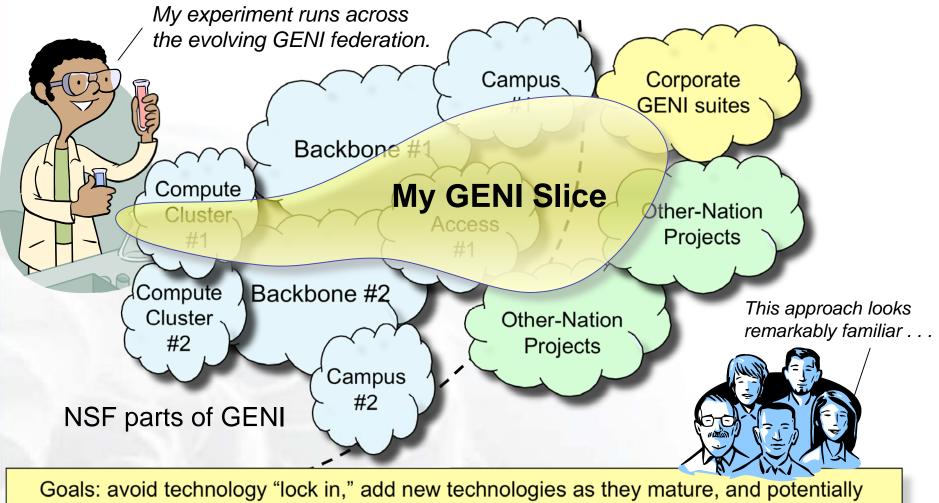
GENI Spiral 2

Early experiments, meso-scale build, interoperable control frameworks, ongoing integration, system designs for security and instrumentation, definition of identity management plans.

Envisioned ultimate goal

Example: Planning Group's desired GENI suite, probably trimmed some ways and expanded others. Incorporates large-scale distributed computing resources, high-speed backbone nodes, nationwide optical networks, wireless & sensor nets, etc.

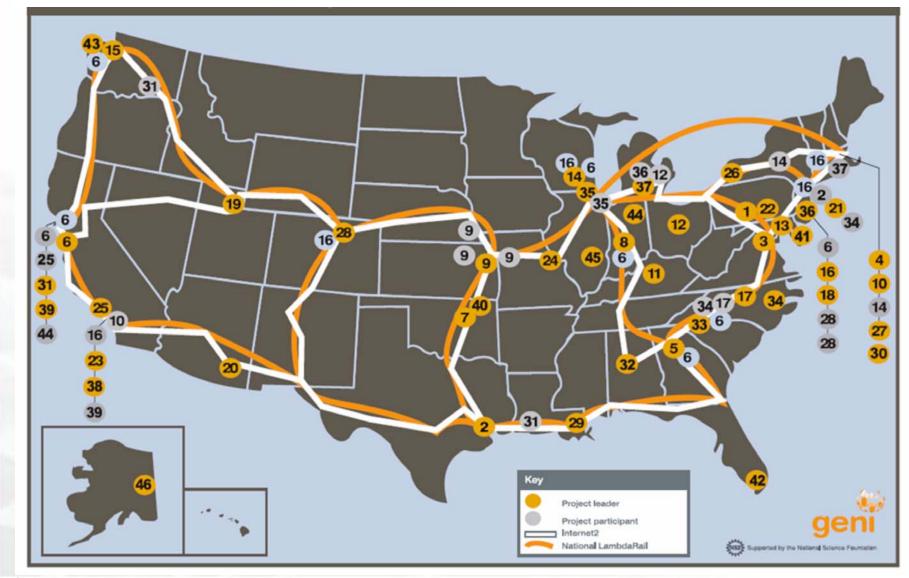
• Spiral Development Process Re-evaluate goals and technologies yearly by a systematic process, decide what to prototype and build next.


Key goals for Spiral 2

- Overarching goal
 - Get real experiments up and running
- Technical emphases
 - Integration, particularly of the meso-scale prototype
 - Interoperability
 - Instrumentation
 - Identity management

Federation

GENI grows by "GENI-enabling" heterogeneous infrastructure

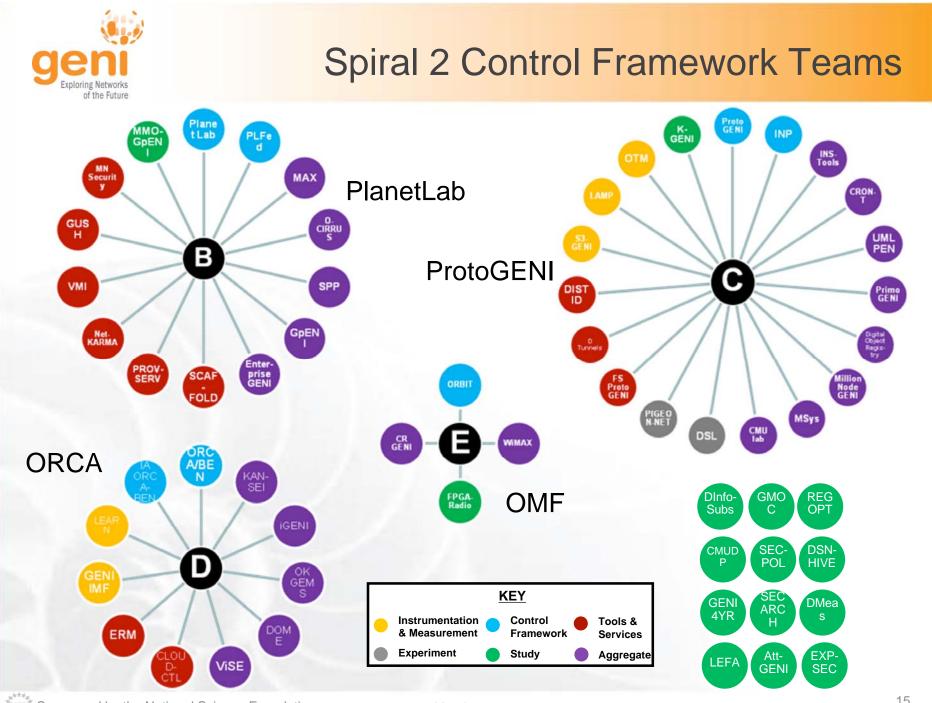


grow quickly by incorporating existing infrastructure into the overall "GENI ecosystem"

