
Mekanix: A Sketch-based Constructive Learning Tool
for Engineering Education

Travis Kosarek, Chris Aikens, Alexis Chuck, Martin Field, Drew Logsdon,

Laura Murphy, Patrick Robinson, Alyssa Nabors, Paul Taele, Stephanie Valentine,

 Erin McTigue, Julie Linsey, Tracy Hammond

Sketch Recognition Lab

Computer Science Department

Texas A&M University

911 Richardson

College Station, TX 77843-3112

ABSTRACT

In entry-level engineering courses, students are required to

learn and understand basic statics problems. It is common

for these courses to have a large number of students,

forcing the professor to assign multiple choice problems as

opposed to the preferred learning method of hand drawn

truss diagrams. These hand drawn diagrams are not always

unique solutions and, due to time constraints, this type of

homework cannot be graded efficiently.

To alleviate the time constraints faced with grading truss

diagrams, we developed and application named Mekanix.
Mekanix utilizes sketch recognition to provide the identical

functionality of pen and paper, but gives the student real-

time feedback when making an error and relieves the

professor from grading these hand drawn solutions by

automatically comparing them with a stored correct

solution. Due to the complexity of truss diagrams and the

variability of the drawing order of strokes that form trusses,

we developed a specialized algorithm for truss recognition.

 This paper provides a detailed overview of Mekanix's

recognition process. A user study to evaluate Mekanix’s

educational benefit will be conducted in the Fall 2010
semester at Texas A&M University. By comparing results

from similar problems completed with both pen and paper

and a similar truss diagram application, WinTruss, we can

measure the effectiveness of Mekanix.

INTRODUCTION

In their first semester, mechanical and civil engineering

students learn the fundamental concepts of engineering. A

large section of the time spent in these introductory classes

is devoted to solving statics problems. Statics problems

usually require the student to draw free body and planar

truss diagrams.

A free body diagram can be used to analyze all of the

internal and external forces acting on an object, while a

planar truss diagram is simply a two dimensional

representation of a structure. This type of structure is

constructed from physical beams and joints. Joints, also
referred to as nodes, are located at the intersection of two or

more beams and are the location where external forces may

act upon the object. Furthermore, these external forces

create member forces within each individual beam by

tension or compression of the beam.

Trusses are used as supports in many structures such as

bridges, houses, and other buildings. An example of a truss

is shown in Figure 1. An excellent foundation of how to

construct a truss is critical for a student’s future success as

an engineer.

Figure 1- A truss used in the construction of a bridge.

In current practice, the most effective method for learning

how to construct a truss is to draw the truss along with the

forces acting upon it with pen and paper. This method

works best when an active learning approach [2] is taken,

that is, a learner should be engaged and cognitively active

while learning. Timely feedback should be given to the
learner when a mistake is made to prevent the learner from

adding false information to their knowledge framework. [7]

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.
Copyright 2011 ACM 978-1-4503-0267-8/11/05...$5.00.

While this method seems ideal, the large size of

introductory engineering courses prevents hand-drawn

solutions from being used due to time constraints placed on

providing feedback to the students. To combat these

constraints, multiple choice questions are the primary

source of testing. In these courses, students are likely to
receive only one or two hand-drawn assignments a

semester.

To increase the educational value of these courses, a better

method of grading these hand-drawn truss diagrams is

necessary. Hand-drawn homework problems, such as truss

diagrams, afford themselves the use of sketch recognition

as a solution. Sketch recognition allows a user to freely

draw any combination of strokes and attempts to recognize

and interpret what the user intended by the sketch.

BACKGROUND

There are two main categories of sketch recognition:

gesture-based and free-sketch. Gesture-based recognition

systems track the movements of the pen (or mouse) and

recognize shapes based on the gestures. Gesture recognition
requires that each element of the shape be drawn in

succession. For example, this system recognizes a circle

drawn in a clockwise direction differently that one drawn

counter-clockwise. Because of the specific nature of the

gestures, recognition accuracy can be quite high, but

learning the movements can be tedious and time-

consuming.

Free-sketch systems focus more on what a shape looks like

than how it is drawn. These systems try to recognize shapes

by vision- [5], and geometric-based techniques [1, 3]. These

techniques allow users to sketch naturally, permitting them
to begin using the programs with little or no instruction.

This is ideal for educational software because teachers and

professors want the students to learn the concepts of the

course, not specifics of an application.

