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Abstract

The advent of general purpose graphics pro-
cessing units (GPGPU’s) brings about a whole
new platform for running numerically inten-
sive applications at high speeds. Their multi-
core architectures enable large degrees of par-
allelism via a massively multi-threaded environ-
ment. Molecular dynamics (MD) simulations
are particularly well-suited for GPU’s because
their computations are easily parallelizable. Sig-
nificant performance improvements are observed
when single precision floating point arithmetic is
used. However, this performance comes at the
cost of accuracy: it is widely acknowledged that
constant-energy (NVE) MD simulations accumu-
late errors as the simulation proceeds due to the
inherent errors associated with integrators used
for propagating the coordinates. A consequence
of this numerical integration is the drift of poten-
tial energy as the simulation proceeds. Double
precision arithmetic partially corrects this drift-
ing, but is significantly slower than single preci-
sion, comparable to CPU performance.

To address this problem, we extend the ap-
proaches of previous literature to improve numer-
ical reproducibility and stability in MD simula-
tions, while assuring efficiency and performance
comparable to that when using the GPU hard-
ware implementation of single precision arith-
metic. We present development of a library of
mathematical functions that use fast and efficient
algorithms to fix the error produced by the equiv-
alent operations performed by GPU. We success-
fully validate the library with a suite of synthetic
codes emulating the MD behavior on GPUs.

1 Introduction

Molecular Dynamics (MD) simulations are ex-
cellent targets for GPU accelerators since most
aspects of MD algorithms are easily paralleliz-
able. Enhancing MD performance can allow the
simulation of longer times and the incorpora-
tion of multiple scale lengths. Constant energy
(NVE) dynamics is performed in a closed envi-
ronment with a constant number of atoms (N),



constant volume (V), and constant energy (E).
NVE dynamics is also the original method of
molecular dynamics, corresponding to the micro-
canonical ensemble of statistical mechanics [5].
With single precision GPUs, we observe signif-
icant drift of the total energy with time over a
30 nanosecond (ns) molecular dynamics simula-
tion of a box of water molecules representing a
bulk system at ambient conditions. The compo-
nents of the potential energy, the electrostatic and
Van der Waals (dispersion) energies, converge to-
wards zero (e.g., the negative electrostatic energy
increases towards zero and the positive Van der
Waals energy decreases towards zero rather than
remaining constant as expected). The problem
is not simply due to the fact that some opera-
tions on GPU are not IEEE compliant [10, 11].
This phenomenon is also observed when round-
toward-even operations are used and, for the same
simulations, when performed on double precision
GPUs. In the latter case the divergence is very
small and in all cases it is not related to an erro-
neous implementation of the MD algorithm [6].

Furthermore, MD simulations are among other
large-scale numerical simulations that, when per-
formed on parallel systems, suffer from being
very sensitive to cumulative rounding errors.
These errors depend both on the implementation
of floating point operations and on the way sim-
ulations are parallelized: final results can dif-
fer significantly among platforms and number of
parallel units used (threads or processes). Over-
all, numerical reproducibility and stability of re-
sults (where by “reproducibility and stability” we
mean that results of the same simulation run-
ning on GPU and CPU lead to the same scien-
tific conclusions) cannot be guaranteed in large-
scale simulations. Over time, these small errors
accumulate and skew the final results; the longer
the simulation, the larger the error. Because of
their parallelism and power, GPUs are able to run
longer simulations in a shorter amount of time
than CPUs [13, 1, 8, 7]. However, this comes
at a higher cost in numerical reproducibility and

stability. Threads can be scheduled at different
times, leading to different errors, and ultimately,
different final results. This, combined with longer
simulations and lack of IEEE compliance in some
hardware operations, can lead to erroneous con-
clusions.

In this paper we show how energy drifts ob-
served in MD simulations can be substantially
reduced, while maintaining performance compa-
rable to single precision GPUs, by making use
of a separate set of mathematical functions for
floating point arithmetic that improve numerical
reproducibility and stability of large-scale paral-
lel simulations on GPU systems. Our proposed
approach uses a new numeric type composed of
multiple single precision floating point numbers.
We call numbers of this type “composite precision
floating point numbers”. We present a library of
operations that handle this new data type. Since
MD codes are very complex to deal with, valida-
tion of accuracy and measurement of performance
are performed on a suite of synthetic codes that
simulate the MD behaviors on GPU systems. The
suite includes a global summation that reproduces
errors in total energy summations and a do/undo
set of programs that reproduces drifting in sin-
gle energy computations. We present results that
show the accuracy of composite precision arith-
metic is comparable to double precision, and the
performance comparable to single precision.

