# The Computing Community Consortium

Dr. Erwin Gianchandani
Director, Computing Community Consortium
Computing Research Association

NIH Biomedical Information Science & Technology Initiative (BISTI)

April 7, 2011







### Overview

The Computing Research Association

What is the CCC?

Possible synergistic directions?

# The Computing Research Association

### Over 220 department/lab members

Arizona State University - CSE Auburn University - CSSE Ball State University - CS Boston College - CS Boston University - CS Bowdoin College - CS Bowling Green State University - CS Bradley University - CS Brandeis University - CS Brigham Young University - CS Brown University - CS Bryn Mawr College - MCS Bucknell University - CS California Institute of Technology - CS California Polytechnic State University - CS California State University, Chico - CS Carnegie Mellon University - CS Case Western Reserve University - EECS City University of New York, Graduate Center - CS Clemson University - CS Colgate University - CS College of William & Mary - CS Colorado School of Mines - MCS Colorado State University - CS Columbia University - CS Cornell University - CS Cornell University - ECE Dalhousie University - CS Dartmouth College - CS DePaul University - CS Drexel University - CS Drexel University - IST Duke University - CS Emory University - MCS Florida Atlantic University - CSE Florida Institute of Technology - CS Florida International University - CS Florida State University - CS Florida State University - IS George Mason University - CS George Washington University - CS Georgia Institute of Technology - CSE Georgia Southern University - IT Georgia State University - CIS Georgia State University - CS Grinnell College - MCS Harvard University - CS

Harvey Mudd College - CS

Illinois State University - ACS

Illinois Institute of Technology - CS

Hofstra Universyt - CS

Indiana University - CS

Indiana University - I

Iowa State University - CS

Iowa State University - ECE

Johns Hopkins University - CS Johns Hopkins University - SI Juniata College - IT & CS Kansas State University - CIS Kent State University - CS Lafayette College - CS Lehigh University - CSE Long Island University - ICS Louisiana State University - CS Lovola University, Chicago - CS Massachusetts Institute of Technology - EECS Miami University - CS McMaster University - CE&S Michigan State University - CSE Michigan Technological University - CS Mississippi State University - CS Montana State University - CS Montclair State University - CS National University of Singapore - CS/IS Naval Postgraduate School - CS New Jersey Institute of Technology - CCS New Mexico State University - CS New York University - CS North Carolina State University - CS Northeastern University - CIS Northwestern University - ECE Nova Southeasern University - CS Oakland University - CSE Ohio State University - CSE Ohio University - EEĆS Oklahoma State University - CS Old Dominion University - CS Oregon Health & Science University - CSE Oregon State University - EECS Pace University - CSIS Pennsylvania State University - CSE Pennsylvania State University - IST Polytechnic University - CIS Pomona College - MCS Portland State University - CS Princeton University - CS Purdue University - CS Purdue University - ECE Rensselaer Polytechnic Institute - CS Rice University - CS Rochester Institute of Technology - CS Roosevelt University - CS&T Rutgers University, Busch Campus - CS Saint Louis University - MCS Santa Clara University - CE Simon Fraser University - CS Singapore Management University - IS Southern Illinois University, Carbondale - CS Southern Methodist University - CSE

Southern Polytechnic State University - CSE

Stanford University - CS State University of New York, Albany - CS State University of New York, Binghamton - CS State University of New York, Stony Brook - CS Stevens Institute of Technology - CS Swarthmore College - CS Syracuse University - IS Temple University - CIS Texas A&M University - CS Texas State University - CS Toyota Technological Institute at Chicago - CS Tufts University - CS Tulane University - EECS Union College - CS University at Buffalo - CSE University at Buffalo - IS University of Alabama, Birmingham - CIS University of Alabama, Tuscaloosa - CS University of Alberta - CS University of Arizona - CS University of Arkansas - CSCE University of Arkansas at Little Rock - I University of Calgary - CS University of California, Berkeley - EECS University of California, Berkeley - IMS University of California, Davis - CS University of California, Irvine - ICS University of California, Los Angeles - CS University of California, Riverside - CSE University of California, San Diego - CSE University of California, Santa Barbara - CS University of California, Santa Cruz - CE University of California, Santa Cruz - CS University of Central Florida - CS University of Chicago - CS University of Cincinnati - ECECS University of Colorado, Boulder - CS University of Delaware - CIS University of Denver - CS University of Florida - CISE University of Georgia - CS University of Hawaii - ICS University of Houston - CS University of Houston - ECE University of Idaho - CS University of Illinois, Chicago - CS University of Illinois, Urbana Champaign - CS University of Illinois, Urbana Champaign - ECE University of Iowa - CS University of Kansas - EECS University of Kentucky - CS University of Louisiana at Lafayette - CACS University of Louisville - CECS University of Maine - CS University of Maryland - CS

University of Maryland, Baltimore Co - CSEE University of Maryland, Baltimore Co - IS University of Massachusetts, Amherst - CS University of Massachusetts, Armerst - CS University of Massachusetts, Boston - CS University of Michigan - EECS University of Michigan, Dearborn - CIS University of Minnesota - CSE University of Minnesota, Duluth - CS University of Mississippi - CIS University of Missouri, Columbia - CS University of Missouri, Rolla - CS University of Montana - CS University of Montreal - CS University of Nebraska at Omaha - CS/IST University of Nebraska, Lincoln - CSE University of Nevada, Las Vegas - CS University of Nevada, Reno - CSE University of New Brunswick - CS University of New Hampshire - CS University of New Mexico - CS University of New Mexico - ECE University of North Carolina at Chapel Hill - CS University of North Carolina at Chapel Hill - SILS University of North Carolina, Charlotte - IT University of North Dakota - CS University of North Texas - CS University of Notre Dame - CSE University of Oklahoma - CS University of Oregon - CIS University of Pennsylvania - CIS University of Pittsburgh - CS University of Pittsburgh - IS University of Puget Sound - MCS University of Rochester - CS University of South Alabama - CIS University of South Carolina - CSE University of South Florida - CSE University of Southern California - CS University of Southern California - EES University of Tennessee, Knoxville - CS University of Texas, Arlington - CSE University of Texas, Austin - CS University of Texas, Dallas - CS University of Texas, El Paso - CS University of Toronto - CS University of Tulsa - MCS University of Utah - CS University of Virginia - CS University of Washington - CSE University of Washington - I University of Washington, Bothell - CS University of Washington, Tacoma - CSS University of Waterloo - CS