Current GENI Status

GENI-enabling testbeds, campuses, and backbones

Sponsored by the National Science Foundation



PL

ANETLAB

An open platform for developing, deploying, and accessing planetary-scale services

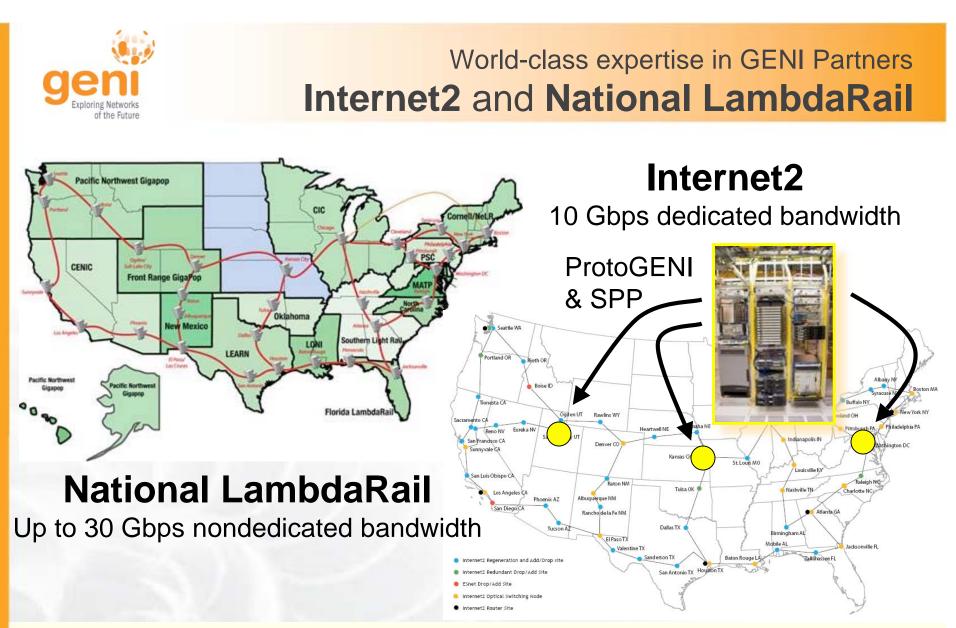
Sponsored by the National Science Foundation

Infrastructure examples

DRAGON core nodes Mid-Atlantic Crossroads

WAIL, U. Wisconsin-Madison

DieselNet, U. Mass Amherst



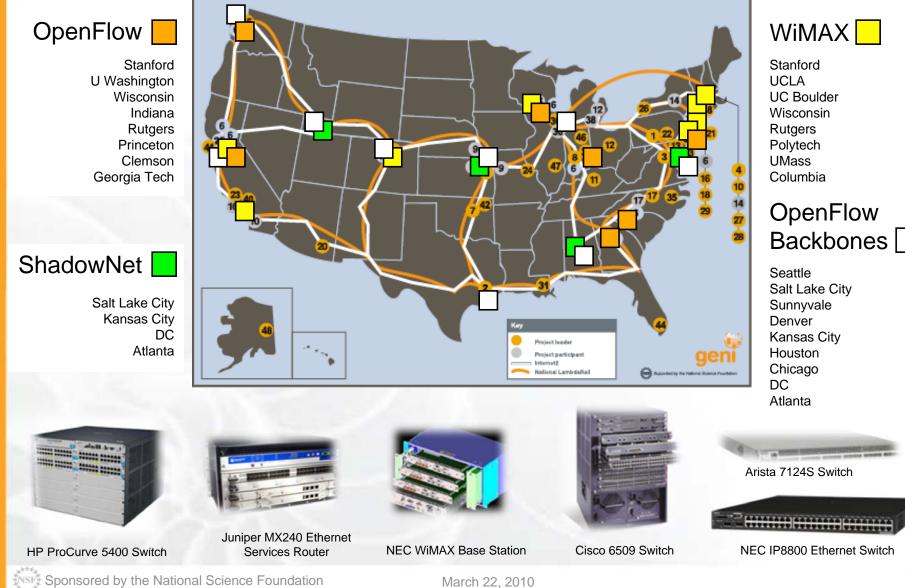
SPPs, Wash U.

ORBIT, Rutgers WINLAB

Sponsored by the National Science Foundation

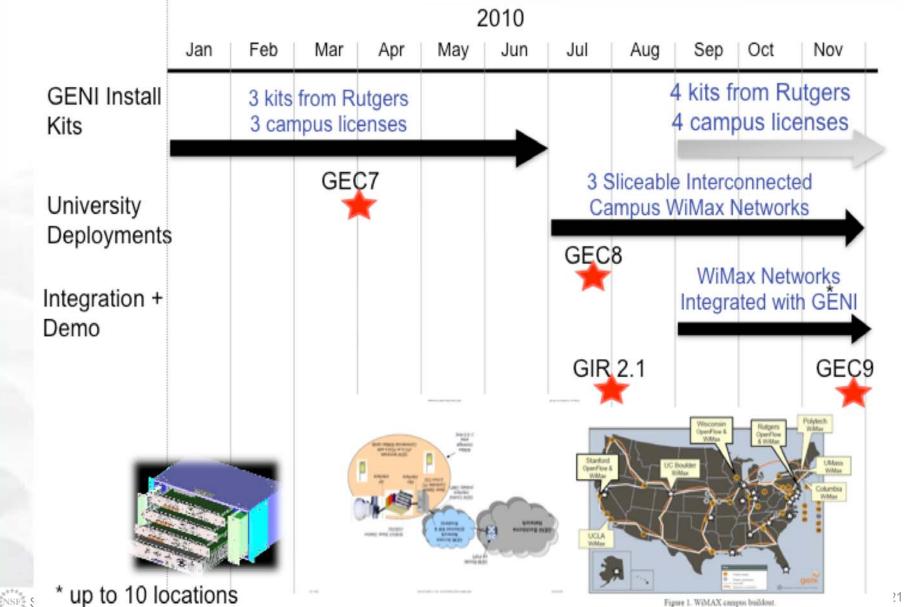
40 Gbps capacity for GENI prototyping on two national footprints to provide Layer 2 Ethernet VLANs as slices (IP or non-IP)