The paper is organized as follows: Section 2
provides a short overview of GPU programming
and accuracy issues in GPU calculations; Sec-
tion 3 shows the energy drifting in MD simula-
tions; Section 4 describes our composite float-
ing point arithmetic; Section 5 presents the syn-
thetic suite used for assessing accuracy and per-
formance of our approach; Section 6 discusses the
state of the art in the field; and Section 7 con-
cludes the paper and presents future work.
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2 Background

2.1 GPU Programming

GPUs are massively parallel multithreaded de-
vices capable of executing a large number of ac-
tive threads concurrently. A GPU consists of mul-
tiple streaming multiprocessors, each of which
contains multiple scalar processor cores. For ex-
ample, NVIDIA’s G80 GPU architecture contains
16 such multiprocessors, each of which contains
8 cores, for a total of 128 cores which can handle
up to 12,288 active threads in parallel. In addi-
tion, the GPU has several types of memory, most
notably the main device memory (global mem-
ory) and the on-chip memory shared between all
cores of a single multiprocessor (shared memory).
Clearly, this constitutes a great deal of raw com-
puting power.

The CUDA language library facilitates the use
of GPUs for general purpose programming by
providing a minimal set of extensions to the C
programming language. From the perspective of
the CUDA programmer, the GPU is treated as a
coprocessor to the main CPU. A function that ex-
ecutes on the GPU, called a kernel, consists of
multiple threads each executing the same code,
but on different data, in a manner referred to as
“single instruction, multiple data” (SIMD). Fur-
ther, threads can be grouped into thread blocks,
an abstraction that takes advantage of the fact that
threads executing on the same multiprocessor can
share data via the on-chip shared memory, al-
lowing a limited degree of cooperation between
threads in the same block. Finally, since GPU ar-
chitecture is inherently different than a traditional
CPU, code optimization for the GPU involves dif-
ferent approaches, which are described in detail
elsewhere [10, 11].

2.2 Issues with GPU Precision

As pointed out in the CUDA Programming
Guide [10, 11], CUDA implements single-
precision floating-point operations e.g., division

and square root operations, in ways that are not
IEEE-compliant. Their error, in ULP(Units in the
Last Place)1 is nonzero. While addition and mul-
tiplication are IEEE-compliant, combinations of
multiplication and addition are treated in a non-
standard way that leads to incorrect rounding and
truncation. Of course, some of the drift in MD
simulations can be eliminated by making use of
CUDA functions for floating-point operations that
avoid the nonstandard truncation.

3 Energy Drifting in MD Simulations

Molecular Dynamics simulations, being
chaotic applications [4], make perfect examples
of unstable applications when executed on paral-
lel computers. Small changes during intermediate
computations (such as Van der Waals and elec-
trostatic energies or global summations of the
various energies) accumulate to yield substan-
tially different final results. To study the energy
behavior of NVE MD simulations on GPUs, we
measured and plotted the total energy profile
over the course of a 30 ns simulation for the 988
water system using the MD code for GPUs that
we presented in other work [7]. We used a time
step size of 1 fs, so this test simulation is 30
million MD steps long. The results are shown
in Figure 1. Four profiles with different types
of precision (single and double precision) and
different implementations of the single precision
operations sum, multiplication, and division, are
shown. The first (single precision with +, *, and
/) demonstrates that the use of default single pre-
cision arithmetic leads to a very large drift over
the 30 ns simulation. CUDA implements these
operations in ways that are not IEEE-compliant.
The second (single precision with fadd rn,

fmul rn, and fdividef) still demonstrates the
same drifting despite addition and multiplication