University of Wisconsin, Madison - CS

University of Wisconsin, Milwaukee - EECS
University of Wyoming - CS
Utah State University - CS
Vanderbilt University - EECS
Virginia Commonwealth University - CS
Virginia Tech - CS
Wake Forest University - CS
Washington State University - EECS
Washington University in St. Louis - CS
Wayne State University - CS
West Virginia University - CSE
Western Michigan University - CS
Williams College - CS
Williams College - CS
Wirght State University - CSE
Yale University - CS
York University - CS

Sun Microsystems (Sponsoring Member) Microsoft Corporation (Sustaining Member) IBM Research (Supporting Member)

Accenture Technology Labs
Argonne National Laboratory
Avaya
CA Labs
Computer Science Research Institute,
Sandia National Labs
Fraunhofer Center for
Experimental Software Engineering
Fujitsu Laboratories of America
Google

Hewlett-Packard Company
IDA Center for Computing Sciences
Intel Corporation
Lawrence Berkeley National Laboratory
Los Alamos National Laboratory
Lucent Technologies, Bell Labs
McAfee Research
Mitsubishi Electric Research Labs
National Center for Atmospheric Research
NCSA
NEC Laboratories America

NTT DoCoMo USA Labs
Pacific Northwest National Laboratory
Panasonic Information &

Networking Technologies Lab Ricoh Innovations San Diego Supercomputer Center

San Diego Supercomputer Cen SAP Labs SRI International Telcordia Technologies



#### Core activities





- Strengthen research and education in the computing fields
  - working to influence policy that impacts computing research
  - encouraging the development of human resources
  - contributing to the cohesiveness of the professional community
- Collect and disseminate information about the importance and state of computing research



- Strengthen research and education in the computing fields
- Affairs
- Government working to influence policy that impacts

  Affairs computing research
  - encouraging the development of human resources
  - contributing to the cohesiveness of the professional community
  - Collect and disseminate information about the importance and state of computing research



- Strengthen research and education in the computing fields
- Affairs
- Government working to influence policy that impacts

  Affairs computing research

CRA-W CDC

- encouraging the development of human resources
- contributing to the cohesiveness of the professional community
- Collect and disseminate information about the importance and state of computing research



Strengthen research and education in the computing fields

Affairs

Government working to influence policy that impacts computing research

CRA-W CDC

encouraging the development of human resources



- contributing to the cohesiveness of the professional community
- Collect and disseminate information about the importance and state of computing research



Strengthen research and education in the computing fields

Affairs

Government working to influence policy that impacts

Affairs computing research

CRA-W CDC

encouraging the development of human resources



- contributing to the cohesiveness of the professional community
- Collect and disseminate information about the importance and state of computing research



# The Computing Community Consortium

#### Concerns in the mid-2000s...

- NSF leaders and computing research leaders had similar deep concerns about computing:
  - Failure to articulate and coalesce around exciting research visions in computer science that could galvanize the public, policymakers, researchers, and students
  - Need to groom the future leadership of the field
  - Decrease in student interest

### ...Led to the need for a "CCC"...

- Increased focus by NSF leaders and computing research leaders in academia & industry
- A Computing Community Consortium solicitation & proposal
  - "[NSF] will support the CCC as a community proxy responsible for facilitating the conceptualization and design of promising infrastructure-intensive projects..."
  - The purpose of the CCC is to provide a voice for the national computing research community. The CCC will facilitate the development of a bold, multi-themed vision for computing research and education... [communicating] that vision to ... major stakeholders."

#### ...And NSF asked CRA to create it

- To catalyze the computing research community to consider such questions
  - To envision long-range, more audacious research challenges
  - To build momentum around such visions
  - To state them in compelling ways
  - To move them towards funded initiatives
  - To ensure "science oversight" of large-scale initiatives
- A "cooperative agreement" with NSF
  - Close coordination

#### The CCC -- a broad-based Council

#### Leadership:

- Ed Lazowska, Chair
- Susan Graham, Vice-Chair
- Erwin Gianchandani, Director
- Andrew Bernat, CRA Executive Director

#### Terms ending 2014

- Deborah Crawford
- Gregory Hager
- John Mitchell
- Bob Sproull
- Josep Torrellas

#### Terms ending 2013

- Randy Bryant
- Lance Fortnow
- Hank Korth
- Eric Horvitz
- Beth Mynatt
- Fred Schneider
- Margo Seltzer

#### Terms ending 2012

- Stephanie Forrest
- Chris Johnson
- Anita Jones
- Frans Kaashoek
- Ran Libeskind-Hadas
- Robin Murphy

#### Rotated off

- Greg Andrews, 2009
- Bill Feiereisen, 2011
- Dave Kaeli, 2011
- Dick Karp, 2010
- John King, 2011
- Peter Lee, 2009
- Andrew McCallum, 2010
- Karen Sutherland, 2009
- Dave Waltz, 2010

Meets three times a year, including once in DC Funded at \$2M/year for three years

... to the community, to the public, etc.

