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1 Introduction

In studies of AIDS progression, the presence of a variant of human leukocyte antigen (HLA) (the human
type of major histocompatability complex [MHC]) that binds to natural killer cells has been associated with
slow AIDS progression [19]. Recent experimental research has shown that protein motion influences binding
affinity, which is thought to contribute to disease resistance. By studying protein motion, we hope to be
able to develop vaccinations for AIDS and other diseases.

Most previous coputational research into the prediction of binding affinities has only considered static
representations of protein structure. Current probabilistic roadmap method (PRM) software developed for
robotic motion planning needed to be improved and modified in order to map protein folding pathways.
The methods were modified to build a graph corresponding to an approximate map of the molecule’s energy
landscape that encodes many (typically thousands) of folding pathways.

The pathways can capture the protein folding properties, validated through experiments, such as sec-
ondary structure formation order, subtle folding differences, and relative folding rates. Both robot bodies
with articulated links and multiple rigid body structures were used to simulate proteins.

Data was collected and studied to determine appropriate values to use for roadmap generation of the
proteins. Simulations of multiple proteins were also performed. By modeling and studying these protein
molecules, we hope to, in the future, contribute to the development of treatments and vaccinations for
viruses.

The proteins Trimeric Foldon of the T4 phagehead fibritin (1RFO), Immunoglobulin E (IgE), and 2,
4-Dinitrophenol (DNP) were modeled in Maya and Vizmo in order to allow for future study of the of the
ligand-receptor interactions.

2 Related Work

2.1 Feature Sensitive Motion Planning

Motion planning environments can be drastically different. Also, no single motion planning method can
outperform other methods for all problems/environments. Each method has strengths or weaknesses that
make it better for given types of environments. In the paper “A Machine Learning Approach for Feature-
Sensitive Motion Planning”, an automated framework was proposed [21].

In this method, the characteristics of the space are used to decide what methods to apply. First, planning
space is subdivided by dividing each of the n DOFs (degrees of freedom) into m equal sized parts. The authors
believe that C-space subdivision can be used to identify regions suitable for a particular motion planner.
Next, the planning space is evaluated to determine if a particular method could be applied. In this work,
an automated process for feature-sensitive motion planning incorporates multiple methods and determines
which to use based on the environment the robot must traverse. This approach was shown to outperform
the other planners [21].

2.2 Protein Motion Planning

The ability to determine binding affinities is critical to understanding the specificity of immune responses
and therefore vaccine research. Most previous computational research into the prediction of binding affinities
has only considered static representations of protein structure. However, recent experimental research has
shown that protein motion is critical in peptide-MHC-TCR (peptide-major histocompatability complex T-
cell receptor) interactions. While experimental research has been successful at investigating a limited number
of structures, experiments have drawbacks. They are time-consuming and expensive, and it is impossible to
test the tens thousands of protein variants characterized in viruses such as HIV, influenza, and dengue.

PRM-based approaches have been applied to several molecular domains [1, 2, 5, 22, 23, 24, 26, 32].
Singh, Latombe and Brutlag first applied PRMs to protein/ligand binding [22]. Another PRM variant later
explored this problem with additional success [5]. We have applied PRMs to model protein folding pathways
[30, 33, 31] and RNA folding kinetics [27, 28]. PRMs have also been used by other groups to study molecular
motions [3, 4, 6, 7].
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2.3 Ligand-Receptor Interactions

Our immune systems are governed in part by the formation of antigen-antibody complexes. A range of
critical functions, such as phagocytosis, antibody-dependent cytotoxicity, and control of antibody and cell
secretion, are the result of interactions of these complexes with many cells of the immune system. The
binding of immunoglobulin Fc domains to Fc receptors (FcRs) mediates these interactions. The FcR for
Immunoglobulin E (designated FcǫR) is known to have a role in allergic reactions [14]. FcǫR binds IgE in a
1:1 ratio with a high avidity and a long lifetime [14, 15] and clustering of (designated FcǫR) results in rapid
release of histamine and brings about other allergic reactions [20]. By studying models of these clusters, we
will have a better understanding of the allergic reaction and be poised to develop methods to control allergic
reactions.