Sponsored by the National Science Foundation

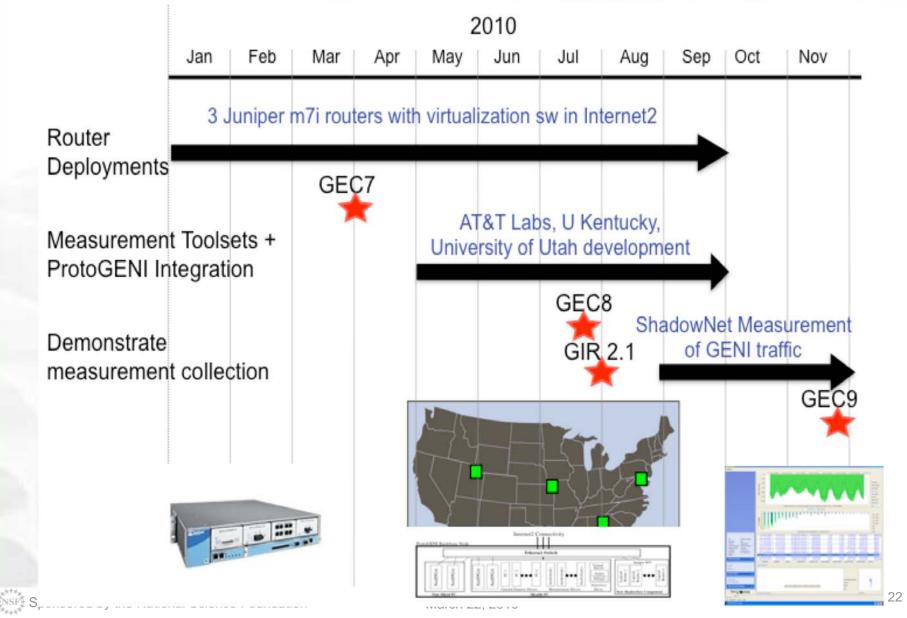


- GENI Exploring future internets at scale
- Current status and plans
 - GENI Spiral 2
 - Meso-scale buildout
 - Starting experimentation
- GPO program activities
 - Retasking & reorganization
 - GENI Solicitation 3
- Wrap-up

Building the GENI Meso-scale Prototype Current plans for locations & equipment



OpenFlow Deployment Roadmap



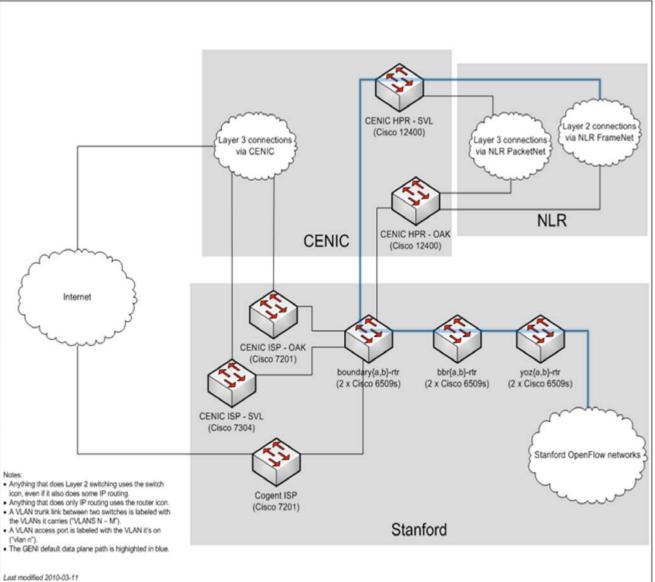
WiMAX Deployment Roadmap

ShadowNet Deployment Roadmap

From Roadmap to Infrastructure

- Coordinate deployment plans (wiki pages)
- Set up GPO integration labs for joint project use, integration (e.g. OpenFlow)
- Track individual projects wikis, repositories, tags, releases, kits (external and internal), hardware, documentation, software, campus security policies, support groups, escalation procedures
- Trial GENI Integration Release (GIR) process on Spiral 1 software and resources (example VISE, Enterprise GENI doc, sw and configurations).
- Plan Spiral 2 GIR in February 2010 for software and systems successfully integrated between 2 GENI projects (e.g. ProtoGENI and Instrumentation Tools)
- Test layer2 VLAN data connections with GENI sites (ION, FrameNet, QinQ, EGRE tunnels, OpenVPN) and provide reference configurations for switches, routers
- Prepare net maps, tickets, GENI RUP, procedures (e.g. emergency shutdown), logs, mailing lists for Meso-scale GENI Response Teams

