
Reducing Delay Time by Analyzing the Critical Path

Alison Buben
Computer Science Department, Indiana University of Pennsylvania

a.j.buben@iup.edu

Abstract - Error detection for online
circuits has been a topic of research for
many years. Some approaches are designed
for complete coverage, and others for added
detection that is very cost effective. Methods
that strive for the highest error detection in
online circuits (probability of detection), can
often have major delay time increases. This
paper discusses the idea of balancing both a
high probability of detection with low delay
times. It will be shown that a significant
reduction in delay is possible with only a
slight decrease in probability of detection.

I. Introduction

The idea of checking for errors in circuits has
always been a very important topic. However,
the ways errors are detected, and the total
percentage of coverage can vary dramatically.
My research was part of a project that intended
to provide some error detection for those who
don't need complete coverage or those who
only have limited hardware or resource
budgets. On an even more narrow scope, since
this research is trying to find the best way to
get the highest error detection while
considering the client's hardware or resources,
delay timing must be considered. In this paper
a method will be described to not only get a
high probability of detection (compared to a
similar approach conducted), but also take into
consideration delay, and to substantially
improve the delay times.

II. Related Work

There are many ways to check for error
detection, and these ways can range from parity
to hamming code, and even duplication of the

entire circuit. The research in this paper deals
with finding errors in the logic of a circuit. In
the past, approaches have used redundancy to
deal with errors in logic, but the approach used
in this paper deals with finding assertions or
gate level relationships [1].

The core of this approach deals with
identifying implications that tell what the
output of a gate must be when another gate has
a certain value. Simulations are run on circuits
to find all potential implications, and then the
best implications (covering the most area,
finding the most faults) are selected [2].

The main topic covered in this paper is
how to improve on this method by decreasing
delay time. Some previous work has been done
in this area by finding out how to convert an
implication file into a verilog file that can be
used in timing analysis. Scripts to convert an
implication file were created by Kundan Nepal,
and the original sorted implication files were
produced by Nuno Alves' Prime Implication
Algorithm (see [1], [2] or [3]).

III. Algorithm

Although there was a good algorithm to
get a sorted set of implications, this set did not
take into consideration the delay times. Thus, a
new, “modified” method was needed. After
testing several ideas, a series of selecting
techniques produced a new set of implications.
These implications yielded very similar
probability of detection results, with a decrease
in delay compared to their un-modified
counterparts.

This algorithm is noteworthy because it
finds a middle-ground between finding the best
possible probability of detection and delay. To
achieve a good balance in performance there

must be limits on what is allowed. Through
analysis of what delay times we obtained with
the prime implication algorithm and variations
on how many implications from the critical
path certain benchmarks contained, we realized
there was a way to decrease delay and lose very
little error coverage (or even gain some). Thus,
to keep delay down and still have reasonable
probability of detection, we focused on limiting
the number of implications on the critical path.

Figure 1 shows a flowchart representing
the various steps to get a new implication file
(the modified implication set). To start the
process, prime implications are needed, and
these are from a circuit's “sorted.imp” file.

Fig. 1. Flowchart to show the steps in the
modified method.

My modified method is a way to modify
the sorted implication file that was obtained
with the prime implication method, thus being
named the “modified prime implication
method.” To start testing different types of
methods, I made two scripts. One script,
report_to_list.pl, parses a report from Leonardo
Spectrum with the show nets option used, into a
list of nodes on the critical path. This list of
nodes on the critical path is what I call a
data.txt file, and is needed for the next script.
The next script, crit_path_mod.pl, uses the
data.txt file along with the sorted.imp file to
make a new implication file with the number of
critical implications (implications that use
nodes on the critical path) limited. For my
method, only keeping the first ten critical
implications in the new implication file worked
well. Through this method, the delay is usually
reduced, without causing the probability of
detection to decrease much. Since critical
implications are good for error detection, but
can really add to the delay, only allowing ten
critical implications in the new file seemed to
be a good balance.

I started out with the sorted implication
file (called prime implications), ran it through
Matlab and Leonardo Spectrum to get the
timing delay, and saved the report I got from
Leonardo. Then I took this report and parsed it
so I had a list of the nodes on the critical path.
From this list I could limit the number of
implications on the critical path and make a
new implication file. Then I made 10, 20 and
30 percent overheads from my newest
implication file and ran the probability of
detection with Fastscan and the timing delay
with Leonardo Spectrum.

