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ABSTRACT 
 
 

The wallpaper group classification algorithm published in the paper “A Computational 
Model for Periodic Pattern Perception Based on Frieze and Wallpaper Groups” (Y. Liu, 
R.T. Collins and Y. Tsin, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, 
no. 3, pp. 354-371, March 2004) is the first computer algorithm for automatic frieze and 
wallpaper group classification for patterns in real images. In this report, we describe our 
effort on identifying the limitations of this wallpaper symmetry group classification 
algorithm. We document the improvements incorporated in the algorithm and code. This 
report also covers preliminary work done towards ideas for future research to further 
explore the space of symmetry or near-symmetry 2D patterns. 
 
This work is completed during the CRA Distributed Mentor Project summer research 
internship, June-August 2005, at the Robotics Institute, Carnegie Mellon University. 
Sravana Reddy is an undergraduate student from the computer science department of 
Brandeis University and the mentor Professor Yanxi Liu is an associate research 
professor of the Robotics Institute in Carnegie Mellon University.  
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1. Introduction  
 
Regular lattice structure and pattern symmetry have been inspiring theoretical models in 
mathematics and physics for a long time. In the late nineteenth century, it was proven that 
all periodic patterns in n-dimensional space can be classified as one of the n-dimensional 
crystallographic groups based on the underlying lattices and particular symmetries of the 
patterns. For patterns repeating along two linearly independent directions, there are 
seventeen crystallographic groups (known as wallpaper groups), and for patterns 
repeating along a single direction, there are seven crystallographic groups (known as 
Frieze groups). [1]  
 
The research done by my mentor in this field centers around computational detection of 
wallpaper and Frieze group patterns in images [2], [3], [4]. Besides being an interesting 
computer vision problem in itself, it has several implications in image indexing, gait 
pattern understanding, human cognition of patterns, and data compression.  
 
The algorithm presented in [2] for wallpaper group detection in 2-d images is the first 
computer algorithm implemented for frieze and wallpaper group classification on real 
images. The computational process of the algorithm can be briefly summed up as follows:  
 

1. A parallelogram lattice is found by matching peak points extracted from 
autocorrelation of the input image pattern.  

 
2. Then a median tile – the smallest generating unit of the pattern, found by taking 

the median pixel values of each tile – is found.  
 
3. The tile is then rotated and reflected about the necessary eight transformations and 

compared with the original image to detect which rigid transformations are 
symmetric. This yields the wallpaper group of the image’s pattern.  

 
However, the details of each of the above steps are sensitive to image noise, color 
information, and irregularities. As a result, the actual computational implementation 
requires each stage to be robust enough in dealing with a variety of images, which may 
not have the ideal color distribution for their pattern.  
 
Human vision tends to compensate for pattern irregularities rather well if the image is 
almost regular. At the level of both the eye (data-driven cognition) and the brain 
(constructivist cognition), lighting irregularities and image distortions are weighted 
against the overall perception of the general regularity. [5] However, the methods used in 
digital image processing differ in some basic ways from human vision.  
 
One of the main restrictions is that the techniques used, at least in the algorithms at hand, 
are linear, sequential, and to a large extent, independent of the input images. Thus, 
parameters at each stage need to be finely adjusted to tune out irregularities as much as 
possible.  
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Since there is more than one type of non-ideal image at each stage, this involves either 
building in error-handling approximations or error-contingent function branching. In 
improving the existing algorithm and code, we pursue both options.  
 
The main stages focused upon for improvement are the lattice and the symmetry 
detection algorithms. 
 
2. Improving the Lattice Detection  
 
The program by Liu et al., [2] finds potential lattice of a given image pattern using an 
autocorrelation method. It is based on a novel idea of region of dominance where the 
region (distance) to the next higher peak from each peak is considered more important 
than the absolute autocorrelation peak values in finding potential lattice points.  The 
algorithm takes progressively larger sets of peaks in the autocorrelation map from the 
center outwards in increments of 10 and finds the set whose valid lattice best matches the 
autocorrelation peak values.  
 
Since there is no way of picking the increment non-arbitrarily, moving in steps of 10 runs 
the risk of skipping some peaks that are significant in the lattice – or, conversely, taking 
stray peaks that lie outside the lattice intersection points.  
 
Further, the algorithm can be time expensive when a large number of peaks are detected. 
As the authors point out, “finding the maximal distance among all pairs of nearest 
neighboring peaks at each iteration… is costly in time.”  
 
Analyzing the time complexity of the algorithm:  
 
p = number of peaks  
 
Number of nearest neighboring pairs of peaks ≈ 2p  
 
Therefore, at best O(p log p) to find the maximal distance.  
 
If we take iterations in steps of 10, the number of iterations = p/10 

 
For each iteration: we have a complexity of O(n2) to find the displacement vectors 
and best lattice in a set of n peaks.  
 
Therefore, over p/10 iterations, it takes O(p3) time to find the best lattice.  

 
We present an alternate approach that is both faster, and more robust in dealing with 
displaced or missing peaks in the height (autocorrelation) map. The new algorithm also 
incorporates an automatic verifier of the computed lattice, an important tool for any 
lattice detection procedure.  
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2.1. A New Algorithm:  
 
Step 1: Finding the dominant peaks  

 
Find the dominant peaks in the height map and sort them by the region of 
dominance, as done in the original program.  
Set the initial dividing factor (henceforth called f ) to be 10.  
 