The obvious benefits of free-sketch techniques of

recognition led us to choose a geometric-based system for

Mekanix.

RELATED WORK

LADDER [3] is a sketch recognition language that is used

for the recognition of shapes. LADDER uses geometry-

based recognition to define how a shape is formed.

 Recognizers can be defined by first drawing a shape.

 LADDER then automatically creates a recognizer for that

shape based on constraints like “below”, “near”, or
“coincident”. This is accomplished by recognizing

primitive shapes such as lines, arcs, circles, etc. LADDER

then uses these constraints to define or describe the higher

level shapes.

PaleoSketch [6] is a sketch recognition library used to

recognize hand-drawn primitives like lines, ellipses, arcs,

curves, etc. To do this, PaleoSketch creates confidence

values on what shape a stroke could potentially be.

 PaleoSketch then chooses the shape with the highest

confidence value as the recognized shape.

WinTruss [8] is an application used to design and solve

truss diagrams. Before the user can begin drawing trusses,

the application’s environment must be set up with specific

information about units, grid spacing, and the materials
being used to build the structure. The system then allows

the user to use tools such as the “beam tool” to draw a beam

on the screen, define the actual length of the beam, and

label it as needed. WinTruss can then solve the member

force values of the constructed truss diagram only after the

external forces have been applied to the truss diagram. The

system is designed to allow the user to draw and simulate

the forces acting on a truss; it does not, however, provide

instruction or feedback on how trusses should be formed.

Newton’s Pen [4] is a “pentop computer” application,

meaning that it runs on a processor inside the pen itself. The

application uses vision-based sketch recognition to accept
or reject very simple free body diagrams. To recognize

shapes, the pen digitizes the ink that it inscribes on paper

and compares the digitized strokes to a bitmap of the

“perfect” configuration for that shape. The program runs as

a finite state machine, so each piece of the diagram must be

drawn in a specific order and configuration. The application

gives basic feedback, but only to inform the user of the

number of forces left to be drawn.

IMPLEMENTATION

Mekanix itself is built from two main prior works. The

first, LADDER [3], is a geometry-based sketch recognition

language. LADDER provides many useful classes to build

complex recognizers specific to our application like multi-
headed arrows, axes, and supports. It does this by basing

sketches on low level primitives such as lines, arcs, curves,

and polyline shapes that can be formed from strokes drawn

by the user. By combining low level primitives, it becomes

easier to extend and create recognizers that can be

perceived as a combination of primitive shapes or other

recognized shapes.

The other previous work that Mekanix utilizes is

PaleoSketch [6]. PaleoSketch is a sketch recognition

library for recognizing shape primitives. By simply

sending a stroke to the PaleoSketch recognition system, we

are able to recognize general strokes as lines, polylines,
arcs, circles, ellipses, arrows, and curves. This allows us to

spend less time on the stroke to primitive shape recognition

and focus our efforts on the complex shape recognition

needed by our application.

We chose to use geometric recognition in Mekanix for three

main reasons:

 Both LADDER and PaleoSketch use geometry-based

recognition techniques. By building off of pre-existing

work, it becomes easier to focus on the purpose of our

application.

 We only care about the strokes that are in the sketch, not

the order they are drawn in. The stroke order does not

change the meaning of a truss diagram; therefore,

gesture-based recognition is not necessary.

 We want recognition of the active sketch after a new

stroke has been added. Many symbols can be
recognized by the subshapes that define them. We want

the capability to recognize as much information as we

have available in the sketch even if the set of subshapes

were previously recognized as a different symbol.

Symbol Recognition

Because we chose to base our application on top of pre-

existing work, our symbol recognition process is

straightforward. The steps are as follows:

 Use LADDER to record a list of points as a stroke as

they are entered into the sketch.

 Send each stroke to PaleoSketch to be recognized as a

sketch primitive (lines, circles, arcs, etc.).

 Add the shape returned from PaleoSketch into a

collection of shapes.

 Send groupings of shapes from the collection to

complex recognizers defined by Mekanix. In each

recognizer, geometric constraints are applied to the

group of inputted shapes. If the constraints hold, the

complex shape is returned.

 If a complex shape is formed, add the complex shape to

the collection of shapes and remove its subshapes from

the collection.

