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ABSTRACT 

 Morse decomposition is an effective technique for analyzing the topological structure 
vector fields in a reliable manner. Using Morse decomposition to form a Morse connection graph 
(MCG) yields results that are not susceptible to small perturbations in the vector field like noise, 

the underlying mesh structure, or the type of interpolation scheme used to find the edges between 
triangles. This is in contrast to the techniques used to find individual trajectories like fixed 

points, separatrices and periodic orbits, which can be quite different even when the vector field is 
changed slightly. Because of the stability gained from Morse decomposition, results from an 
MCG may be examined with much greater assurance that the underlying structure of the field 

has been correctly identified. This has been shown to work on vector fields, and we would like to 
suggest that the same techniques could be applied to tensor fields even higher degree N-RoSy 

fields. 
 
INTRODUCTION 

 When analyzing the topology of vector fields, extracting individual trajectories such as 
fixed points, separatrices and periodic orbits is unreliable. Those trajectories may be impacted by 

the way the mesh is constructed or even by noise. To obtain a higher degree of assurance in the 
results, Morse decomposition may be used to construct a Morse connection graph (MCG), which 
reveals areas of topological interest on a broader level than extracting individual trajectories. 

These techniques are explored by Chen et al. [1] and will be discussed at a greater length in the 
background. 

 The goal of this project was to take the techniques used in [1] and apply them to 4-RoSy 
fields. However, due to time constraints and unexpected results, we scaled back the project to 
examine the results of Morse decomposition on tensor fields.  

 
BACKGROUND 

 
Morse Decomposition 

 Topologically speaking, there are three types of features that are analyzed, and they are 

fixed points, separatrices and periodic orbits. Furthermore, there are three main types of fixed 
points: sources, sinks and saddles. Examples of each of the basic features can be seen in Figure 

1. When there exist a source and a sink in close proximity, a dipole is formed (Figure 2), and if  
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the field is reflected, the dipole becomes a monkey saddle (Figure 3), which is the simplest type 
of saddle that can be found in tensor fields.  
 To find the features of the field, Morse decomposition techniques are used to build a 

Morse connection graph. Essentially, every triangle is treated as a node in the graph. The vector 
at that particular triangle indicates the flow, and the triangles are connected in a directed graph 

called the entity connection graph (ECG) based on the flow vectors. Morse decomposition breaks 
down the ECG into its strongly connected components. These components become the new 
nodes and edges are consolidated so that there is only one unique edge originating from a 

particular component and ending at another specific component. The process of building the 
graph is detailed in [1]. 

Figure 1: A source (left) is a fixed point where all flow directions are going out from the 
point and none are coming in to the point. Similarly, a sink (middle) is a fixed point where 

all of the flow directions are coming in to the point and none are going out. A simple saddle 
(right) is neither a source nor a sink. With a saddle, half of the flow direction is coming into 

the point and half is going out of the point.  

Figure 2: A dipole (left) is formed when a source and a sink are located near one another. 

The source is denoted by the green point and the sink is shown as the red point.  



 There are several different techniques that can be used to build MCGs. The first to be 
explored was the geometry-based method; however, its results are generally coarse and may 

group several elements into one set. To refine this model, the Chen et al. introduced the τ-based 
method [1]. This method traces the flow for a certain time step, τ. Because of the introduction of 

the time step, the τ-based method results in smaller, more refined invariant sets, thus revealing 
more information about the topological structure of the vector field.  
 

 

 
 

 
 
 

 
 

 
 
 

 
 

 

 
 

Figure 3: After reflecting the field that contained the dipole in Figure 2, the dipole becomes 

a monkey saddle. The left image shows the monkey saddle actually consists of two saddle 
points, and they are drawn with their separatrices. The image to the right shows the monkey 

saddle after geometry-based Morse decomposition has been run on the field. The two blue 
regions represent a Morse set and indicate that at least one fixed point (in this case, a 
saddle) is located within those triangles. The dotted region indicates that the two sets are 

connected. In the image to the left, the two points appear to be connected; however, 
methods for extracting individual trajectories are susceptible to small perturbations in the 

vector field so that connection may not actually exist. The Morse decomposition provides a 

higher degree of confidence that there is a connection between the two points.  

Figure 4: (left) A cut graph of the covering 

space of the primary sphere model used in this 
project. This field was obtained by creating a 

tensor field with two trisectors on the sphere 
model. The goal was to use Morse 
decomposition to see if the two monkey 

saddles, which can be seen here, actually 
connect. However, the monkey saddles were 

not detected by the program so the results of 

Morse decomposition may be incorrect.  



 
 

  

 

Figure 6: Note that this series of images were 
generated on a vector field. (a) Two monkey 
saddles in close proximity, drawn with 
separatrices. (b) The same two monkey saddles 
after geometry-based Morse decomposition was 
performed on the field. This demonstrates how 
course the decomposition is because both saddles 
are contained in the same Morse set. (c) The same 
field after τ-based Morse decomposition is 
performed (τ = 40). This decomposition shows 
each simple saddle in its own Morse set. The blue 
dotted region shows the connection between each 
of the simple saddles and the green dotted region 
shows that the two monkey saddles are actually 
connected. 

 
 

N-RoSy Fields 

 We would like to find a way to apply techniques from Morse decomposition of vector 

fields to N-RoSy fields. N-RoSy fields give a way to describe a model in such a way that the 

Figure 5: (Right) shows a cube covering space over 

the sphere model resulting from a 4-RoSy field. The 
fixed points are marked with white spheres. The top 
left fixed point is drawn above the model instead of 

being placed on the surface of the model. The other 
two fixed points shown here are also drawn above 

the surface of the model. Their coordinates are 
incorrect and so the results of Morse decomposition 
with this program also have a high probability of 

being incorrect. 

(a) (b) 

(c) 



field is invariant under integer rotations of  [2]. By utilizing Morse decomposition on N-RoSy 

fields, it would be possible to learn whether or not certain features were connected and this could 
lead to better fields. 

 
RESULTS 

 For this project, we generated several different covering spaces for a 2-RoSy field—a 
tensor field—and a 4-RoSy field on a sphere model. In the covering space, the areas in the field 
where there are trisectors become monkey saddles (Figure 3). These should be detected as a type 

of fixed point during the Morse decomposition. We modified the visualization section of the 
program developed for [1] and used it to perform Morse decomposition on our models. 

Interestingly, it was unable to locate the fixed points on any of the covering spaces generated 
from 2-RoSy fields (Figure 4) and placed the fixed points in unexpected locations on the 
covering space generated from the 4-RoSy field (Figure 5). 

 The most surprising results came from analysis of the model seen in Figure 4. The field 
that was generated contained two trisectors, which means that in the covering space they become 

two monkey saddles. We were hoping to be able to find, through the use of Morse 
decomposition, that the monkey saddles do connect in the covering space just as they do in a 
vector field as seen in Figure 6. However, since the program did not even detect the presence of 

the monkey saddles, the results of the Morse decomposition cannot be relied upon either.  
 Because of time constraints, we were unable to fully find an answer as to why the 

program was not finding fixed points. In spite of that, the results so far indicate that this subject 
should be studied more completely. It still appears that techniques used on vector fields could be 
applied to tensor and higher degree N-RoSy fields. 
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