Stanford GENI Network

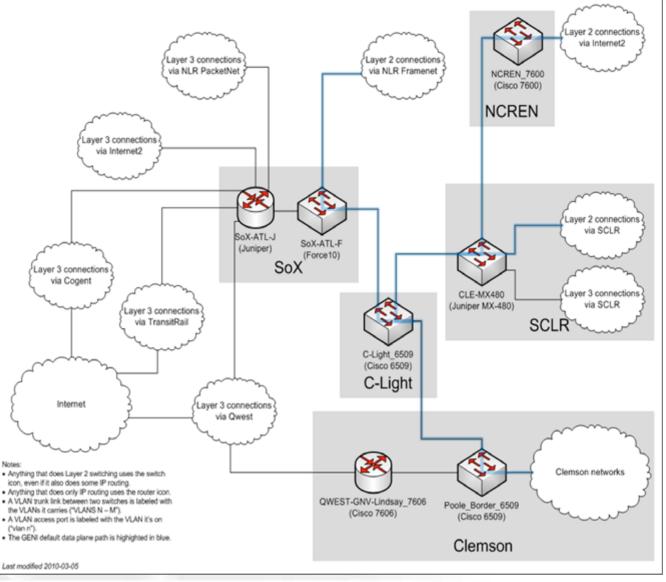

Nick McKeown, PI

Guido Appenzellar Guru Parulkar

OpenFlow production traffic *now*OpenFlow 1.0 ref implementation *now*Early integration with campus trials HP, NEC, Toroki, Quanta, and OpenWRT switches
OF sw devel/support
WiMAX deployment

Sponsored by the National Science Foundation

Clemson GENI Network

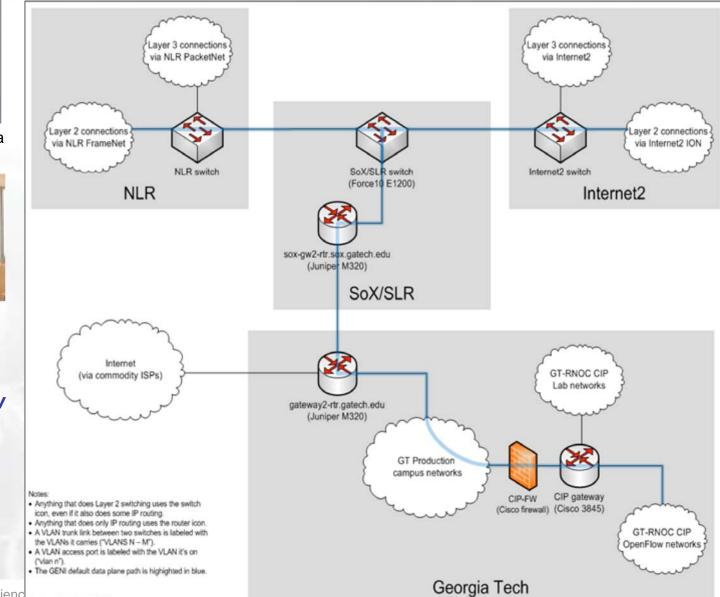


Kuang-Ching Wang, Pl

Dan Schmiedt, **Chief Network** •OpenFlow in ECE lab (wireless mesh and ethernet) now • Expanding to more campus buildings •Early integration with campus network operation center

Georgia Tech GENI Network

Nick Feamster, Ellen Zegura Pl



Par

Russ Clark, GT-RNOC Ron Hutchins,

OIT

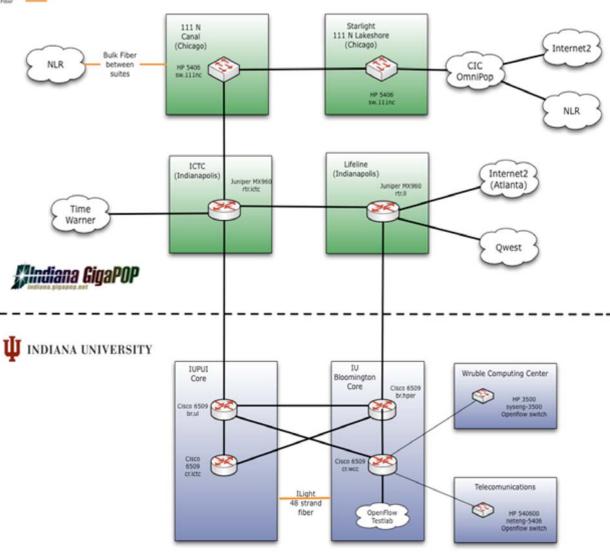
OpenFlow in 2 GT-RNOC lab bldgs *now*OpenFlow/BGPMux coursework *now*Dormitory trial
Access control, authentication focus

Sponsored by the National Scienc Lest modified 2010-03-08

Indiana University GENI Network

Not shown: Christopher Small, Pl

Indiana University OpenFlow Connectivity

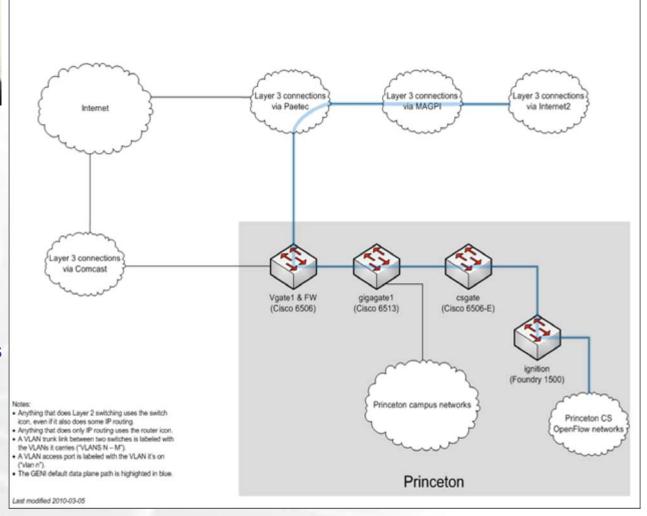

Matthew Davy, Chief Network Architect

ν, Ε «

Dave Jent, IU IT

OpenFlow in IU Testnet Bloomington Data Center *now*Integration with IU GpENI cluster *now*Expanding to other campus locations
Focus on operations: campus and GMOC

