
Evaluating a Software Word Usage Model for C++

Sana Malik, Emily Hill, Lori Pollock, and K. Vijay-Shanker

August 17, 2009

Abstract

Currently, there are many automatic and semi-
automatic tools to expedite software maintenance;
however, most of these tools rely solely on the struc-
tural model of the program, while disregarding any se-
mantic information from the natural language used by
the programmer. In previous work towards solving this
problem, we develepod a Software Word Usage Model
(SWUM) for Java. SWUM enables software engineer-
ing tools to apply linguistic relations between words to
form a more complete interpretation of the program.
Although SWUM is currently defined for Java, we be-
lieve that SWUM is capable of representing programs
in different programming languages. This paper fo-
cuses on investigating the generality and extensibility
of SWUM for programming languages beyond Java.
The potential structural, semantic, and syntactic mod-
ifications of SWUM for other languages were examined,
particularly analyzing the differences between Java and
C++. We evaluated the effectiveness of the phrases
generated from SWUM for C++ code, and modified
the SWUM construction algorithm to handle C++ fea-
tures as needed.

1 Introduction

Throughout the life cycle of an application, between
60-90% of resources are devoted to modifying the ap-
plication to meet new requirements and to fix faults [2].
With program code growing larger and more complex,
software developers need automated software engineer-
ing tools to reduce this high maintenance cost. Cur-
rently, there are many automatic and semi-automatic
tools meant to expedite software maintenance. How-
ever, most of these tools rely solely on the structural
model of the program, while disregarding any seman-
tic information from the natural language used by the
programmer in comments and identifiers.

During software development and maintenance, hu-
man programmers read and modify the code that they
and others produce, creating code artifacts that are
readable as well as runnable [8]. While the program-
ming language syntax and semantics convey the algo-
rithm to be executed, the identifier names and com-

Source Code

public void handleError(String e) {
Logger.printError(e);

}

Model of Program Words and their Relationships
(parse trees, semantic or thematic roles, etc.)

Ne, Ae, Es, Ls

handleError printError
invokes

caller callee

r ∈ Ne t ∈ Ne
a ∈ Es

Nw, Aw, El, Ll

x ∈ Nw y ∈ Nw
d ∈ El

print error

verb noundirect
object

g ∈ Eb

Model of Program Structure
(Selected nodes from AST, PDG, Call Graph, etc.)

f ∈ Eb

handle error

verb noundirect
object

u ∈ Nw v ∈ Nw
c ∈ El

Figure 1: SWUM captures program word relationships
and links them with program structure.

ments express the higher-level conceptual algorithmic
steps and domain concepts behind the implementation.
For example, from the method name buildQueryFor-
Trace, we can infer that the method’s implementation
will construct (i.e., build) a query for a trace. The
comment provides further elucidation: “Build the sql
query string for tracing.” Thus, concepts, or ideas, be-
hind the implementation are expressed through words
found in comments and identifiers

In previous work [4], we introduced a general Soft-
ware Word Usage Model (SWUM) that captures the
conceptual knowledge of the programmer as expressed
in both linguistic information and programming lan-
guage structure and semantics. SWUM enables soft-
ware engineering tools to leverage rich linguistic infor-
mation in the form of phrasal concepts, as opposed to
current implementations, which treat a program as a
“bag of words” with no relationships. Instead, SWUM
uses phrasal concepts, concepts expressed as a sequence
of words [5], to link related words together. For exam-
ple, this is particularly beneficial in program search.
Consider searching for “add item” in a shopping cart
application; a bag of words approach would return ir-
relevent results that contain either “add” or “item”
anywhere within the method, whereas SWUM would

1

Signature SWUM Linguistic Model Example Phraseverb DO IO
void Circle::Draw () draw circle draw circle
circle.MoveTo(new x, new y) move circle new x, new y move circle to new x, new y
library.AddTrack(string aSource) add track a source, library add track from a source to library
void SetAllSidesTo(int aValue) set all sides a value set all sides to a value
bool isLink(string aContent) check a content check if a content is link

Table 1: SWUM extracts linguistic information comprised of a verb, direct object, and indirect object to form
phrasal concepts. Phrases are derived from the extracted phrasal concept.

rank those results where “add” and “item” are linguis-
tically related in one phrasal concept higher than oth-
ers.

Although SWUM is capable of representing all pro-
gramming languages, it is currently implemented only
for Java. The potential structural, semantic, and syn-
tactic differences with other languages must be exam-
ined to generalize SWUM beyond a single language.
In this paper we analyze the differences between Java
and C++, modify the SWUM construction algorithm
to work for C++, generalize the SWUM model, and
present an evaluattion plan.