1On GPUs, the maximum error is stated as the absolute
value of the difference in ULPs between a correctly rounded
single precision result and the result returned by the CUDA
library function
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which are IEEE compliant. The third (single
precision with fadd rn, fmul rn, and fdiv rn)
exhibits drifting similar to the other two profiles
despite the introduction of an IEEE-compliant
division, suggesting that the cause of drifting
goes beyond the implementation of single oper-
ations. The fourth profile (double precision) in
Figure 1 is the result of using double precision
arithmetic and shows no significant drift, except
for the very small amount expected normally in
long NVE simulations. For longer simulations,
longer than 100 ns, even double precision GPUs
start showing a drifting behavior. We attribute the
drifting to the lack in numerical reproducibility
and stability already observed in conventional
distributed systems such as clusters [9]. Here,
the effect is significantly enhanced since the
simulation is effectively performed on a ”cluster”
of greater than 32 or 64 cores (processors).
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Figure 1. Time profiles of the total energy for
simulations of the 988 water, 18 NaI system.
Results are shown using default single pre-
cision, single precision with correction for
nonstandard rounding and truncation, and
double precision.

Using double precision does not reduce drifting
on current GPU systems as we noted in our pre-
vious work [7], summarized in Table 1. Clearly,
double precision arithmetic dramatically reduces
performance to levels comparable to that of CPUs
(12 times slower).

4 Redefining Floating Point Arith-
metic on GPUs

4.1 Composite Precision Floating Point

Numbers

The major flaw in traditional floating point
numbers is that an accurate representation of val-
ues with many significant bits is not possible as
the less significant bits may be truncated. How-
ever, if the value considered has “clusters” of
contiguous significant bits with a large number
of zeros separating them, a more accurate repre-
sentation can be achieved with separate floating
point numbers (intuitively one for each cluster,
although not necessarily) for which each cluster
of bits corresponds to a portion of the mantissa.
Note that each cluster is significant in different
orders of magnitude. We propose to represent a
value as the sum of two floating point numbers of
arbitrarily varying orders of magnitude. This al-
lows us to capture the significant parts of the value
for numbers that exhibit these properties and af-
fords scientists a better compromise between per-
formance and reliability on GPU systems. In par-
ticular, we propose that numerical reproducibility
and stability of large-scale simulations are achiev-
able on GPUs with the use of composite precision
floating point arithmetic. The composite preci-
sion floating point number is a data structure con-
sisting of two single precision floating point num-
bers,value and error. The value of a floating
point number,n, is expressed as the sum of the
two floats:

n = nvalue + nerror (1)

5



Table 1. Performance measured in MD steps per second for a 988 water, 18 NaI solvent system using
different types of precision.

MD code Platform Precision steps/s
CHARMM-GPU Tesla S1070 Doub. Prec., +, *, / 35.23
CHARMM-GPU Tesla S1070 Sing. Prec., +, *, / 377.92
CHARMM-GPU Tesla S1070 Sing. Prec.,faddrn,fmul rn, / 423.54
CHARMM-GPU Tesla S1070 Sing. Prec.,faddrn,fmul rn,fdiv rn 129.87
CHARMM CPU 1 CPU 34.34
CHARMM CPU 2 CPUs 64.95
CHARMM CPU 4 CPUs 116.62
CHARMM CPU 8 CPUs 186.05

When calculating the sum or product of two num-
bers, the approximation of the error in their result
is much lower in magnitude when compared to
the result itself. Both result components can be
preserved by representing the final result as the
sum of the truncated result and the approxima-
tion of its error. In other words, we can think of
thevalue component of the number as the result
of a calculation and theerror component as an
approximation of the error carried in the calcula-
tion. For this representation on GPUs, we used
the float2 data type that is available in CUDA
(Figure 2). Errors in each calculation are car-

struct float2 {
float x; //x2.value
float y; //x2.error

} x2;
...

float x2 = x2.x + x2.y; //x2.value + x2.error

Figure 2. Data structure of float2.

ried through operations on GPUs. The conver-
sion from float2 structures back to float structures
is a simple matter of adding thevalue anderror

terms. In large-scale simulations, we observe how
errors accumulate so that when converting float2
back to float, the final result does not totally trun-
cate and neglect theerror component. The indi-
vidual errors that would have been truncated un-
der traditional single precision floating point op-
erations add up and ultimately impact the final re-
ported value, resulting in more stable numerics.