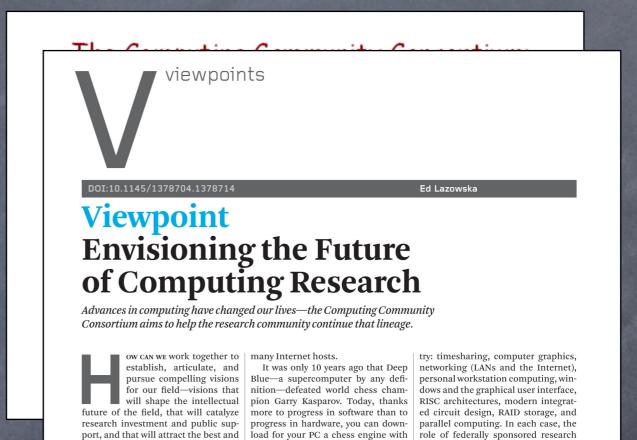
Presentations

The Computing Community Consortium: Stimulating Bigger Thinking

#### Ed Lazowska

Bill & Melinda Gates Chair in Computer Science & Engineering University of Washington

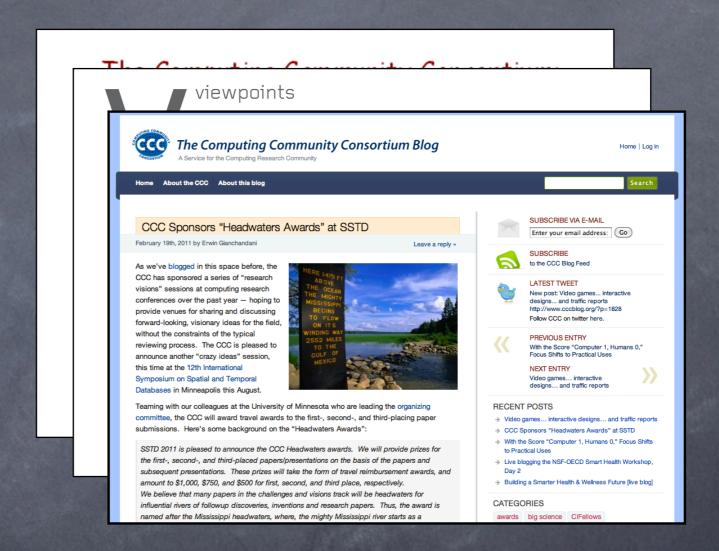
Chair, Computing Community Consortium


Tapia Conference Career Workshop April 2009

http://www.cra.org/ccc/



... to the community, to the public, etc.


- Presentations
- Articles

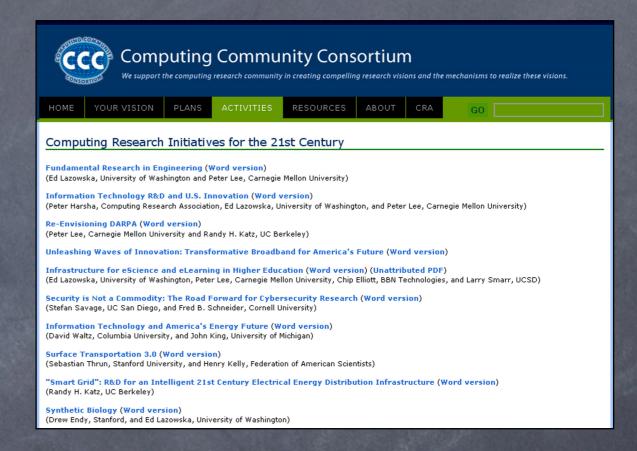


brightest minds of a new generation? | a rating 10% higher than any human

... to the community, to the public, etc.

- Presentations
- Articles
- CCC Blog

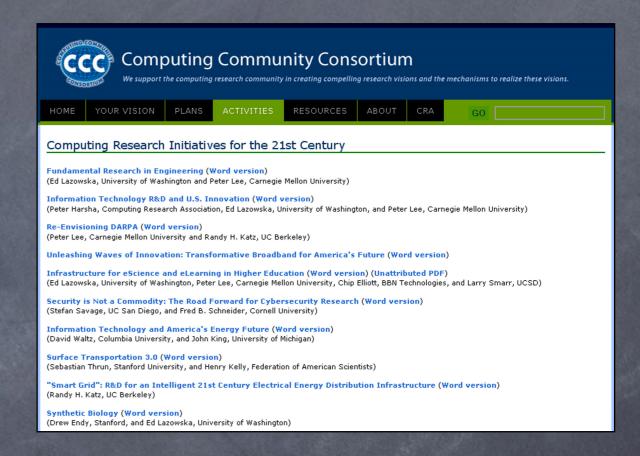



... to the community, to the public, etc.

- Presentations
- Articles
- CCC Blog
- © Computing Research
  "Highlight of the
  Week"



... to the community, to the public, etc.


"Transition Team" white papers



# "Transition Team" white papers

- Sensed and seized an opportunity to influence Federal science policy through the Presidential Transition Team
  - 19 papers produced in late 2008 & early 2009
  - 30 separate authors
  - Many highly influential:
    - Re-envisioning DARPA -- Peter Lee, Randy Katz
    - Infrastructure for eScience & eLearning/Unleashing waves of innovation -- Ed Lazowska, Peter Lee, Chip Elliott, Larry Smarr
    - Security is not a commodity -- Stefan Savage, Fred Schneider
    - Synthetic biology -- Drew Endy, Ed Lazowska
    - Big-data computing -- Randy Bryant, Randy Katz, Ed Lazowska
    - The ocean observatories initiative -- John Delaney, John Orcutt, Robert Weller
    - Cyber-Physical Systems -- Janos Sztipanovits, Jack Stankovic

"Transition Team" white papers



- "Transition Team" white papers
- Library of Congress Symposium



- "Transition Team" white papers
- Library of Congress Symposium
- "Landmark Contributions by Students in Computer Science"