If a recognized shape is added to the collection of shapes, it

is possible for the recognized shape, combined with other

shapes in the collection, to form a more complex shape. To
encapsulate this case, recognition is tried on the collection

of shapes again, after any new shape is added.

It is important to our application that all recognition

executes in real-time or as close to real-time as possible, so

for a large number of recognizers, recognition can become

slow.

Truss Recognition

A truss, as defined previously, is a support used in many

structures such as bridges, houses, and other buildings.

Examples of trusses are shown in Figure 2.

Figure 2 - Example trusses with triangular units only.

Trusses are commonly made from triangular subshapes but

may also incorporate other polygons as well. An example

of trusses constructed with subshapes other than triangles

can be seen in Figure 3.

Figure 3 - Example trusses with dissimilar polygon units.

Naïve Truss Recognition

The problem with simply using geometric recognition on

truss symbols is that trusses must be defined as either a

collection of purely primitive subshapes or a combination

of primitive and complex subshapes.

If the first example were to be used, a truss could be made

from only primitive subshapes. This means that for every

unique truss structure, a recognizer would need to be

defined. This would require a large number of recognizers
and would cause the overall recognition speed of our

application to decline.

If the second example were to be used, a truss could be

constructed from a combination of primitive and complex

subshapes as shown in Figure 4.

Figure 4 - A truss constructed from a combination of a

polygon and two lines.

Using this approach, we attempt to generalize the

construction of a truss by defining the order in which these

combinations can occur. However, we quickly run into the
same issue that the previous example had. For a large

variety of trusses to be recognized, every combination of

primitives and complex subshapes would need to be defined

as individual recognizers.

Intelligent Truss Recognition

In order to avoid the need for a large number of

recognizers, a solution that could generally recognize

trusses constructed from any combination of polygon-

shaped units is necessary.

Our process for recognizing a truss is described as follows:

Begin with the sketch directly after a stroke has been

drawn. Divide all of the strokes in the sketch into smaller

segments by segmenting at points of intersection. These

steps are illustrated in Figure 5.

Figure 5 - Dividing strokes by intersection points.

Construct an adjacency matrix from the intersected strokes.

Intersection points become “nodes” and each segmented

stroke becomes an “edge”.

Assign values to each existing edge. To do this, we take the

first endpoint of the edge and find the number of adjacent

nodes to that edge. We do the same for the second
endpoint. The sum of the adjacent nodes to both endpoints

becomes the weight of the edge within the adjacency

matrix.

For each edge in the adjacency matrix, we create an

additional adjacency matrix. At each compared edge’s

location in this additional adjacency matrix, we assign the

difference between the current edge weight and the

compared edge weight. We then take the absolute value of

this weight and add a value of one so that every edge will

be a positive value greater than zero.

For each additional adjacency matrix created, we run a

weighted shortest path algorithm from the current edge’s
first endpoint to the current edge’s second endpoint. This

shortest path algorithm has two restrictions:

 The direct path from the first endpoint of the

current edge to the second endpoint cannot be

taken.

 A path cannot retrace an edge that has already

been included in the current path.

These restrictions are in place so that the shortest path, if

found, will most likely be the smallest possible polygon

branched from the current edge. If the algorithm returns a

possible path, the strokes that make up the path are
recognized as a polygon. With this system, multiple

possible shortest paths can be found; therefore, it is possible

to have multiple polygons that can be branched from one

edge. An example of polygons that have been found is

shown in Figure 6.

Figure 6 - Polygons recognized by a shortest path.

The next step is to add each polygon that is returned to a

collection of polygons. It is common for duplicate

polygons to be found, therefore duplicates can be discarded.

We can now easily step through this collection and combine

any polygons that share an identical edge into a truss. An

example of this is shown in Figure 7.

Figure 7 - Combining polygons that share edges into a truss.

Although this method is complex, it has been proven to be

efficient and accurate for truss recognition.

EVALUATION

Throughout the development of Mekanix, we have

conducted numerous user studies with users possessing

various levels of experience in mechanical engineering.

These levels of experience range from undergraduate

mechanical engineering students to experts in the field. In

each user study, we tested for both recognition performance
and application usability.

During the Fall 2010 semester at Texas A&M University an

extended user study will be performed by placing Mekanix

in the curriculum and comparing it to other methods of

solving truss diagrams. These other methods include truss

diagrams drawn with pen and paper and diagrams

constructed with the WinTruss application.

Traditional pen and paper has been proven to be an

effective method of learning how to draw truss diagrams.