2 Overview of SWUM

In general, SWUM captures program word relation-
ships and links them with program structure. The ba-
sic structural building block of SWUM is an abstract
syntax tree (AST). An AST is a representation of the
syntactic structure of a program with nodes containing
semantic information about the programming language
constructs and edges representing hierarchal relations
between these constructs [1]. On top of this program
structure, SWUM overlays a linguistic layer comprised
of verb, direct object, and indirect object relations to
form phrasal concepts, as shown in Figure 1.

Formally, a software word usage model (SWUM) for
a program P is a tuple consisting of two types of nodes
(N) and three sets of labels (L). The two types of nodes
are program element nodes, which contain syntactic in-
formation from the AST, and word nodes, which rep-
resent the words used in comments and identifiers in
the program element nodes. In general, a label ∈ Ll

represents a word relationship, which can be a word de-
pendency or ontological relationship, such as the “is-a”
relationship.

To model phrasal concepts, SWUM uses three differ-
ent types of linguistic edges and labels: word dependen-
cies (different verb phrase structures), “is-a” relation-
ships, and edges inferred from the AST. To construct
these edges and correctly label them, knowledge of both
English grammar and program structure is necessary.
For example, verbs often take both direct and indirect

objects. Understanding the fact that verbs take ob-
jects prompts us to look for these objects when they
are missing from a method name, e.g., formatVersion-
.compareTo(version). In this example, the verb “com-
pare” takes the direct object “format version” and the
indirect object “version”. While knowledge of English
grammar informs us to look for the missing objects,
knowledge of program structure tells us where to look.

3 Taking SWUM from Java to
C++

There are various factors we considered in applying
SWUM to C++ versus Java. Specifically, there are
syntactic, semantic, and stylistic differences found be-
tween the two programming languages. For exam-
ple, we had to investigate inherent language differences
such as different keywords between the languages and
program structure, as well as user differences such as
naming conventions.

3.1 Extracting the Model

In order to see how SWUM can be applied to C++
code, we first had to extract an AST for the C++ pro-
gram since this is the underlying layer of SWUM. We
used the Eclipse C++ Development Tools (CDT) to
parse the program and create the AST. The current
SWUM implementation for method signatures uses a
template that takes as input the method name, re-
turn type, parameter names and types, whether it is
a boolean function, and whether it is a constructor, as
shown in Figure 2. To take SWUM from Java to C++,
this information needs to be extracted from the C++
AST.

Implementation To do this, we created a SWUM
information collector in the form of an AST visitor that
visits each program node. Depending on the node type,
the visitor traverses its children to find the information
needed for input to SWUM. One major difference be-
tween the Java AST and C++ AST is the way the
trees ares structured. For the Java AST, all paramters

2

extractMethod(name, type, parameterNames[], parameterTypes[], isConstr, isBool, isStatic)template

C++ method signature Method ProcessData(char* aBuffer, int aCount)

Figure 2: The current SWUM implementation for method signatures uses a template that takes as input the
method name, return type, parameter names and types, whether it is a constructor, whether it is a boolean
function, and whether it is a static function.

and their types were readily available from the Java
AST, but there were some challenges in translation for
C++. For example, function definition nodes contain
information on the name of the function only, but a
child node contains information on the function’s pa-
rameters.

Using this visitor to retrieve raw infrormation, we are
able to use the existing SWUM implementation and its
methods, and use its output to directly compare results
of its performance on C++ versus Java.

3.2 Analyzing Output

The next step is to run the SWUM extractor on the
C++ AST. Given the method signature, the SWUM
extractor creates a model of the phrase including the
verb, direct object, and indirect object. The model
output by SWUM’s current implementation can be in-
terpreted as a phrase. For example, the method sig-
nature void Circle::MoveTo(int newx, int newy) has the
verb “move,” direct object “circle,” and indirect ob-
jects “new x” and “new y.” This would yeild the phrase
“move circle to new x, new y.” The phrases derived
from SWUM’s model enable us to analyze its effective-
ness in a concrete manner.

To analyze SWUM on C++, we conducted a man-
ual analysis of the accuracy of the extracted phrases.
We determined which constructs were handled cor-
rectly by SWUM, in addition to what changes must
be implemented to make the phrases more accurate.
We iterated this process over a variety of C++ pro-
grams, starting from very small and simple programs
with very few elements and eventually expanding to
programs that covered most of the major features of
C++. The programs included the web browser Mozilla
with 3,042,083 lines of code, the music player Songbird
with 372,731 lines of code, and video client VLC with
600,000 lines of code.