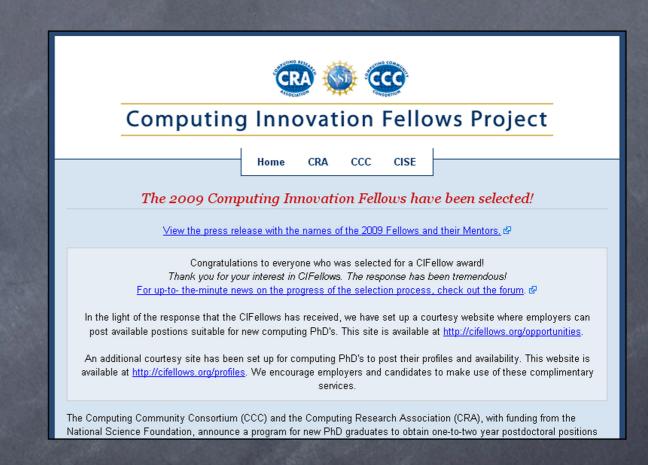
#### The LIBRARY of CONGRESS

#### Landmark Contributions by Students in Computer Science

Version 11: September 15, 2009

There are many reasons for research funding agencies (DARPA, NSF, etc.) to invest in the education of students. Producing the next generation of innovators is the most obvious one. In addition, though, there are an impressive number of instances in our field in which undergraduate and graduate students have made truly game-changing contributions in the course of their studies.

The inspiring list below was compiled by the following individuals and their colleagues: Bill Bonvillian (MIT), Susan Graham (Berkeley), Anita Jones (University of Virginia), Ed Lazowska (University of Washington), Pat Lincoln (SRI), Fred Schneider (Cornell), and Victor Zue (MIT).


We solicit your suggestions for additional student contributions of comparable impact – post them on the Computing Community Consortium blog,

http://www.cccblog.org/2009/08/28/landmark-contributions-by-students-in-computer-science/, or send them to Ed Lazowska, lazowska@cs.washington.edu.



# Leadership development

Computing Innovation Fellows (CIFellows)



### CIFellows Project overview

- Established in 2009 with NSF/ CISE funding
- Provides recent Ph.D.s in computer science (and allied fields) post-doctoral positions
- Positions span one to two years
- Goal is to retain new Ph.D.s in research & teaching during difficult economic times
- 60 CIFellows funded in 2009
  - 19 are leaving by the end of year I, most with permanent positions, many with tenure-track faculty appointments
  - 41 are continuing for a second year
- Additional 47 CIFellows funded in 2010