3 General Methods

3.1 Probabilistic Roadmap Methods (PRM) for Protein Folding

.
PRMs work by building a graph corresponding to an approximate map of the molecules energy landscape

that encodes many (typically thousands) folding pathways. Our PRM-based method follows the general PRM
paradigm (Figure 1). First, conformations (roadmap nodes) are sampled from the molecules conformation
space (C-space). Next, transitions between nearby conformations are encoded as roadmap edges. As in
nature, our strategy favors low energy conformations and transitions. In particular, during the sampling
phase, lower energy samples have a higher retention probability, and during the node connection phase, each
connection is assigned a weight to reflect its energetic feasibility. The energetic feasibility of a transition is
determined by the energies of all the intermediate conformations along the transition. Thus, least weight
paths in the roadmap correspond to the most energetically feasible paths, and roadmaps encode thousands
of feasible pathways.

Path Extraction. PRM roadmaps encode thousands of pathways. As in traditional PRM applications,
a path between a start conformation and a goal conformation is extracted by first connecting them to
the roadmap and searching for the smallest weight path between them. However, unlike traditional PRM
applications which frequently aim to find any path, molecular applications are concerned with the quality

of extracted paths. Typically in molecular applications, path quality is indirectly enforced through the edge
weight function. Very poor transitions are either given a low probability/high weight or are removed from
the roadmap all together.

Energy function: We have used both a coarse energy function similar to [18] and all atom energy
models [13, 16, 35]. For the coarse model, we use a step function approximation of the van der Waals
component and model all side chains as equal radii spheres with zero DOF. If two spheres are too close (e.g.,
their centers are < 2.4Å during sampling and < 1.0Å during connection), a very high potential is returned
and the node or connection will be discarded. Otherwise the potential is:

Utot =
∑

restraints

Kd{[(di − d0)
2 + d2c ]

1/2 − dc}+ Ehp (1)

where Kd is 100 kJ/mol and d0 = dc = 2Å as in [18]. The first term represents constraints favoring known
secondary structure through main-chain hydrogen bonds and disulphide bonds, and the second term is the
hydrophobic effect. The hydrophobic effect (Ehp) is computed as follows: if two hydrophobic residues are
within 6Å of each other, then the potential is decreased by 20 kJ/mol. Full details can be found in [2].

Biased Sampling: As previously discussed, samples are retained based on their energy. In our protein
work, a sample q, with potential energy Eq, is accepted with probability:

Prob(accept q) =







1 ifEq < Emin
Emax−Eq

Emax−Emin
ifEmin ≤ Eq ≤ Emax

0 ifEq > Emax

(2)

where Emin is the potential energy of the open chain and |Emax is 2Emin. The roadmap produced by
our technique is an approximation of the protein’s energy landscape, and the quality is dependent on the
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sampling strategy. Generally, we are most interested in regions near the target conformation(s) and so
concentrate sampling there. In earlier work [1, 2, 23, 24], a denser distribution of samples near the target
conformation was obtained through an iterative process where we apply small Gaussian perturbations to
existing conformations, beginning with the target conformation. This approach works fairly well, but still
required many samples (e.g., 10,000) for relatively small proteins (e.g., 60-100 residues). In [33], we used
rigidity analysis [9, 10, 11, 12, 17] to determine which portions of the protein to perturb which increased
the protein size we can handle. Rigidity analysis identifies the rigid and flexible parts of a protein, which
are then perturbed according to their flexibility. This helps to provide a physically realistic way to perturb
conformations. The parameters that were adjusted were the probability that a portion of the structure that
is labeled as flexible is perturbed, also known as PFlex, and the probability that a portion of the structure
that is labeled as rigid is perturbed, known as PRigid. Where the nodes were produced was also discerned.
The layers determine how folded the protein is, with layer 9 being the native state and completely folded,
and layer 0 the most unfolded state. Since each layer has a different energy level, ideally, the nodes will be
distributed across many layers, and just not focused around the native state. The better the distribution of
nodes across multiple layers, the more of the entire folding landscape is produced.

Connection. For each node in the roadmap, we attempt to connect it with its k nearest neighbors
with a straight-line in the proteins conformation space. The weight for the edge | (q1, q2) is a function
of the intermediate conformations along the edge q1 = c0, c1, ..., cn−1, cn = q2. For each pair of consecutive
conformations ci and ci+1, the probability Pi of transitioning from ci to ci+1 depends on the difference in
their potential energies ∆Ei = Eci+1 − E(ci):

Pi =

{

e
−∆Ei

kT if ∆Ei > 0
1 if ∆Ei ≤ 0

(3)

This keeps the detailed balance between two adjacent states, and enables the weight of an edge to be
computed by summing the negative logarithms of the probabilities for consecutive pairs of conformations
in the sequence. (Negative logs are used since each 0 ≤ Pi ≤ 1.) In recent work, the height of the energy
barrier between q1 and q2 was used along with atomically-detailed transitions (edges) [29].