4.2 Redefining Floating Point Operations

The algorithms used for performing composite
precision floating point addition, multiplication,
and division are defined in terms of multiple sin-
gle precision additions, subtractions, and multi-
plications as well as a single precision floating
point reciprocal. These algorithms are referred
to as being “self-compensating” - they perform
the calculation as well as keep track of inherent
error. The algorithm used for the addition and
multiplication are based on algorithms proposed
in [14, 9].

The implementation of the composite precision
floating point addition is presented in Figure 3 and
requires four single precision additions and four
subtractions. The subtraction is implemented the
same as the addition, with the exception that the
signs ofy2.value andy2.error are reversed
before performing the sum.

For the composite precision floating point mul-
tiplication presented in Figure 4, each operand is
expressed as the sum of their value and error com-
ponents and the resulting product is symbolically
expanded into a sum of four terms. The first is
the value stored inz2.value and the sum of the
others is stored inz2.error . For this multipli-
cation, four single precision multiplications and
two single precision addition operations are re-
quired.

The composite precision floating point division
implementation in Figure 5 represents the ratio of
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Pseudo Code Implementation

float2 x2,y2,z2 float2 x2,y2,z2
z2 = x2 + y2 float t

z2.value = x2.value
+ y2.value

t = z2.value
- x2.value

z2.error = x2.value
- (z2.value - t)
+ (y2.value - t)
+ x2.error
+ y2.error

Figure 3. Algorithm for the composite preci-
sion floating point addition.

Pseudo Code Implementation

float2 x2,y2,z2 float2 x2,y2,z2
z2 = x2 * y2 z2.value = x2.value * y2.value

z2.error = x2.value * y2.error
+ x2.error * y2.value
+ x2.error * y2.value

Figure 4. Algorithm for composite precision
floating point multiplication.

two numbers as the product of the dividend and
the reciprocal of the divisor. The problem of cal-
culating a reciprocal is, in turn, posed as a root-
finding problem:Given a floating point number
a, its reciprocal is another floating point number
b such that1

b
− a = 0. The process of finding the

root of this function is based on Karps method, an
extension of the Newton-Raphson method. Our
algorithm, presented in Figure 5, extends the al-
gorithm in [14].

5 Evaluation

5.1 Synthetic Suite

MD codes are very complex, thus we devel-
oped a suite of synthetic codes that reproduce
rounding errors in MD. The suite comprises of
several programs emulating iterative calculations
of energy terms with their energy fluctuations typ-

Pseudo Code Implementation

float2 x2,y2,z2 float2 x2,y2,z2
z2 = x2 / y2 float t,s,diff

t = (1 / y2.value)
s = t * x2.value
diff = x2.value

- (s * y2.value)
z2.value = s + t * diff
z2.error = t * diff

Figure 5. Algorithm for the composite preci-
sion floating point division.

ical of MD simulations and the observed drifting.
The first program is a global summation program
that reproduces errors in total energy summations
in MD. The second program is a do / undo pro-
gram that produces drifting in single energy com-
putations in MD. This is done by performing an
operation on a value, and then applying its in-
verse (e.g., multiplication and division, or self-
multiplication and sqrt). The truncation of inter-
mediate results produce the drifting behavior ob-
served.

5.2 Global Summation

The global summation program calculates the
sum of a large set of numbers with a high variance
in magnitude. Since computers can only store a
fixed amount of significant digits, when adding
very small numbers with very large numbers, the
small numbers may be neglected. In other words,
the small number contributes too small a portion
to the result and the number of significant digits
needed to represent it is more than what is avail-
able. The final result is very sensitive to the order
in which the numbers are summed.

To assess how our composite precision floating
point arithmetic library improves the numerical
reproducibility and stability in a global summa-
tion calculation, we randomly generated an array
of numbers filled with very largeO(106) and very
smallO(10−6) values. The distribution of the val-
ues were purposefully made symmetric: when-
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(a) Distribution of large numbers -O(106) (b) Distribution of small numbers -O(10−6)

Figure 6. Value distribution used for assessing numerical r eproducibility and stability in global sum-
mations.

ever we generated a number, the next number gen-
erated was its opposite. This gave us a numerical
benchmark from which to judge the effectiveness
of our algorithms: the advantage of knowing, a
priori, the “correct” sum to be zero. Figures 6(a)
and 6(b) show the distribution of the numbers
used for the validation: Figure 6(a) shows the
numbers with absolute value larger than 1 (up to
106) and Figure 6(b) shows the numbers with ab-
solute value smaller than 1 (on the order of10−6).