The most notable difference is the structure of classes
in Java versus C++. In Java, everything is a class or
must be contained within a class. However, in C++
there may be free-floating methods or variables that

do not belong to a specific class. This is an issue for
SWUM because SWUM uses the containing class as the
direct object when available. As seen in Section 2, the
direct object is an integral part in modeling linguistic
relations in SWUM, so determining the direct object
for free-floating C++ programs was a challenge. We
found that there were two cases of free-floating method
signatures that SWUM could not yet handle: out-of-
scope method definitions that included the namespace
in the signature and generic functions in the file. Our
solution for the former was simple; we simply extracted
the scope name from the method name, which were sep-
arated by a pair of colons (::). Those functions defined
outside any class were more difficult. We had to con-
sider what the best direct object in this case would be
as a replacement to the class. We found that often the
filename also gave clues about the function or method,
so we substituted the name of the file for the declaring
type.

Next were the implications that certain keywords
have. Certain keywords can have an impact on the ex-
tracted model. For instance, SWUM handles the static
keyword as a special case because in Java, static means
that no class variables are used in the function other
than constants. This implies that the method is inde-
pendent of the class and will not make any changes to
the class. For SWUM this means that the class is nei-
ther a direct nor indirect object to the function, and
that SWUM must look elsehwere to extract this infor-
mation, such as in the parameters. Since static has the
same meaning in both Java and C++, this does not
need to be changed in the implementation for C++.

In contrast, the virtual keyword, which indicates that
a method in a base class may be overridden by its sub-
classes, changes how SWUM behaves for Java versus
C++. In Java, this is the default for methods and
there is no keyword. In C++, however, these functions
must be explicitly stated as virtual. This affects how
SWUM resolves method invocations.

Constructors are another special case in SWUM and
are treated as a “create” or “construct” action. In both
Java and C++ these are methods that have the same

3

name as their class and have no explicitly stated re-
turn type, which makes them easy to identify. C++,
however, has another type of method called a destruc-
tor which is essentially the opposite of a constructor.
Since Java has automatic garbage collection, this is not
needed and has not yet been implemented for SWUM.
Based on the fact that it is a background process in
Java, we added a case to separate out and disregard
all destructors since they do not add any contextual
information to the program.

The most similar feature of Java and C++ for
SWUM to handle were the return types of methods.
The AST of both languages had simple ways of extract-
ing this information from the tree, and once extracted
the information had the same implication. The main
concern with return types for SWUM is whether or not
it is a primitive type. Since C++ and Java have similar
primitive types, and the same naming conventions for
user-defined classes, it is easy for SWUM to identify
whether or not a return type is primitive.

4 Discussion and Reflection

In summary, we propose the following modifications to
SWUM for C++:

• Add case for classes defined outside of its class
scope.

• Add case for classes outside any class.

• Implement handling for virtual keyword

• Ignore destructors

When it comes to method signatures, SWUM for
C++ and Java are very similar. The differences be-
tween the two are mostly in the underlying program
structure and AST, so SWUM is minimally affected.
Using an AST visitor as an interface to the SWUM ex-
traction methods makes it easy to abstract away the
differences between the two languages. Furthermore,
as both languages are object-oriented there is no loss
of detail in translating from one language to the other.

5 Evaluation Plan

To evaluate the effectiveness of SWUM on C++ we
propose the following plan.

Experimental Design The effectiveness of SWUM
on C++ will depend on the accuracy and the com-
pleteness of the phrasal concepts it can extrct. We will
randomly select 100 method signatures from five pro-
grams: 0MQ, an instant messaging client; Chrome, a
web browser; Firebird, a database server; NeoMem, a

Program Lines of Code
0MQ 23,159
Chrome 1,700,000
Firebird 50,000
NeoMem 39,382
Xpdf 80,847

Table 2: Source lines of code in programs used in eval-
uation.

personal organizer; and Xpdf, a PDF viewer. The sizes
of these programs are in Table 2. Ten subjects will
each recieve 20 method signatures and will manually
extract the verb, direct object, and optional indirect
object from each signature. We plan to compare the
subject extracted phrases with the SWUM extracted
phrases in order to determine any areas that may need
improvement.

Threats to Validity Obtaining a completely ran-
dom sample of method signatures for the evaluation
would be a threat to validity because some of the sig-
natures may be too similar to accurately represent all
features of SWUM. To reduce this risk, we will examine
the signatures for diversity so we can ensure all features
of SWUM are being exercised.

Although determining part of speech is objective,
there may be differences between what the subjects
think the verb, direct object, and indirect object are.
Because of this, our results may be inaccurate. To re-
duce this risk, we will give the same signature to mul-
tiple subjects.

6 State of the Art

Going beyond the lexical concepts of words to phrasal
concepts can yield further improvements in software
maintenance tools, and this idea is supported by re-
cent work [3, 13, 14]. Although there has been some
work toward representing word relationships in code,
to our knowledge, no existing technique automatically
captures the lexical concept of a word in conjunction
with the context of its surrounding phrase. Some au-
tomatic techniques have been developed to capture co-
occurring word pairs [10, 11], but co-occurrences do
not capture any information about the nature of the
relationship between words beyond that the words oc-
cur together in the same context. In contrast, the V-
DO approach uses <verb, direct object> pairs from
method signatures and comments to find actions that
cross-cut object-oriented systems [13].