Protein Model: In the preliminary results shown in this section, we model the protein as an articulated
linkage.

Figure 1: A PRM roadmap for molecular folding shown imposed on a visualization of the molecule’s energy landscape:
(a) after node generation (note sampling is denser around N, the known native structure), (b) after the connection
phase, and (c) using it to extract folding paths to the known native structure.

Using a standard modeling assumption for proteins that bond angles and bone lengths are fixed[25],
the only degrees of freedom (DOF) in our model are the backbone’s phi and psi torsional angles which are
modeled as joints with values [0,2π) [29].

4 Application: Parameter Study

Testing was performed on Quad Core Optiplex 980 machines. One to three tests were performed simultane-
ously. Some of the tests were repeated individually to verify results.
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We evaluated three large proteins; TCR (T-cell receptors), MHC (Major histocompatability complex),
and 1QLP (1 Alpha Antitrypsin). TCR and MHC were chosen as protein motion is critical in peptide-
MHC-TCR interactions (as previously stated). 1QLP was chosen as it is a large protein and has interesting
properties as a member of the serpin family of serine proteinase inhibitors, which play important roles in the
inflammatory, coagulation, fibrinolytic, and complement cascade[8].

When the parameters PFlex (the probability that a portion of the structure that is labeled as flexible
is perturbed), PRigid (the probability that a portion of the structure labeled as rigid is perturbed), and
standard angle (the amount by which the angles indicated as PFlex or PRigid are changed) were varied,
we found smaller PFlex and PRigid and larger standard angle settings produced more nodes and edges in
more layers of the protein energy landscape for all three of these proteins. The layers represent the unfolding
states of the protein. The largest number represented is the native state of the protein. Smaller PFlex and
PRigid values and larger standard angle settings also resulted in a longer time to generate the landscape, so
a tradeoff may be needed in order to produce acceptable landscapes in acceptable time frames.

For the first tests for TCR, the number of samples was set at 100. PFlex was kept between 0.1-0.06, and
PRigid was kept between 0.05-0.0005, as shown in Figure 2. The lower the PFlex and PRigid values, the
lower the number of rejections that occurred at each standard angle, also seen in Figure 2. The distribution
of the nodes across the layers is also shown in Figure 3, where layer 9 is the native state. When PFlex =
0.06 and PRigid = 0.0005, the number of rejections are at their lowest, and the nodes are distributed across
8 layers. When PFlex = 0.1 and PRigid = 0.05 or 0.0005, the nodes are also distributed across 8 layers, but
the number of rejections is much higher [34].

For the second tests for TCR, the number of nodes generated was set at 100. PFlex was kept between
0.1-0.06 and PRigid was kept between 0.05-0.0005. The distribution of nodes across the layers is shown in
Figure 5. When PFlex = 0.06 and PRigid = 0.0005, the number of rejections are the lowest, however the
distribution of nodes is not as diverse, which means the nodes are not at their highest quality. When PFlex
= 0.06 and PRigid = 0.05, the number of rejections is fairly low, and the nodes are highly distributed [34].

TCR: Number of Samples = 100

Figure 2: The number of samples = 100 for TCR. The number of rejections is graphed against the standard angle.
PFlex is varied between 0.1 - 0.006, and PRigid is varied between 0.05 - 0.0005.
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(a) PFlex = 0.1, PRigid = 0.05 (b) PFlex = 0.1, PRigid = 0.0005

(c) PFlex = 0.06, PRigid = 0.05 (d) PFlex = 0.06, PRigid = 0.0005

Figure 3: TCR: The number of nodes produced in each layer for every run is graphed. In (a), the number of nodes
generated in every layer is graphed for PFlex = 0.1 and PRigid = 0.05. In (b), the number of nodes generated in
every layer is graphed for PFlex = 0.1 and PRigid = 0.0005. In (c), the number of nodes generated in every layer
is graphed for PFlex = 0.06 and PRigid = 0.05. In (d), the number of nodes generated in every layer is graphed for
PFlex = 0.06 and PRigid = 0.0005.
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TCR: Node Generation = 100

Figure 4: TCR: The number of nodes generated = 100 for TCR. PFlex is varied between 0.1 - 0.006, and PRigid is
varied between 0.05 - 0.0005.
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(b)PFlex = 0.1, PRigid = 0.05 (c)PFlex = 0.1, PRigid = 0.0005