 The main drawback is that feedback on the truss diagram’s

correctness is not timely. It is difficult for graders to return
a large amount of corrected hand drawn diagrams and to

provide the necessary feedback to help students learn from

their mistakes.

WinTruss is a computer application that allows the user to

construct truss diagrams by using tools to add each

technical aspect of the truss, such as beams, nodes, and

forces. After entering many specifics about the truss

diagram, WinTruss can automatically solve for internal

member forces and other stresses on the truss. While this is

useful, the steps required to construct a truss can often

times be confusing for first time users and requires a lot of
specific training on both truss diagrams and how to use

WinTruss itself to be an effective learning tool.

The user study will be performed by volunteers from an

introductory engineering course. The students in the course

will be divided into four sections. Three sections will be

required to use one of three processes of constructing

trusses, Mekanix, WinTruss, and pen and paper. The fourth

will receive no tutoring sessions. Similar homework

problems will be given to each section to solve and each

will be graded. The grades of students in each section will

act as indicators to the effectiveness of each process of

drawing trusses. Based solely on the grades of students in
each section, we hope to show that Mekanix is a better

learning tool for the student while also making grading

easier for the instructor.

CONCLUSION

Mekanix recognizes, corrects, and provides feedback on a

student’s hand-drawn truss diagram in real-time. We use

geometric constraints to recognize the diagram’s

components from the primitive shapes they comprise. In

order to make our recognizers robust enough for classroom

use, we allow for several configurations, variations, and

drawing styles for each shape. Designed to enhance

learning, Mekanix is an unobtrusive and helpful recognition

tool that benefits the professor and the teaching assistant as

much as the student.

FUTURE WORK

After the extended user study has taken place, we will

incorporate the data collected into our application by

refining recognizers to allow for more accurate recognition.

 The truss recognition itself will also greatly benefit from
this data. Future work will include a more encompassing

weighting algorithm to allow for larger non-specific

polygons to be recognized.

We plan to create a web service to process the correctness

of sketches, thus removing the correct sketches from the

student’s local machine. This will prevent the student from

accessing the solution from the application and presenting it

as their answer.

Our current system fully recognizes truss diagrams and can

compare them to stored solutions given by the instructor.

 Our goal is to allow the instructor to assign open-ended
problems where an exact answer is not necessarily the only

correct solution. In doing this, Mekanix will need to be

able to solve statics related equations and apply them

correctly to the truss diagram. The next step is to expand

our system to allow general free-body diagrams to be

entered and recognized as well.

ACKNOWLEDGMENTS

This work funded in part by NSF IIS grants: NSF 0935219:

Civil Engineering Sketch Workbook, NSF 0942400:

Sketched-Truss Recognition Tutoring System, and NSF

0943999: REU Supplement for 0757557.

REFERENCES

1. Alvarado, C. (2004) Sketch Recognition User

Interfaces: Guidelines for Design and Development. In

Proceedings of AAAI Fall Symposium on Intelligent

Pen-based Interfaces, 2004.

2. Bonwell, C.; Eison, J. (1991). Active Learning: Creating

Excitement in the Classroom AEHE-ERIC Higher

Education Report No.1. Washington, D.C.: Jossey-Bass.

3. Hammond, T., and Davis, R., 2005, LADDER: A

Sketching Language for User Interface Developers,

Computer and Graphics, Elsevier, pp. 518-532.

4. Lee W., Silva, R., Peterson, E., Calfee, R, Stahovich, T.,

Newton’s Pen – A Pen-based Tutoring System for

Statics., 2007 EUROGRAPHICS Workshop on Sketch-

Based Interfaces and Modeling, pp 59-66.

5. Oltmans, M., Envisioning Sketch Recognition: A Local

Feature Based Approach to Recognizing Informal

Sketches. PhD thesis, Massachusetts Institute of

Technology, Cambridge, MA, May 2007.

6. Paulson, B., and Hammond, T., 2008, PaleoSketch:

Accurate Primitive Sketch Recognition and
Beautification, 13th International Conference on

Intelligent User Interfaces, pp. 1-10.

7. Piaget, Jean. (1950). The Psychology of Intelligence.

New York: Routledge.

8. Sutton, M., and Jong, I., 2000, A Truss Analyzer for

Enriching the Learning Experience of Students. In 2000

ASEE Annual Conference Proceeding