#### **Computing Innovation Fellows Project**

Home

CRA

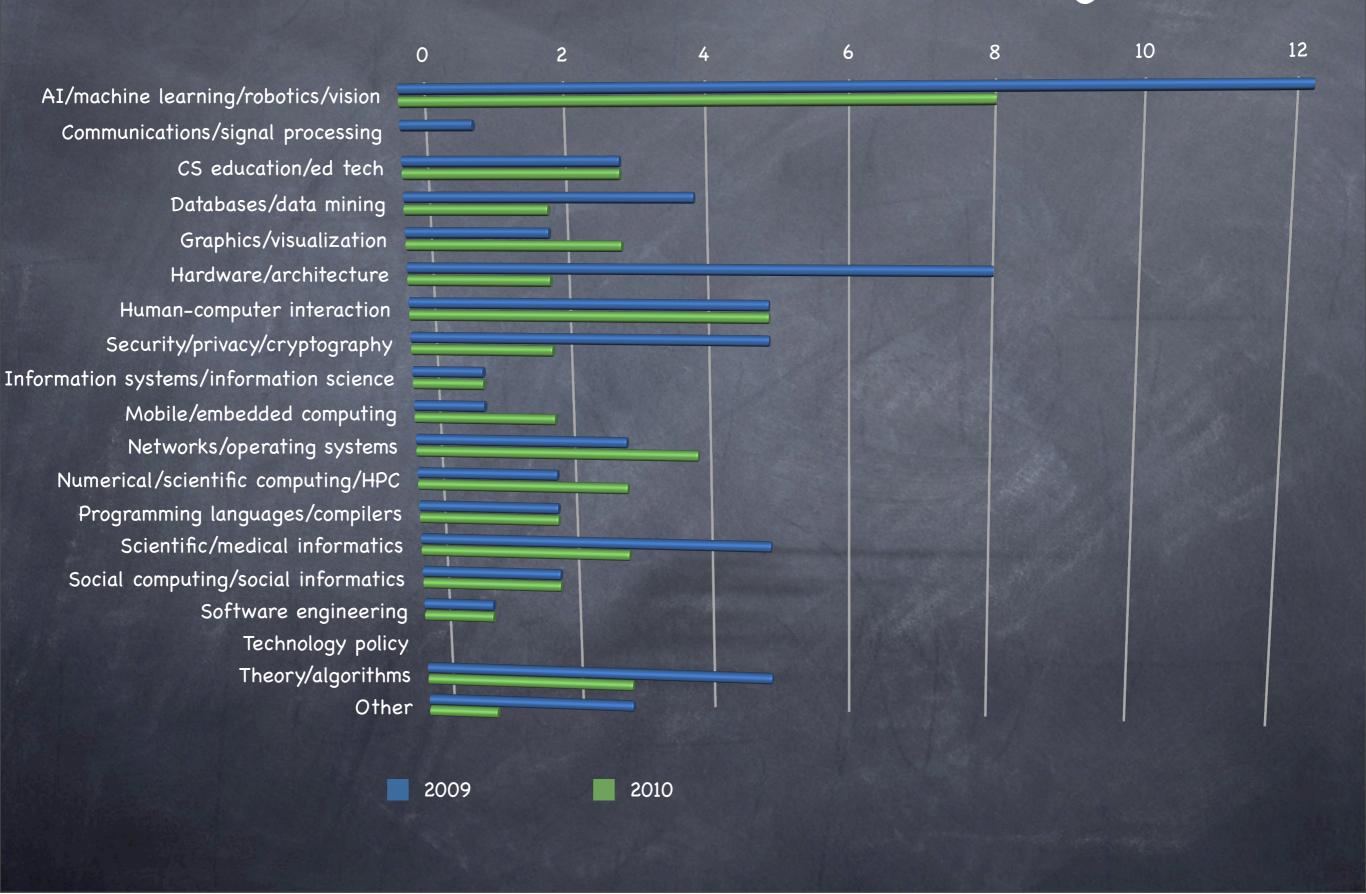
CCC CISE

The 2009 Computing Innovation Fellows have been selected!

View the press release with the names of the 2009 Fellows and their Mentors.

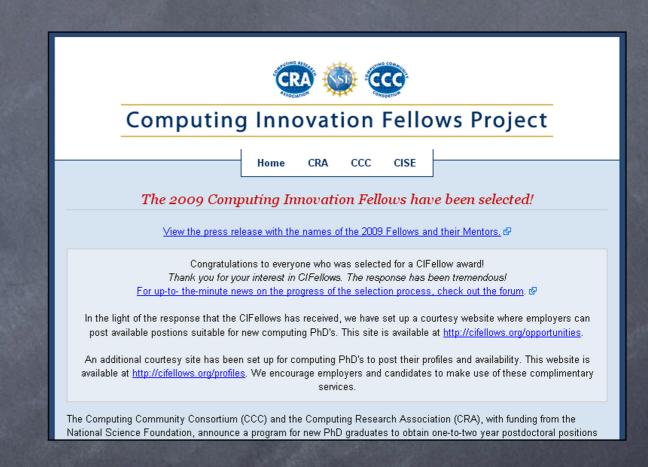
Congratulations to everyone who was selected for a CIFellow award!

Thank you for your interest in CIFellows. The response has been tremendous!


For up-to- the-minute news on the progress of the selection process, check out the forum.

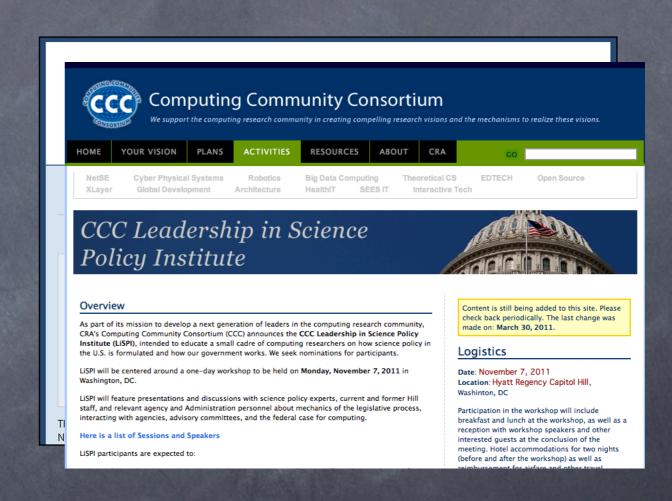
In the light of the response that the CIFellows has received, we have set up a courtesy website where employers can post available postions suitable for new computing PhD's. This site is available at <a href="http://cifellows.org/opportunities">http://cifellows.org/opportunities</a>.

An additional courtesy site has been set up for computing PhD's to post their profiles and availability. This website is available at <a href="http://cifellows.org/profiles">http://cifellows.org/profiles</a>. We encourage employers and candidates to make use of these complimentary services.


The Computing Community Consortium (CCC) and the Computing Research Association (CRA), with funding from the National Science Foundation, announce a program for new PhD graduates to obtain one-to-two year postdoctoral positions

#### 2009 & 2010 CIFellows Projects




# Leadership development

Computing Innovation Fellows (CIFellows)



# Leadership development

- Computing Innovation Fellows (CIFellows)
- Leadership in Science Policy Institute



# Visioning for the future

# Visioning for the future

Research visions sessions at conferences...



# ...And lots of "visioning activities"

| Community visioning activities   | Participants | Organizations |  |
|----------------------------------|--------------|---------------|--|
| Networking science & engineering | 109          | 44            |  |
| Cyber-physical systems           | 100          | 47            |  |
| Robotics                         | 141          | 79            |  |
| "Big data" computing             | 81           | 46            |  |
| Theoretical computer science     | 39           | 26            |  |
| Global development (ICT4D)       | 56           | 37            |  |
| Learning technologies            | 55           | 30            |  |
| Health information technology    | 121          | 102           |  |
| Cross-layer reliability          | 121          | 45            |  |
| Free and open source software    | 42           | 35            |  |
| Advancing computer architecture  | In progress  |               |  |
| Interactive technologies         | In progress  |               |  |
| Sustainability + IT              | In progress  |               |  |

Open RFP for community-driven visioning

# ...And lots of "visioning activities"

| Community visioning activities   | Participants | Organizations |                |
|----------------------------------|--------------|---------------|----------------|
| Networking science & engineering | 109          | 44            |                |
| Cyber-physical systems           | 100          | 47            |                |
| Robotics                         | 141          | 79            |                |
| "Big data" computing             | 81           | 46            | Yahoo!         |
| Theoretical computer science     | 39           | 26            |                |
| Global development (ICT4D)       | 56           | 37            |                |
| Learning technologies            | 55           | 30            | NSF, ONC, NLM, |
| Health information technology    | 121          | 102           | NIST, AHRQ     |
| Cross-layer reliability          | 121          | 45            | MISI, AHKQ     |
| Free and open source software    | 42           | 35            |                |
| Advancing computer architecture  | In progress  |               | Canada GRAND,  |
| Interactive technologies         | In progress  |               | ACM CHI        |
| Sustainability + IT              | In progress  |               | ACM CHI        |