Princeton GENI Network


Michael Freedman, PI Larry Jennifer Peterson Rexford

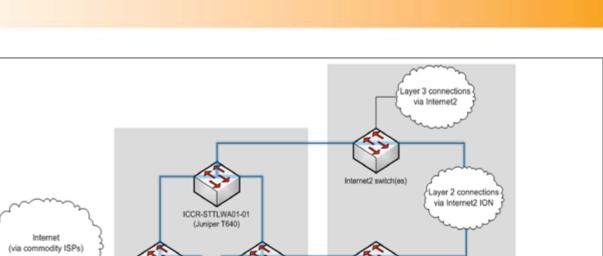
Chris Tengi,

Scott Karlin, Chris Tengi, Computing Facilities System Admin

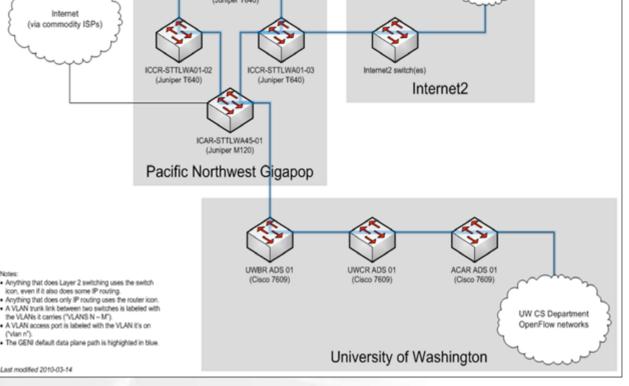
Switch evaluation in progress
Trial deployment to CS Dept
Fine-grain opt-in required
Tools for infrastructure management

Sponsored by the National Science Foundation

Arvind Krishnamurthy,


Tom Anderson Not shown: Clare Donahue, OUWT

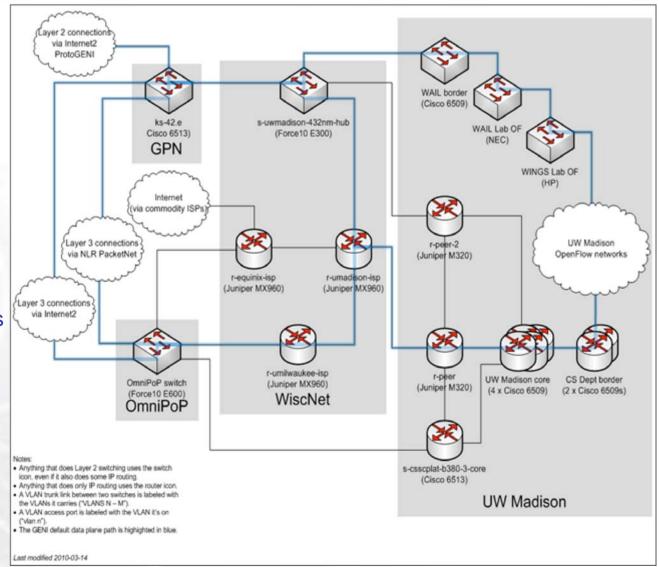
 Switch evaluation in progress •Trial deployment to CS Dept •Hybrid OF/RouteBrick testbed Tools for network function partitioning


Notes

("vlan n")