With these modified implications, delay
time should decrease since every implication
on the critical path would not be used. Though
limiting the implications on the critical path can
decrease the amount of error detection, we
hoped that the new modified method would
only have minimal differences from the original
prime implications. We theorized that

Prime
Implications

Data from
Leonardo

File with

all the
Critical Nodes

Leonardo Timing
 Analysis

Selecting Nodes
From Critical Path

Limiting Critical
Implications

New
Implication

 File

decreasing the delay will prove to be more
critical than the amount of error detection lost.

IV. Results

Through timing analysis in Leonardo
Spectrum, and probability of detection in
Fastscan, the results of the modified method
were able to be compared against the original

set of implications. Each benchmark circuit
was divided into percentage overheads, with
the overhead relating to the total number of
gates in the circuit. In Figure 2. the ten circuits
are displayed, along with a comparison
between the original (non-modified) and
modified methods. Only overheads 10 % –
30% are displayed.

 Fig. 2. Comparison of the original and the modified implications in regards to delay.

 Fig. 3. Comparison of the Prime Implication algorithm and the modified Prime Implication
 algorithm for Probability of Detection.

Figure 2 shows the comparison of
original and modified implications in regards to
delay. The numbers are presumably in
nanoseconds. The difference between the two
methods might appear miniscule at times,
however, this can actually make a major
difference. Initially, the delay of our sorted set
of implications was calculated by Leonardo

Spectrum, and then it was compared to the
delay of our new modified set to see the
difference (also by Leonardo Spectrum).
Notice that the results are as expected: the
delay decreases as the number of implications
on the critical path are limited. Although there
are a few places where the modified
implication set has more delay, overall it has a

c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c6288 c7552

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00
Comparision of Probability of Detection

10% Original 10% Modif ied 20% Original 20% Modif ied 30% Original 30% Modif ied
Circuit%

 In
cr

e
a

s
e

 in
 P

ro
b

a
b

ili
ty

 o
f D

e
te

ct
io

n

 Circuit 10% Original 10% Modif ied 20% Original 20% Modif ied 30% Original 30% Modif ied

 c432 3.39 3.36 3.43 3.39 3.53 3.41

 c499 2.57 2.59 2.61 2.64 2.73 2.68

 c880 2.28 2.20 2.43 2.24 2.59 2.26

 c1355 2.50 2.48 2.60 2.58 2.69 2.74

 c1908 3.44 3.33 3.58 3.41 3.74 3.56

 c2670 3.83 3.80 3.98 3.81 4.05 3.82

 c3540 4.55 4.53 4.82 4.72 4.98 4.89

 c5315 3.81 3.81 3.89 3.89 3.90 3.86

 c6288 13.23 13.11 14.01 13.87 14.96 14.50

 c7552 3.35 3.35 3.59 3.53 3.84 3.63

greater decrease in delay than the original
prime implication set.

One can see the results of comparing
the prime implication algorithm and the
modified prime implication algorithm for
probability of detection in Figure 3. Usually
the probability of detection decreases when
implications on the critical path are limited.
Looking at the results, the probability of
detection does not decrease for all the
benchmarks; for some it will stay relatively the
same or even increase. When all the data are
compared, there is no difference between the
original and modified implications greater than
10%, with 1.6% being the average difference.
This shows that even though the modified
method has a delay decrease, it is still very
similar to the results the original method
achieved.

V. Conclusions

In this paper a new approach was
presented that takes into consideration the need
for a balance among high probability of
detection and low delay time. The research has
shown that limiting the number of critical
implications in each set of overheads can
produce better delay times with hardly any
reduction in probability of detection. The need
to further refine work is imperative. New
research topics are always needed, but they
should first fully consider all available
possibilities.

REFERENCES
[1] K. Nepal, N. Alves, J. Dworak, and R. I. Bahar,
“Using implications for online error detection,” in ITC,
October 2008.

[2] N. Alves, K. Nepal, J. Dworak, and R. I. Bahar,
“Detecting errors using multi-cycle invariance
information,” in Design Automation and Test in Europe
(DATE), April 2009.

[3] N. Alves, K. Nepal, A. Buben, J. Dworak, and R. I.
Bahar, “A Cost Effective Approach For Online Error
Detection Using Invariant Relationships,” Work in
Progress.

