
Working Title

Adam Fidel, Lena Olson, Antal Buss, Timmie Smith, Gabriel Tanase,
Nathan Thomas, Mauro Bianco, Nancy M. Amato, Lawrence Rauchwerger

Parasol Lab, Dept. of Computer Science, Texas A&M University
{afidel,lolson,abuss,timmie,gabrielt,nthomas,bmm,amato,rwerger}@cs.tamu.edu

Abstract

The Standard Template Adaptive Parallel Library (STAPL) is a su-
perset of C++’s Standard Template Library (STL) which allows high-
productivity parallel programming in both distributed and shared mem-
ory environments. This framework provides parallel equivalents of STL

containers and algorithms enabling ease of development for parallel sys-
tems. In this paper, we will discuss our methodology for implementing
a fast and efficient matrix multiplication algorithm in STAPL. Our imple-
mentation employs external linear algebra libraries, specifically the Basic
Linear Algebra Subprograms (BLAS) library which includes highly opti-
mized matrix operations. The paper will describe the benefits of creating
a parallel matrix multiplication algorithm whose library calls are special-
ized based on both the matrix storage and traversal. This specialization
technique ensures that the most appropriate implementation in terms of
data access and structure will be used, resulting in increased efficiency
compared to a non-specialized approach.

1 Introduction

Parallel libraries such as the Standard Template Adaptive Parallel Library
(STAPL) allow developers to focus their programming efforts on higher-level ab-
stract issues, rather than the intricacies of the parallelization itself. By providing
a standard set of operations and procedures to the programmer, parallel code
can be produced in a manner comparable to the development of sequential pro-
grams. With this in mind, we sought to incorporate a matrix multiplication
algorithm which took advantage of parallelization in a way that is transparent
to the end developer.

In STAPL, one of the major components is the pAlgorithms, which are the
direct equivalents of STL’s sequential algorithms. The input for these algorithms
includes a view, which is an abstraction of the data access, and a work function
which specifies the operations to be executed on the data. In the case of matrix
multiplication, a view can be taken over an entire row, an entire column or a
block of both rows and columns.

1



2 Background

Matrix multiplication is a key part of many applications within scientific com-
puting, where matrices can also be very large. For this reason, it is important
that a parallel framework be able to handle distributed matrix multiplication in
an efficient way. The manner in which the data is stored should also be flexible,
in order to fit the needs of various applications.

For serial matrix multiplication, BLAS can be used. BLAS contains a number
of highly optimized subroutines, including the level 3 subroutine general matrix
multiply (gemm). By basing a parallel implementation on gemm, it is unnecessary
to optimize the serial multiplication, instead relying on BLAS to provide an
efficient implementation.

3 Proposed Method

Each matrix can be stored in block-band format in one of two directions, hence
there are eight combinations of data partitioning possible. A different algorithm
is needed for each case, because the data locality determines which of the three
matrices should be rotated, as well as which elements to multiply and where to
store the result. However, six of these algorithms are very similar; only when the
matrices to be multiplied are stored partitioned row-wise and the result is stored
partitioned column-wise, or vice versa, is a substantially different algorithm
needed. For purposes of this paper, we will explain in detail one example: the
case where A is partitioned row-wise, B is partitioned column-wise, and C is
partitioned row-wise.

FOR 1 to num_procs
multiply sub-blocks of A by sub-blocks of B using gemm
store result in C
rotate sub-blocks of B

END FOR

Figure 1: Our algorithm

In addition to the eight algorithms discussed above, each algorithm also has
several specializations. Currently, there are specializations for when local blocks
are stored in either row-major or column-major ordering. These specializations
simply determine the correct values and transpose flags to pass to the gemm call.
In the future it may be desirable to extend the algorithms to handle local blocks
stored in other formats, such as smaller blocks; this could be accomplished by
adding a new, more complicated specialization which would multiply smaller
blocks together.

2



Figure 2: Example of the roll algorithm

4 Experimental Results

3



(a) (b)

Figure 3: Execution time (a) and relative speedup (b) of several matrix multi-
plication specializations on P5-cluster (doubles)

5 Related Work

6 Summary

4