Last modified 2010-03-14

University of Washington GENI Network

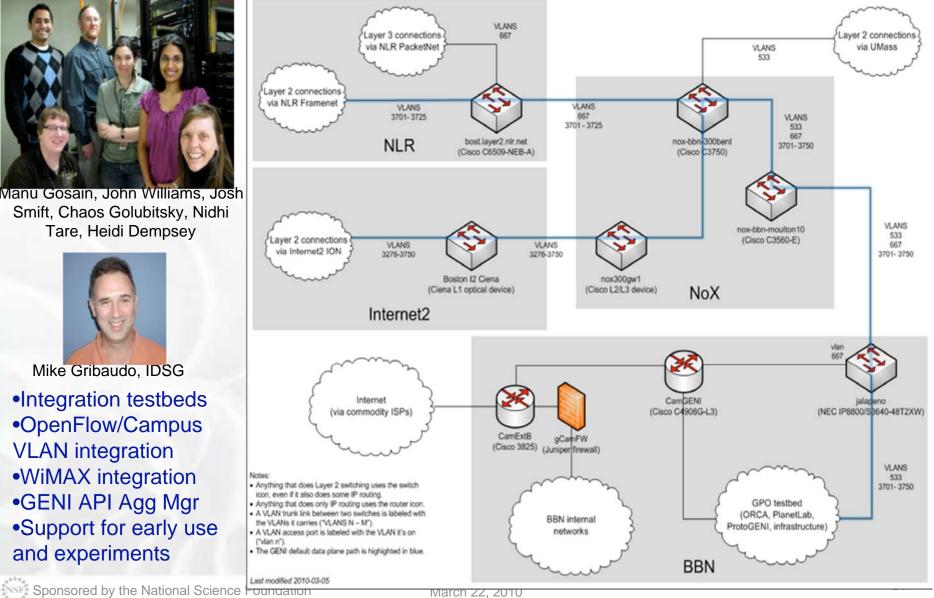


University of Wisconsin, Madison GENI Network

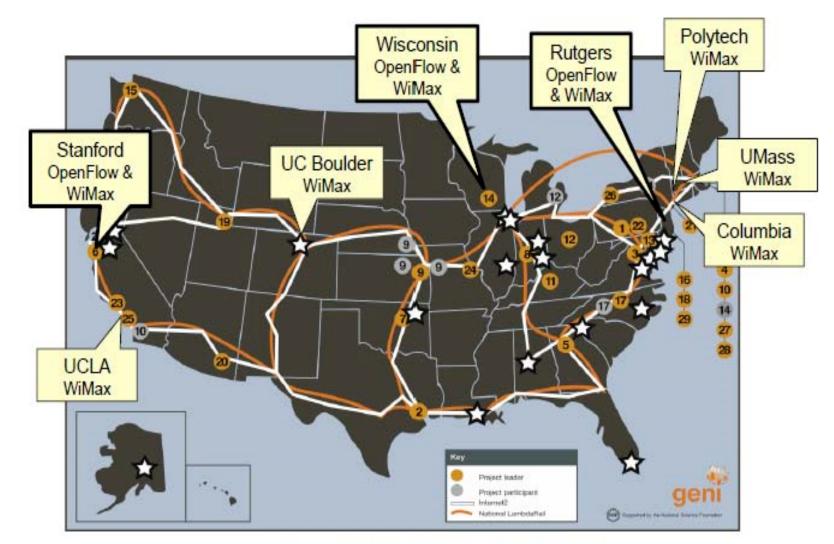
Aditya Akella, Pl

Not shown: Perry Brunelli, IT Hideko Mills, IT •Switch evaluation in progress •OpenFlow + Emulab integration *now* •Trial deployment to CS Dept •OpenFlow + trusted computing development •WiMAX deployment (hybrid WiFi/WiMAX)

NST Sponsored by the National Science Foundation


BBN GENI Network

Manu Gosain, John Williams, Josh Smift, Chaos Golubitsky, Nidhi Tare, Heidi Dempsey



Mike Gribaudo, IDSG Integration testbeds OpenFlow/Campus **VLAN** integration •WiMAX integration •GENI API Agg Mgr •Support for early use and experiments

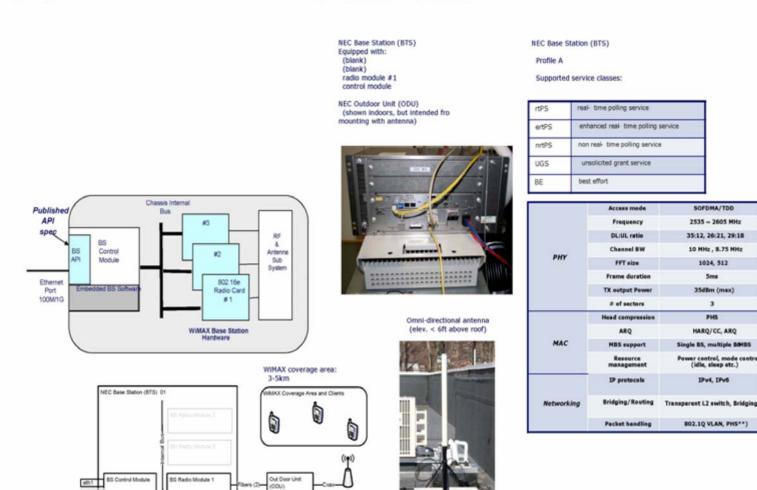
WiMAX deployments

Figure 1. WiMAX campus buildout.

Sponsored by the National Science Foundation

Rutgers / NEC WiMAX kits

111309b WIMAXSystemOverview


GENI WIMAX Campus Deployment KI: Fig 1-2b) BTS, ODU and Antenna

Page 3 of 9

Sms

3

PHS

Antenna

Coax:

short

LMR-400,

or better

Fibers: Power:

-48VDC

long

Printed on 11/13/2009 at 4:37:49 PM

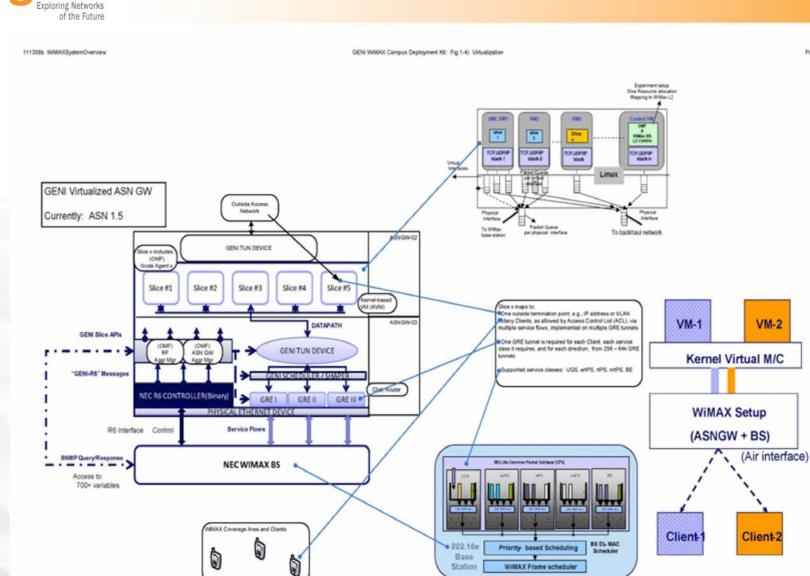
Att A

INSF

Power:

-48VDC

GENI Project Office at BBN Technologies


NSF

WiMAX kit (hardware)