The sum of the array was computed multiple
times on a GPU, each time with a different sorting
order. We considered a sum in increasing order,
a sum in decreasing order, and four independent
trials in which the array was shuffled into random
configurations. We summed the array using dif-
ferent representations of the numbers, i.e., single
(float) and double precision as well as our soft-
ware composite precision (float2), and with dif-
ferent numbers of threads. The tests were per-
formed on one GPU of the Tesla S1070 system.
Table 2 shows results of our global summation for
an array of 1,000 elements summed using asin-
gle thread on GPU. In other words, the sum was
performed sequentially by a single thread on the
GPU. Table 3 shows results of our global summa-
tion for the same array of 1,000 elements summed
using 1,000 threads on GPU. In this case, the
summation is done by the CPU when the array
values are returned to the host. Table 4 and Ta-

ble 5 show results of our global summation for the
same array of 1,000 elements summed using100
threads on GPUand10 threads on GPU, respec-
tively. In this case, the summations were partially
performed on GPU and partially on CPU. In all
cases, because of the way the array of values is
built, we expected the result to be zero. However,
in only a few cases was this actually observed,
even with double precision. If compared with the
float representation (single precision), our com-
posite representation is able to correct the results
significantly (i.e., between 4 and 5 orders of mag-
nitude) and provides results closer to the double
precision solution than the single precision rep-
resentation. On average, our float2 implementa-
tion is having errors on the order of1e − 5 to
1e − 7, which are far better than using regular
floats. Moreover, the standard deviation for float2
is also much lower (i.e., the standard deviation for
double is on the order of1e−8 to1e−9, for float2
of 1e− 4 to 1e− 5, and for float of1e + 0). Thus,
our implementation is getting more stable results
with tighter bounds on the error than regular float-
ing point numbers.

5.3 Do/Undo Programs

In the do/undo programs, we consider multiple
kernels to handle different operations and their in-
verses. The programs consist of the iterative exe-
cution of an operation followed by its inverse us-
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Table 2. Results of a global summation for an array of 1,000 el ements summed using a single
thread on GPU. Different sorting techniques are used. The expected resul t is 0.

Sorting float double float2
Unsorted, shuffled (1) -4.8750e+00 6.1521e-09 -1.9423e-05
Unsorted, shuffled (2) -2.1250e+00 6.8585e-10 5.2670e-05
Unsorted, shuffled (3) 1.6250e+00 8.4459e-09 -4.3361e-05
Unsorted, shuffled (4) -5.0000e-01 -1.5134e-09 1.1444e-05
Sorted descending -7.0000e+00 9.3132e-09 0.0000e+00
Sorted ascending 7.0000e+00 -9.3132e-09 0.0000e+00

Table 3. Results of a global summation for an array of 1,000 el ements summed using 1000
threads on GPU. Different sorting techniques are used. The expected resul t is 0.

Sorting float double float2
Unsorted, shuffled (1) -4.8750e+00 6.1521e-09 -1.9423e-05
Unsorted, shuffled (2) -2.1250e+00 6.8585e-10 5.2670e-05
Unsorted, shuffled (3) 1.6250e+00 8.4459e-09 -4.3361e-05
Unsorted, shuffled (4) -5.0000e-01 -1.5134e-09 1.1444e-05
Sorted descending -7.0000e+00 9.3132e-09 0.0000e+00
Sorted ascending 7.0000e+00 -9.3132e-09 0.0000e+00

Table 4. Results of a global summation for an array of 1,000 el ements summed using 100
threads on GPU. Different sorting techniques are used. The expected resul t is 0.