Another potential approach is to capture phrasal
concepts in source code with latent semantic analy-
sis (LSA) [7]. However, not only is LSA based on co-

4

occurrences, but the semantic concepts found by LSA
do not define phrasal concepts found in text—the con-
cepts are instead represented as a mathematical set
that may not correspond to anything expressible in lan-
guage.

In addition, an approach to automatic generation of
domain representations has been suggested for software
artifacts, but has not been applied to source code, only
documentation [9]. An alternative would be to auto-
matically identify topics in source code [6], and parse
the topics to derive word relationships. However, the
basic premise of this approach filters the topics based
on perceived importance to the system, and thus is in-
capable of capturing a complete set of phrases for the
entire system. Alternatively, reflexion models allow de-
velopers to map structural mental models of software
artifacts to the source code [12], but the focus is on
program structure, rather than linguistic information.

In summary, our work to extract phrasal concepts
and word relationships is fundamentally different from
prior work. No existing technique is capable of cap-
turing both the textual phrases and the nature of word
relationships required to model a variety of phrasal con-
cepts for a given segment of code. With SWUM, we
are attempting to capture the full context of a word
both within its phrasal concept as well as within the
structure of the program.

7 Conclusions and Future Work

As a result of this research, we have developed a C++
information collector that interfaces with the SWUM
model extractor. Additionally, the manual analysis of
the SWUM extractor on C++ programs has helped
develop a list of suggested modifications for SWUM to
behave more accurately on C++.

Our next steps are to expand SWUM to include
more features of C++ and explore additional programs
with varying naming conventions. In the future we
would like to investigate other programming languages
which SWUM could potentially model; in particular,
we would like to choose languages that are vastly differ-
ent than C++ or Java such as a loosely typed language
like Python.

References

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ull-
man. Compilers: Principles, Techniques, and
Tools (2nd Edition). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2006.

[2] L. Erlikh. Leveraging legacy system dollars for
e-business. IT Professional, 2(3):17–23, 2000.

[3] E. Hill, L. Pollock, and K. Vijay-Shanker. Au-
tomatically capturing source code context of nl-
queries for software maintenance and reuse. In
ICSE ’09: Proceedings of the 31st international
conference on Software engineering, 2009.

[4] E. Hill, L. Pollock, and K. Vijay-Shanker. Intro-
ducing a model of software word usage and its use
in searching java source code. In ICSE ’10: the
32nd international conference on Software engi-
neering, 2010. Under submission.

[5] R. Jackendoff. Semantic Structures. MIT Press,
Cambridge, MA, 1990.

[6] A. Kuhn, S. Ducasse, and T. Gı́rba. Semantic clus-
tering: Identifying topics in source code. Infor-
mation Systems and Technologies, 49(3):230–243,
2007.

[7] T. K. Landauer, D. S. McNamara, S. Dennis, and
W. Kintsch, editors. Handbook of Latent Semantic
Analysis. Erlbaum, Mahwah, NJ, USA, 2007.

[8] B. Liblit, A. Begel, and E. Sweetser. Cognitive
perspectives on the role of naming in computer
programs. In Proceedings of the 18th Annual Psy-
chology of Programming Workshop, 2006.

[9] J. Lloréns, M. Velasco, A. de Amescua, J. A.
Moreiro, and V. Mart́ınez. Automatic generation
of domain representations using thesaurus struc-
tures. Journal of the American Society for Infor-
mation Science and Technology, 55(10):846–858,
2004.

[10] Y. S. Maarek, D. M. Berry, and G. E. Kaiser.
An information retrieval approach for automati-
cally constructing software libraries. IEEE Trans-
actions on Software Engineering, 17(8):800–813,
1991.

[11] C. Manning and H. Schütze. Foundations of Sta-
tistical Natural Language Processing. MIT Press,
Cambridge, MA, USA, May 1999.

[12] G. C. Murphy, D. Notkin, and K. J. Sullivan. Soft-
ware reflexion models: Bridging the gap between
design and implementation. IEEE Transactions
on Software Engineering, 27(4):364–380, 2001.

[13] D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and
K. Vijay-Shanker. Using natural language pro-
gram analysis to locate and understand action-
oriented concerns. In AOSD ’07: Proceedings
of the 6th International Conference on Aspect-
oriented Software Development, 2007.

5

[14] D. Shepherd, L. Pollock, and K. Vijay-Shanker.
Towards supporting on-demand virtual remodu-
larization using program graphs. In AOSD ’06:
Proceedings of the 5th International Conference on
Aspect-Oriented Software Development, pages 3–
14, 2006.

6