01 111	o recuro								_		
Item Supplier	NWA- 025035-	Description 2.5GHz SECTOR ANT: Antenna, dual-polarization, omnidirectional antenna, for operation in the 2.5GHz range.	Qty 1	9.1	-	-	grounded to building ground	1 -	-	IMPORTANT: In some locales, the installation and grounding will need to be certified by a	
2.1 NEC	$(1)/(93)_{-}$	NEC 2.5GHz ODU: Base Station Outdoor Unit, for connection to one antenna.	1	9.2	-	-	for lightening protection Pole for mounting of antenna and Base Station Outdoor	1 -	-	professional engineer Pole diameter between 48mm and 120mm	
3.1 NEC	IN W A-	IDU: Base Station Indoor Unit, equipped equipped for 1- Sector Configuration, with one Network Interface (NW INTFC) card and one Channel Card (CHC).	1	9.3	-	-	Unit Ground cable, as needed. Power supply for ODU,	1 -	-	-	
3.2 NEC3.3 NEC	-	Network Interface (NW INTFC) card Channel Card (CHC)	1		Mouser:	сD	Mean Well <u>SP-200-48</u> , 110VAC input, -48VDC				
4.1 NEC 5.1 -		100m (approx 300ft) of dual fiber cable, rated for outdoor mounting, yellow SM, with connectors 1m (approx 3ft) (or as needed) antenna cable, LMR LMR400) coax, with N connectors	1		Mean Well		output, rated 4.2A or 200W, mounted in testbed equipment room, or outdoors on roof, in weathertight enclosure (see UMass	1 -	-	-	
5.2 -		Lightning arrestor, for use with ODU antenna cable connection					Amherst) When available one	0		See UMass Amherst for	
6.1 -	-	10m (approx 30ft) outdoor power cable, two conduct 12AWG, rated for outdoor use, with <u>ODU Circular</u> Connector, soldered onto cable	ctors,	10.2	-	-	roof, to mount ODU power supply.	1	-	typical design.	
6.2 Mouser: Hirose	JR25WP- 4S71			11.1	-	-	Indoor site, with racks, for mounting of Base Station Indoor Unit and Linux	1 -	-	-	
6.3 - 7.1 -		Additional outdoor power cable, as needed, two cor 12AWG, rated for outdoor use, to extend from roof indoor testbed equipment room 10m (approx 5011) indoor power cable, two conducto 10AWG, with one <u>IDU Rectangular Power Connect</u> IDU Rectangular Power Connector Contacts, two for	down to ors, <u>or</u> and four		Mouser: Mean Well		Servers Power supply for IDU, Mean Well <u>SP-320-48</u> , 110VAC input, -48VDC output, rated 6.7A or 320W, mounted in teathed acuimment room	1 -	-	-	
7.2 Mouser: 7.2 Tyco/An	1- 917807 np 2	 <u>IDU Rectangular Power Connector</u> <u>IDU Rectangular Power Connector</u> 		11.3	-	- 1	testbed equipment room Servers, for loading with ASN-GW and ORBIT Mangement Framework software, for final operating configuration	0 - 1,600 3		Depends on final) configuration	
7.3 Mouser: Tyco/An 8.1 -	-	Server, loaded with ASN-GW and ORBIT Managen Framework software, for use during installation and	initial	11.4	-		Ethernet switch ports, for multiple VLANs		0 - 2,500	<u>OpenFlow?</u> compatible switch desired. PC- based design underway that utilizes FPGA card, total cost: \$1300 + \$400	
Sponsored	by the Na	checkout, and perhaps for final operating configurat ational Science Foundation	ion March 22, 20	010						= \$1700	34

Page 6 of 9

GENI Project Office at BBN Technologies

Kits will be delivered to Rutgers this May, then rolled out to campuses

Step	Description	Stanford	Rutgers WINLAB	Rutgers Bush	NEC	Columbia	Poly NYU	UCLA	Colorado	UMass	Wisc	BBN
1	Identify Outdoor Site on Campus	-	Completed	Completed	-	Completed	Completed	Started	Started	Completed	Completed	Completed 1/28/10
2	Obtain FCC License	-	Completed	Completed		Applied 2/25	Applied 2/22	Started	Started	Completed 3/2010	Completed 1st Started 2nd	Completed 1st 2/24/10 Applied 2nd 1/14/10
3	Identify Indoor Equipment Room on Campus	-	Completed	-	-	-	Completed		-	Completed	-	Completed 7/09
4	Install Wiring at Outdoor Site and to Indoor Equipment Room	•	Completed	-	-	-	-			-		-
5	Install Pole at Outdoor Site and Ground	-	Completed	-	-	-	-		-	-	-	
6	Install Antenna at Outdoor Site	•	Completed	-	-	-	-	-	-	-	-	-
7	Install Base Station Outdoor Unit	-	Completed		-	-	-	-	-			-
8	Complete Wiring at Outdoor Site and to Indoor Equipment Room	-	Completed			-		-	-	-		-
9	Install Indoor Equipment Racks and Ground		Completed			-		-	-	-	-	-
10	Install 120VAC and - 48VDC Power Feeds and/or Supplies		Completed	-		-	-	-	-	-	-	-
11	Install Base Station Indoor Unit	-	Completed		-	-		-	-	-	-	-
12	Complete Wiring of Base Station Indoor Unit	-	Completed	-		-	-	-	-	-	-	-
13	Initial Check - Out of Antenna and Base Station Outdoor and Indoor Units		Completed			-		-	-	-		
14	Install Ethernet (VLAN) Switch, or Identify Existing Capacity		Completed	-					-	-	-	-
15	Install Linux Server(s) and Software		Completed			-		-	-	-		-
16	Connect Backbone Network	-	Started	-	-	-	-	-	-	-	-	-
17	Provide Reference Client Platform	-	Completed	-	-		-	-	-		-	-
18	Initial Check - Out of Campus WiMAX		Completed		-	-	-	-	-	-	-	-
he	Nesthednal Science	ce Four	dation			L N	larch 22	201	<u>þ</u>			

Sponsored by the

- GENI build-out spreading through the US research networks (backbones now, regionals in Spiral 3)
- Internet2, NLR backbones are installing 5 HP ProCurve OpenFlow switches in each backbone
- Internet2, NLR will interconnect GENI Layer 2 data planes
- ShadowNet: installs 3 Juniper M7i routers for measurements in I2 PoPs this year
- Preliminary investigations into ProtoGENI/OpenFlow
- Regional networks will have workshop at GEC 8, leading to GENI build-out through regionals in Spiral 3

- GENI Exploring future internets at scale
- Current status and plans
 - GENI Spiral 2
 - Meso-scale buildout
 - Starting experimentation
- GPO program activities
 - Retasking & reorganization
 - GENI Solicitation 3
- Wrap-up