Open RFP for community-driven visioning

# ...And lots of "visioning activities"

|  | Community visioning activities   | Participants                        | Organizations |  |                              |
|--|----------------------------------|-------------------------------------|---------------|--|------------------------------|
|  | Networking science & engineering | 109                                 | 44            |  |                              |
|  | Cyber-physical systems           | 100                                 | 47            |  |                              |
|  | Robotics                         | 141                                 | 79            |  |                              |
|  | "Big data" computing             | 81                                  | 46            |  | Yahoo!                       |
|  | Theoretical computer science     | 39                                  | 26            |  |                              |
|  | Global development (ICT4D)       | 56                                  | 37            |  |                              |
|  | Learning technologies            | 55                                  | 30            |  | NSF, ONC, NLM,<br>NIST, AHRQ |
|  | Health information technology    | 121                                 | 102           |  |                              |
|  | Cross-layer reliability          | 121                                 | 45            |  | MISI, ARK                    |
|  | Free and open source software    | 42                                  | 35            |  |                              |
|  | Advancing computer architecture  | In progress In progress In progress |               |  | Canada GRAND,                |
|  | Interactive technologies         |                                     |               |  | ACM CHI                      |
|  | Sustainability + IT              |                                     |               |  | ACM CHI                      |
|  |                                  |                                     |               |  |                              |

Open RFP for community-driven visioning

May 21, 2009



#### A Roadmap for US Robotics From Internet to Robotics

Georgia Institute of Technology University of Southern California Johns Hopkins University University of Pennsylvania University of California, Berkeley Rensselaer Polytechnic Institute University of Massachusetts, Amherst University of Utah Carnegie Mellon University Tech Collaborative





4 meetings during summer 2008

Roadmap published May 2009

Extensive discussions between visioning activity leaders & agencies

Henrik Christensen Georgia Tech



May 21, 2009



#### A Roadmap for US Robotics **From Internet to Robotics**

Georgia Institute of Technolog

University of Southern Califo

Johns Hopkins Unive

University of Pennsylvania

University of California, Berkeley

Rensselaer Polytechnic Institute

University of Massachusetts, Amherst

University of Utah

Carnegie Mellon University

Tech Collaborative





4 meetings during summer 2008

Roadmap published May 2009

Extensive discussions between visioning activity leaders & agencies



EXECUTIVE OFFICE OF THE PRESIDENT OFFICE OF MANAGEMENT AND BUDGET WASHINGTON, D.C. 20503

July 21, 2010

M-10-30

MEMORANDUM FOR THE HEADS OF EXECUTIVE DEPARTMENTS AND AGENCIES

Peter R. Orszag Management and Budget

Science and Technology Priorities for the FY 2012 Budget

Scientific discovery, technological breakthroughs, and innovation are major engines for expanding the frontiers of human knowledge and are indispensable for promoting sustainable economic growth, improving the health of the population, moving toward a clean energy future, addressing global climate change challenges, managing competing demands on the environment, and safeguarding our national security

This memorandum follows up on OMB Memorandum M-10-19 by outlining the Administration's science and technology (S&T) priorities for formulating FY 2012 Budget submissions to the Office of Management and Budget (OMB). These priorities for research and development (R&D) investments and other S&T investments build on priorities already reflected in the American Recovery and Reinvestment Act, the FY 2010 and 2011 Budgets, and key Administration policy guidance such as the President's Strategy for American Innovation. This memorandum also provides program guidance for S&T activities in Executive Departments and Agencies.

Prioritizing key S&T activities

OSTP issues directive to all agencies to include robotics in FY 12 budgets

> Henrik Christensen Georgia Tech



May 21, 2009



#### A Roadmap for US Robotics **From Internet to Robotics**

Georgia Institute of Technolog

University of Southern Califo

Johns Hopkins Unive

University of Pennsylvania

University of California, Berkeley

Rensselaer Polytechnic Institute

University of Massachusetts, Amherst

University of Utah

Carnegie Mellon University

Tech Collaborative





4 meetings during summer 2008

Roadmap published May 2009

Extensive discussions between visioning activity leaders & agencies



EXECUTIVE OFFICE OF THE PRESIDENT OFFICE OF MANAGEMENT AND BUDGET WASHINGTON, D.C. 20503

July 21, 2010

M-10-30

MEMORANDUM FOR THE HEADS OF EXECUTIVE DEPARTMENTS AND AGENCIES

Peter R. Orszas Management and Budget

Science and Technology Priorities for the FY 2012 Budget

Scientific discovery, technological breakthroughs, and innovation are major engines for expanding the frontiers of human knowledge and are indispensable for promoting sustainable economic growth, improving the health of the population, moving toward a clean energy future, addressing global climate change challenges, managing competing demands on the environment, and safeguarding our national security

This memorandum follows up on OMB Memorandum M-10-19 by outlining the Administration's science and technology (S&T) priorities for formulating FY 2012 Budget submissions to the Office of Management and Budget (OMB). These priorities for research and development (R&D) investments and other S&T investments build on priorities already reflected in the American Recovery and Reinvestment Act, the FY 2010 and 2011 Budgets, and key Administration policy guidance such as the President's Strategy for American Innovation. This memorandum also provides program guidance for S&T activities in Executive Departments and Agencies.