(d) PFlex = 0.06, PRigid = 0.05 (d)PFlex = 0.06, PRigid = 0.0005

Figure 5: TCR: The number of nodes produced in each layer for every run is graphed. In (a), the number of nodes
generated in every layer is graphed for PFlex = 0.1 and PRigid = 0.05. In (b), the number of nodes generated in
every layer is graphed for PFlex = 0.1 and PRigid = 0.0005. In (c), the number of nodes generated in every layer for
PFlex = 0.06 and PRigid = 0.05. In (d), the number of nodes generated in every layer is graphed for PFlex = 0.06
and PRigid = 0.0005.
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Figures 6 and 7 show the data collected using MHC with number samples set to 100 per iteration.
Figure 6 shows that the best node populations and distribution over layers occurred when the PRigid and
PFlex values were set to 0.05 and 0.1(a), respectively or to 0.0005 and 0.1 (c) respectively. 7 shows the best
cost (i.e; fewest rejected nodes) occurred when the PRigid and PFlex values were set to 0.05 and 0.1 (c),
respectively or to 0.0005 and 0.06 respectively (d).

(a): PRigid:0.05 PFlex:0.1 (b): PRigid:0.05 PFlex:0.06

(c): PRigid:0.0005 PFlex:0.1 (d): PRigid:0.0005 PFlex:0.06

Figure 6: MHC (number samples=100)
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Figure 7: MHC (number samples=100)

Yellow (a): PRigid:0.05 PFlex:0.1 Blue (b): PRigid:0.05 PFlex:0.06

Green (c): PRigid:0.0005 PFlex:0.1 Orange (d): PRigid:0.0005 PFlex:0.06
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Figures 8 and 9 show the data collected using MHC with number of nodes generated set to 100 per
iteration. Figure 8 shows that the best node populations and distribution over layers occurred for the
parameters used in (a) PRigid 0.05 and PFlex 0.08, (b) PRigid 0.05 and PFlex 0.1, (c) PRigid 0.05 and
PFlex 0.06, and (d) PRigid 0.0005 and PFlex 0.01. Figure 9 shows the best cost (i.e.; fewest rejected nodes)
occurred for the parameters used in (b) PRigid 0.05 and PFlex 0.1, (c) PRigid 0.05 and PFlex 0.06, or (d)
PRigid 0.0005 and PFlex 0.01.

C

(a) (b)

(c) (d)

(e)

Figure 8: MHC (nodes generated = 100)

Yellow (a): PRigid:0.05 PFlex:0.1 Blue (b): PRigid:0.05 PFlex:0.06

Green (c): PRigid:0.0005 PFlex:0.1 Orange (d): PRigid:0.0005 PFlex:0.06
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Figure 9: MHC (nodes generated = 100)

Red: PRigid: 0.05 PFlex: 0.08 Yellow: PRigid 0.05 PFlex 0.1

Blue: PRigid: 0.05 PFlex: 0.06 Green: PRigid: 0.0005 PFlex: 0.1

Orange: PRigid: 0.0005 PFlex: 0.06
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Figures 10 and 11 show the data collected for the protein 1QLP. Figure 11 shows that the best node
populations and distribution over layers occurred for the parameters used in (a) PFlex 0.06 and PRigid 0.05,
however Figure 11 shows that the parameters used in (a) also are associated with a high number of rejected
nodes.

(a) (b)

(c) (d)

Figure 10: 1QLP (1 Alpha Antitrypsin)

Blue(a): PFlex: 0.06 PRigid:0.05 Orange(b): PFlex: 0.06 PRigid:0.005

Yellow(c): PFlex: 0.06 PRigid:0.0005 Green(d): PFlex: 0.01 PRigid:0.0005
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Figure 11: 1QLP (1 Alpha Antitrypsin)

Blue(a): PFlex: 0.06 PRigid:0.05 Orange(b): PFlex: 0.06 PRigid:0.005

Yellow(c): PFlex: 0.06 PRigid:0.0005 Green(d): PFlex: 0.01 PRigid:0.0005
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5 Application: Ligand-receptor binding

Section temporarily removed, pending publication of data used for this study.

6 Conclusion

When studying layer generation for MHC, TCR and 1QLP, we found that smaller PFlex and PRigid values
and larger standard angle setting produced more nodes and edges in more layers of the protein energy
landscape. However, this also resulted in a longer time needed to generate the landscape. The tradeoff of
time must be considered against the increased coverage of the landscape.

A portion of this section has been temporarily removed, pending publication of data used for this study.
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