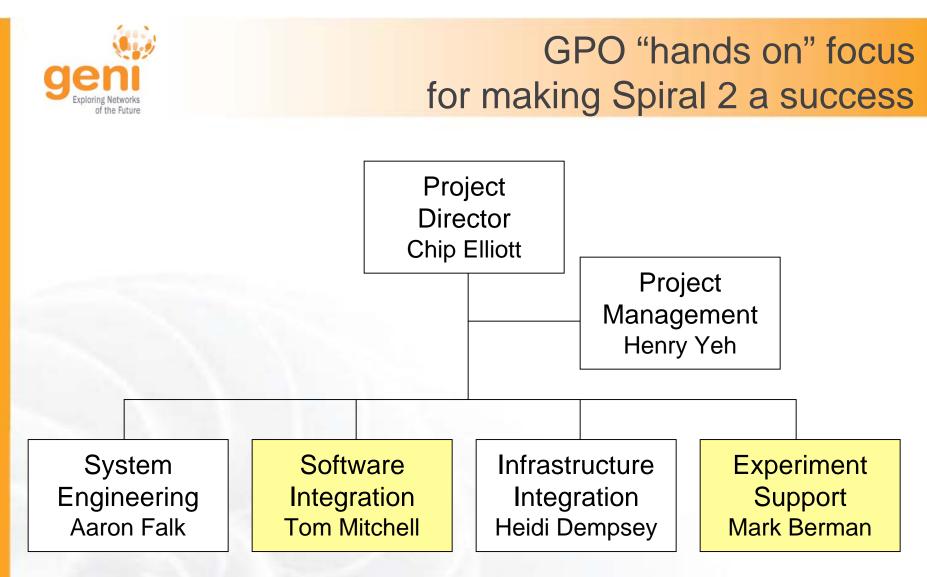
- Three pipeline efforts to encourage experiments
 - Getting earliest experiments running (now)
 - Organizing / running training sessions (startup)
 - NSF-sponsored experimentation workshop (June)
- NSF Future Internet Architectures program

- Four experiments now in progress
 - Davis Social Links (Felix Wu, UC Davis)
 - Floating Cloud-Tiered Internet (N. Shenoy, RIT)
 - DTN for Space Networks (Ed Birrane, JHU APL)
 - Pigeon Net (Jiang Li, Howard)
- General process
 - Very early in GENI PIs need active help
 - GPO engineers help PI get experiment ported to GENI cluster (ProtoGENI currently the favorite)
 - Now shaking them down in GPO lab
 - Will then put it out into the national GENI infrastructure
 - Hope to present research experiment results at GEC 9

Training sessions

- Goals
 - Train students / young PIs on how to use GENI
 - Help establish & grow active student cohorts
- Training sessions
 - Currently oriented by cluster / toolset
 - Next year should be more "generic GENI"
 - Jon Turner gave SPP training last week at GEC 7, about 20 participants
 - GEC 8 (July) will host a number of different training sessions, each ½ day long

- Current plans
 - Chairs: Jex Rexford, Guru Parulkar
 - To be held at Princeton in late June
 - About 40 participants (20 profs, each with student)
 - Active GPO participation to say "what's possible"
- Goals
 - A number of solid research experiment proposals . . .
 - . . . that can be run as GENI experiments starting in the Fall 2010 timeframe . . .
 - ... and which can be promptly funded by supplements or EAGER grants



- Loosely coupled to GENI
 - Experimentation / trials required
 - Can use GENI, National Cyber Range, or purpose-built infrastructure
- Programmatics
 - Proposals due late April 2010
 - Teams appear to have strong overlap with GENI prototyping teams
 - GPO will be fair & even-handed, will not participate in any FIA proposals
 - (Note that FIA budget appears substantially bigger than the total GENI budget)

- GENI Exploring future internets at scale
- Current status and plans
 - GENI Spiral 2
 - Meso-scale buildout
 - Starting experimentation
- GPO program activities
 - Retasking & reorganization
 - GENI Solicitation 3
- Wrap-up

Emphasizes integration & experimentation.

Retasking / reorg started in November 2009; now almost complete.

- Actively pondering GPO Solicitation 3
 - Notional schedule: Issue solicitation in late spring, with proposals due in mid-late summer
 - Notional funding level: similar to Solicitation 1
 - Talk to us now about your ideas
- Solicitation areas as currently envisioned
 - 1. Aggressively grow meso-scale build (next slide)
 - 1. More campus, regional, & backbone sites
 - 2. New "GENI Racks" (eg rack of PCs with OpenFlow switch)
 - 2. GENI Instrumentation system (build & deploy)
 - 3. Operations / experiment support / training / education & curriculum development
 - 4. Interesting new ideas

- This is just a concept we seek your input
- Accelerate and expand meso-scale build started in Spiral 2 (add more campus, regional, backbone sites)
- Inject "GENI Racks" throughout to beef up computation / storage
 - 1 high end Rack = basic unit of computation / storage
 - Notionally a rack of 1U computers with OpenFlow switch (eg)
 - Highly sliceable, programmable, virtualized, & significant storage
 - Deploy into network's topologically significant points (eg, backbones, regionals, campuses, near WiMAX)
 - Wide range of possible research uses
 - Eg, programmable routers, content distribution, ...

- GENI Exploring future internets at scale
- Current status and plans
 - GENI Spiral 2
 - Meso-scale buildout
 - Starting experimentation
- GPO program activities
 - Retasking & reorganization
 - GENI Solicitation 3
- Wrap-up

- "GENI is a virtual laboratory for exploring future internets at scale"
 - How are we doing?
- Rapid progress to date
 - GENI community appears highly energized and surprisingly happy
 - System architecture is taking shape via spiral development
 - Meso-scale build has considerable buy-in from PIs, campus CIOs, national backbones, regionals
 - We are executing plans for getting a number of research experiments started on the GENI suite
- What are the next steps (Spiral 3)?
 - Converge upon interoperable control frameworks & tools
 - Aggressively grow the meso-scale build, adding "GENI racks"
 - Transition to "operations" to support large-scale, continuous experiments