Prioritizing key S&T activities

OSTP issues directive to all agencies to include robotics in FY 12 budgets

> Henrik Christensen Georgia Tech



RTD2: Research for Robotics

Posted by Tom Kalil and Sridhar Kota on September 15, 2010 at 03:09 PM EDT

In July, the heads of the Office of Management and Budget and the Office of Science and Technology Policy identified robotics as one of the Administration's R&D priorities for the President's FY2012 budget

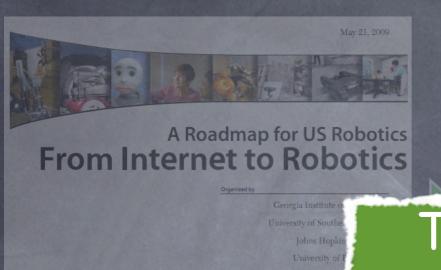
About OSTP | OSTP Blog | Pressroom | Divisions | R&D Budgets | Resource Library | NS

Robotics is an important technology because of its potential to advance national needs such as homeland irity, defense, medicine, healthcare, space exploration, environmental monitoring and remediation, ortation, advanced manufacturing, logistics, services, and agriculture. Robotics is also nearing a tipping terms of its usefulness and versatility as technologies such as software, chips, and computer vision

OSTP has been working with Federal agencies and the research community to identify concrete steps that the Administration can take to promote U.S. leadership in robotics

As part of this effort, five agencies teamed up to issue a joint solicitation for small business research for Robotics Technology Development and Deployment (RTD2). Small businesses can apply for research funding for a wide range of topics, including robot-assisted rehabilitation, robotics for drug discovery, and robots that can disarm

Expect to see more to come in the months ahead from a newly energized and collaborative Federal robotics


Tom Kalil is Deputy Director for Policy in the White House Office of Science and Technology Policy

Sridhar Kota is Assistant Director for Advanced Manufacturing in the White House Office of Science and

Agencies begin rolling out robotics initiatives, beginning with RTD2



22



M-10-30

Trying to replicate success with learning technologies,

through discussions with 4 meetings durin summer 2008 ED and NSF leaders

Roadmap published May 2009

Extensive discussions between visioning activity leaders & agencies

robotics in FY 12 budgets

RTD2: Research for Robotics

Agencies begin olling out robotics initiatives, beginning with RTD2



Henrik Christensen Georgia Tech

# Health information technology

- Following ARRA, NSF asked CCC to organize workshop
- Computer scientists, systems engineers, social scientists, care practitioners
- Produced a report summarizing key research questions and directions





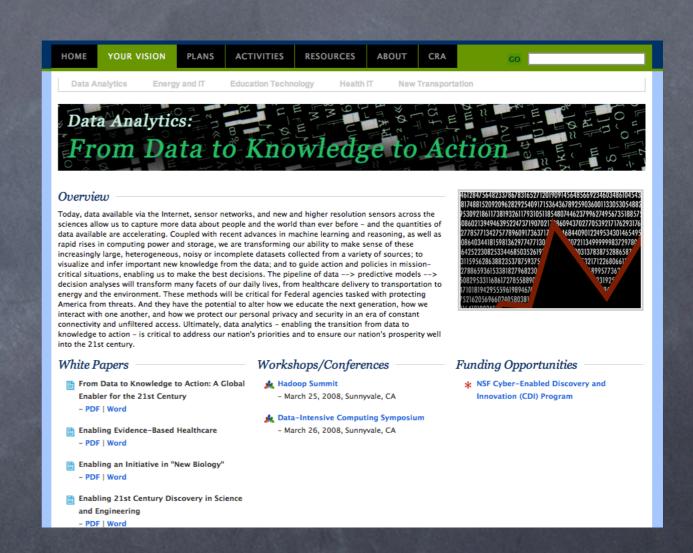








- From data to knowledge to action -- enabling evidence-based healthcare
- Empowering people -providers and consumers -improves healthcare quality
- Computer-based augmentation of human learning, reasoning, decision-making, and physical motion significantly enhances human capabilities
- Healthcare is a complex, large-scale, adaptive distributed evolving system
- The Importance of Collaborative Government Investment


# Sustainability + IT

- NSF/CISE recently asked CCC to run a workshop on sustainability
- © Computer scientists, systems engineers, social scientists, sustainability scientists
- Produced a report summarizing key research questions and directions

- Defining sustainability
- Routine uses of CISE for sustainability
- CISE research to further sustainability
  - "Big data"
  - Modeling & simulation
  - Optimization
  - Intelligent systems
  - Cyber-physical systems
  - Human-centered & social computing
  - Privacy & security
  - Systems engineering & systems integration
  - Green IT
- The power of applied problems
- Collaboration & interdisciplinary research
- Education & workforce development
- The importance of collaborative Federal investment

## Data analytics

- Overview
- eScience
- Healthcare
- Energy
- Education technology
- New Transportation
- Intelligence
- New Biology
- Robotics & emergency response



# Data analytics

- Overview
- eScience
- Healthcare
- Energy
- Education
- New Trans
- Intelligence
- New Bioloc
- Robotics & response

Systems biology: As the NAS report stated, "Improved measurement technologies and mathematical and computational tools have led to the emergence of a new approach to [address] biological questions termed 'systems biology' [that] strives to [integrate heterogeneous experimental data sets] and achieve predictive modeling [of biological systems]." Rather than pursuing the decades-old reductionist approach, interrogating individual components and reactions underlying a given system, systems biology attempts to integrate various biological structures and create predictive models representing systems-level functions and behaviors.

For example, in 2007, systems biologists published a genome-scale reconstruction of the human metabolic network<sup>3</sup>. This reconstruction catalogs all known gene, protein, and reaction relationships underlying human metabolism – the vital cellular process that is attributed to many human diseases – in a highly quantitative, structured, and chemically consistent manner. In other words, the reconstruction assimilates all existing experimental knowledge about the system, and enables a quantitative analysis of the "flows" through the network – much like a map of a highway system overlaid with quantitative data about traffic volumes. Nearly 1,500 genes spanning 2,000 proteins and 3,300 reactions were incorporated from nearly 1,600 different papers. The resultant *model* represents the set of all hypotheses about the network that have been reported in the literature to date and, in turn, can be used to *predict which genes are essential or inessential, and which ones are involved in mechanisms of chronic diseases like cancer and arthritis*. Ultimately, such a model *enables us to better understand the manifestation of human diseases and identify ideal drug targets to combat these illnesses*.