Sorting float double float2
Unsorted, shuffled (1) -2.1250e+00 -5.1223e-09 0.0000e+00
Unsorted, shuffled (2) 0.0000e+00 3.1432e-09 6.9618e-05
Unsorted, shuffled (3) 1.0000e+00 -1.3970e-09 7.6294e-05
Unsorted, shuffled (4) 7.5000e-01 -1.8626e-09 -7.6294e-06
Sorted descending -3.0000e+00 0.0000e+00 0.0000e+00
Sorted ascending 3.0000e+00 0.0000e+00 0.0000e+00

Table 5. Results of a global summation for an array of 1,000 el ements summed using 10 threads
on GPU. Different sorting techniques are used. The expected resul t is 0.

Sorting float double float2
Unsorted, shuffled (1) -1.0000e+00 0.0000e+00 -1.2207e-04
Unsorted, shuffled (2) -6.2500e-01 1.2515e-09 1.2207e-04
Unsorted, shuffled (3) -7.5000e-01 -4.6566e-10 1.2207e-04
Unsorted, shuffled (4) 5.0000e-01 -1.8626e-09 -9.1553e-05
Sorted Descending 8.0000e+00 4.4703e-08 3.0518e-04
Sorted Ascending -8.0000e+00 -4.4703e-08 -3.0518e-04

ing random numbers, e.g., the randomly gener-
ated operand x (or array of operands X) is itera-
tively multiplied and divided by a series of ran-
domly generated operands y (or an array of ran-
domly generated operands Y). The randomly gen-
erated operands x and y (or array of operands X

and Y) can be either positive or negative and are
randomly chosen within an interval whose max-
imum absolute value is defined by a seed. Fig-
ure 7(a) shows the general program framework
and Figure 7(b) shows an example of our syn-
thetic program for the multiplication and division.
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General Code Example op = * and opˆ{-1} = /

x = (+/-)rand(seed) x = rand(seed)
loop loop

y = (+/-)rand(seed) y = rand(seed)
x = (x op y) opˆ{-1} y x = (x * y) / y
print x print x

end loop end loop

(a) (b)

Figure 7. General framework of the suite program (a) and one s imple example with * and / (b).

The randomly generated values help to emulate
the energy fluctuations in MD simulations.

For our assessment, we generated a random x,
then repeatedly multiply and divide it by a ran-
dom y each iteration. We performed this com-
putation with 1,000,000 iterations and we consid-
ered different ranges of x and y:

• Trial 1: x = (1, 100), y = (1, 100) - Fig-
ures 8(a) and 8(b)

• Trial 2: x = (1e5, 1e6), y = (1e− 6, 1e− 5)
- Figures 8(c) and 8(d)

• Trial 3: x = (1e− 6, 1e− 5), y = (1e5, 1e6)
- Figures 8(e) and 8(f)

We performed our tests on one GPU of the Tesla
S1070 system with single and double precision as
well as with our composite precision. We mea-
sured both accuracy (in terms of drifting as the
simulations evolve) and performance (in terms of
the total time needed to execute the 1,000,000 it-
erations on the GPU). The iterations were per-
formed using a single thread. We also consid-
ered two different scenarios: in a first scenario x
was multiplied by y and then divided; in a second
scenario x was divided by y and then multiplied.
Figure 8 shows the results and associated drift-
ing. Independently from the range of the x and y
values and from the order of the operations (mul-
tiplication followed by division or vice versa), for
single precision computations, we observed the
same drifting as in MD simulations shown in Fig-
ure 1. For double precision, we do not observed

any drifting, probably because of the too small
number of iterations and the larger number of bits
used to represent the values. In all cases, our com-
posite precision significantly corrects the drifting.
However, our composite precision multiplication
and division operations are still not commutative;
indeed, there are different results depending on
the ordering of these operations. This is caused
by the error calculations in the multiplication and
division codes. To find the error for divisions, we
calculate the difference between the initial param-
eter x, and x after one iteration of y*x/y. For
multiplications, on the other hand, we multiply
the errors together from the previous run. Since
the division code scales down the error, while the
multiplication scales up the error, we get differ-
ent results depending on the ordering. Note that
the error itself has errors, and therefore scaling in
different directions can still affect the final result.