Computational biology: Whereas systems biology takes an integrative, systems-based approach, computational biology applies data mining, machine learning, graphics/visualization, and related computational techniques to specific biological questions. For instance, clustering algorithms have been applied to gene expression data to associate genes with similar functions. High-throughput gene expression assays are enabling us to measure the expression levels of thousands of genes simultaneously, across different conditions and over time. These assays result in incredibly large data sets: the expression of each gene requires multiple "probes," meaning that there are often 20 or more data elements per gene, and a routine experiment involving human cells measures 54,000 human gene transcripts concurrently. By clustering these data, we are able to make sense of the data and gain insight into gene function; genes that respond similarly to different stimuli are more likely to have related functions. Likewise, "compendium analyses" are used to study the mechanisms underlying drug function, by comparing the gene expression profiles of unknown drugs with databases of profiles of known drugs. Drugs with similar mechanisms are likely to have correlative gene expression footprints<sup>4</sup>.



25

# Data analytics

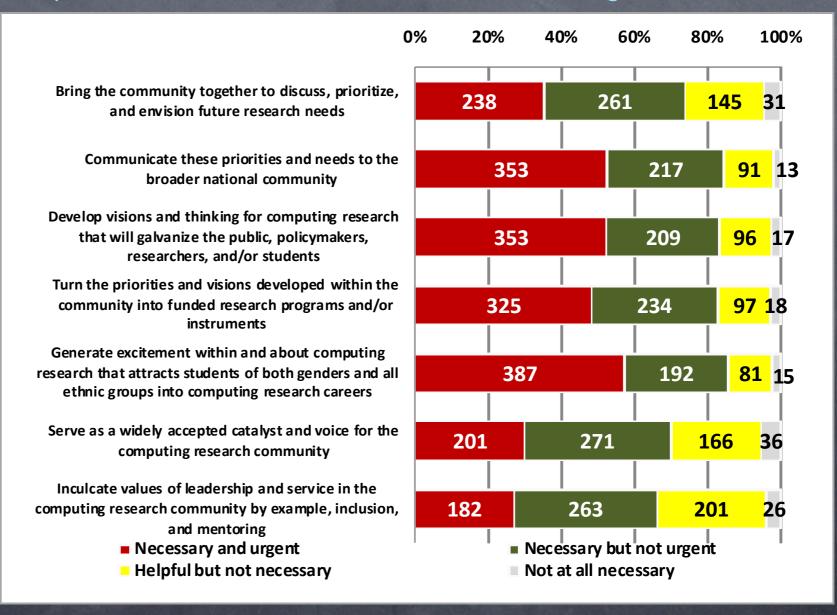
- Overview
- eScience
- Healthcare
- Energy
- Education
- New Trans
- Intelligence
- New Bioloc
- Robotics & response

Nearly 2500 years ago, Hippocrates kicked off a revolution in healthcare by calling for the careful collection and recording of evidence about patients and their illnesses. This call—which first introduced the goal of sharing data among physicians to provide the best care possible for patients—established a foundation for the evolution of modern healthcare. Although 25 centuries have passed since Hippocrates' call, we have not yet attained the dream of true evidence-based healthcare. Large quantities of data about wellness and illness continue to be dropped on the floor, rather than collected and harnessed to optimize the provision of care. We are simply not yet doing the best that we can.

We now stand at the brink of a potential revolution in data-centric healthcare, enabled by advances in computer science. Such a revolution promises to enhance the quality of healthcare while cutting costs, and, more generally, enabling physicians to do the very best that is possible with realistically bounded healthcare resources. Doing the best that can be done with available resources aligns with the core promise that all physicians make when they solemnly raise their hand and recite the Hippocratic Oath upon receipt of their medical degree.

Enabling this vision of true evidence-based healthcare will require critical investments for translating key methods and insights into working systems, as well as for advances in core computer science research and engineering to address key conceptual bottlenecks and opportunities.

Collecting and analyzing data collected on health and illness promises to enhance the quality and efficacy of healthcare, and to enhance the quality and longevity of life. The collection and analysis of data can provide new insights about wellness and illness that can be operationalized. Data-centric methods allow us to transform *data* into *predictive models*. Predictive models can be used to generate forecasts with well-characterized accuracies about the future—or diagnoses about states of a patient that we cannot inspect directly. Such forecasts or diagnoses can be harnessed within procedures that generate recommendations for *actions in the world*, and decisions about *when it is best to collect more information about a situation before acting*, considering the costs and time delays associated with collecting more information to enhance a decision.


The pipeline of data to prediction to action can be used to automate or provide decision support for accurate triage and diagnosis, to generate well-calibrated predictions about health outcomes,



#### The value of the CCC

How necessary is it to have within the U.S. computing research community an organization designated to perform one or more of the following activities?

- Small, nimble organization
- Unique components to the mission
- Provides a "leadership voice" for the community



--SRI International

# Synergistic steps forward?

- Number of places where computing can help with NIH mission and activities
  - Modeling & simulation
  - Robotics and cyber-physical systems
  - "Big data"/data analytics
- Ways to get more computer scientists involved?
- Workshops that bring CS folks together with domain scientists?
- Getting the word out about NIH RFPs relevant for computer scientists?

#### Questions?

E-mail: erwin@cra.org

Phone: (202) 266-2936

Online: www.cra.org/ccc