An important aspect of our approach is the cost
of improving numerical reproducibility and sta-
bility. For the three trials in Figure 8, we mea-
sured and compared the time to run the 1,000,000
iterations with different precision, i.e., single pre-
cision, double precision, and composite preci-
sion. The results of these tests are shown in Ta-
ble 6. As expected, for our synthetic do/undo
programs, double precision is, on average, 182%
slower than single precision floating point arith-
metic. This is even worse, as seen in Figure 1, in
actual applications such as our MD codes. The
prohibitive cost of double precision computations
(three times slower than single precision calcu-
lation) does not justify the associated accuracy
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(a) Op = ∗, Op−1 = ÷ Range:x = (1, 100), y =
(1, 100)
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(b) Op = ÷, Op−1 = ∗ Range:x = (1, 100), y =
(1, 100)
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(c) Op = ∗, Op−1 = ÷ Range: x =
(1e5, 1e6), y = (1e − 6, 1e − 5)
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Figure 8. Accuracy of do/undo program with iterative execut ion of multiplications and divisions.

for routine scientific applications. On the other
hand, the reduced computational efficiency due to
our composite precision is marginal (7% in av-
erage) while the accuracy is comparable to the
double precision accuracy, demonstrating that our
approach allows us to combine double precision
accuracy with single precision performance. The
values in the table are average values and each test
was repeated three times.

6 Related Work

Numerical reproducibility and stability for
chaotic applications was addressed for massively
parallel CPU-based architectures in [9]. The
work in [9] does not address emerging high-
performance paradigms such as GPU program-
ming and their novel architectures. An ap-
proach similar to ours was theoretically suggested
in [14]. We build our work upon these two con-
tributions with MD simulations as the targeted
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Table 6. Performance of the do/undo program with iterative e xecution of multiplications and divi-
sions.

Trial 1 Op = ∗, Op−1 = ÷ Op = ÷, Op−1 = ∗
Avg (s) Stdv (s) Avg (s) Stdv (s)

Single Precision 15.4 0.04 15.95 0.04
Double Precision 44.2 0.26 44.25 0.21

Composite Precision 16.71 0.03 16.97 0.02

Trial 2 Op = ∗, Op−1 = ÷ Op = ÷, Op−1 = ∗
Avg (s) Stdv (s) Avg (s) Stdv (s)

Single Precision 15.40 0.03 15.95 0.04
Double Precision 44.16 0.08 44.10 0.02

Composite Precision 16.71 0.04 16.96 0.01

Trial 3 Op = ∗, Op−1 = ÷ Op = ÷, Op−1 = ∗
Avg (s) Stdv (s) Avg (s) Stdv (s)

Single Precision 15.40 0.03 15.94 0.04
Double Precision 44.06 0.01 44.06 0.09

Composite Precision 16.74 0.01 16.94 0.03

large-scale numerically intensive applications.

Arbitrary precision mathematical libraries are a
valuable approach used in the 70s and 80s to ad-
dress the acknowledged need for extended preci-
sion in scientific applications. As outlined in [12,
3, 2], high precision calculations can indeed be
achieved using arbitrary precision libraries and
these libraries can solve several problems, e.g.,
correct numerically unstable computation when
even double precision is not sufficient. Existing
libraries target CPU platforms. Most libraries are
open source, e.g., MPFR C library for multiple-
precision floating point computations with correct
rounding under LGPL (http://www.mpfr.org/) and
the ARPREC C++/Fortran-90 arbitrary precision
package from LBNL (http://crd.lbl.gov/ dhbai-
ley/mpdist/). One critical aspect of these libraries
is their complexity. Our approach targets GPUs,
is simpler to implement, and can be easily inte-
grated in existing CUDA codes.

7 Conclusion and Future Work

In this paper we show how numerical repro-
ducibility and stability of large-scale numerical
simulations with chaotic behavior such as MD
simulations is still an open problem when these
simulations are performed on GPU systems. We
propose to solve this problem using composite
precision floating point arithmetics. In particu-
lar, we present the implementation of a composite
precision floating point library and we show how
our library allows scientists to successfully and
easily combine double precision accuracy with
single precision performance for a suite of syn-
thetic codes emulating the behavior of MD simu-
lations on GPU systems.

Overall, our tests on synthetic codes reproduc-
ing MD behavior outline more accurate results
than with simple single precision (improving the
accuracy of up to 5 orders of magnitude) with
almost no loss in performance (7% with our li-
brary versus 182% with double precision). Work
in progress includes the integration of our library
in MD codes.
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