Step 2: Finding a lattice from a subset of peaks  
 

 1. Begin by taking the set of the most dominant p/f  points in the size p peak list. 
For each point, find the nearest (by distance) two points in the list.  

 
 2. Store the pair of vectors between the peak and these points.  
  
 3. Find the two vectors that occur the most over the whole set of peaks. This gives 

the vector-pair (t1 and t2) of a possible lattice.  
 
Step 3: Verifying the lattice  

  
1. ‘Cut’ out the bounding rectangle of the parallelogram defined by the vector-
pair found above, starting from the center of the image. Let’s call this the 
generating tile.  
 
2. Translate the outline of the rectangle found above along t1, - t1, t2 and - t2 
from the center.  
 
3. Compare the generating tile with the parts of the image bounded by the 
respective four rectangles found above. If the displacement vector-pairs t1 and t2 
are correct, the generating tile will be almost identical to each of the four 
rectangles. If all four correlation scores are high, we assume the displacement 
vectors are correct, and move on to the next stage. If not, divide f by 2. If f<2, 
quit3, otherwise go back to Step 2.  

 
The algorithm hence makes, at most, 4 iterations, progressively near-doubling the peak-
set. The reasoning behind this algorithm is similar to Liu et al: find the best lattice 
overlay on a peak set, iteratively increasing the size of the peak set. However, instead of 
beginning with 8 or 10 peaks and working our way up in multiples of 10, we begin with a 
tenth of the peak set and exponentially increase the size of the set which, for large sets, 
results in a smaller number of iterations.  

2.2. Complexity  
 

                                                 
3 It is inefficient to consider more than the most dominant half of the peaks. 
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In terms of the number of peaks p found by Step 1 (which is the same as the original 
algorithms’): Step 2 takes O((p/f)

2) to find the two nearest neighbor peaks, then find the 
two vector pairs that occur the most number of times over the set of displacement vectors. 
Step 3 takes constant time with respect to the size of the peak set. If we iterate over four 
peak sets, this is still only O(p2)  
 
It is immediately clear that for small peak sets, Lin et al’s algorithm is as good or 
preferable to the one proposed – it increases the peak set size more gradually and, hence, 
has a better chance of finding the correct lattice with an optimal set while our proposed 
algorithm might end up having to deal with a lot of redundant peaks at the stage when it 
finds the correct lattice. However, for a large peak set, that problem frequently occurs 
when the displacement vectors are small relative to the image size.  When the intensity 
range is small, our algorithm is a lot more time efficient. It is also better equipped to 
handle missing peaks in an otherwise near-regular distribution. 

2.3. Implementation  

 
In light of the above, the best middle ground would include both algorithms and use 
either one depending on the number of peaks found (the old one for a small number, and 
the new one for a larger peak set). We pick a threshold number of peaks – around 150 
(we noticed that this is the size after which the algorithm really starts slowing down).  
For peak sets of sizes less than 150, we use the old algorithm, and then check the lattice 
generated using the verifier outlined in Step 3 above.  
 
If the verification is not satisfactory or the peak set size is larger than 150 to begin with, 
we proceed with the new algorithm.  
 
2.4. Results  
 
Of the 190 images, the old program detected 42 incorrect lattices. The results from the 
new algorithm are shown below:  

Image 
Category  

Drawings Photographs 

Total 
Images 

75 115 

Wrong 
lattices from 
the old 
program 

5 37 

Wrong 
lattices from 
the new 
program 

4 29 
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Correct on 
previous 
failures 

2 19 

Wrong on 
previously 
correct 
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1 15 
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Figure 2.1: Comparison of lattice detection failures of old and 
new algorithms 

2.5. Limitations of the new algorithm  
 
From the results recorded in the table above. The “correct on previous failures” (19) and 
“wrong on previously correct detections” (15) seem to suggest that the new method may 
complement the old instead of being strictly better. The three main reasons this algorithm 
still fails on certain images are: 
 

1. The self-verification is done using SSD comparison between the central tile and 
its four lateral neighbors. However, this is not a perfect indicator of regularity. A 
pattern could be visually regular, but still contain certain deviations that result in 
an imperfect match between the tiles. Deviations could be in intensity 
(particularly in photographic images where the lighting is not uniform), in slight 
irregularity among tiles, or in spatial orientation; again, a problem in photography 
where there are perspective distortions. Thus, a correct lattice might fail to pass 
the verification test, resulting in smaller and less accurate lattices. The image 
shown in Figure 2.2 is one such instance. 
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Figure 2.2a: The image above has         Figure 2.2b: Thus, a satisfactory  
a very regular pattern tiling with         autocorrelation map is found, with 
few or no irregularities          potential to yield a correct lattice 
 

    
 

Figure 2.2c and d: However, tile translation along the correctly detected displacement 
vectors does not yield an exact match, due to subtleties in matches. The program 
believes the pattern is not regular over that lattice, and iteratively increases the peak set 
size, trying to find a ‘better’ match, resulting in more peaks than necessary (left) which 
then results in an incorrect lattice (right). 

 
 

Yet, it is clear that some sort of self-verification should be implemented to improve 
the dynamic efficiency of the program. Future work might improve upon this by 
either deciding on a threshold value that will more accurately indicate correctness or, 
better still, finding a time-efficient way to compare every tile with every other and 
averaging the match scores. 
 
2. For the sake of speed, we double the peak set size on every iteration. This runs the 

risk of skipping sets that are the best candidates for yielding the correct lattice. A 
better compromise between speed and efficiency – perhaps by improving the 
vector detection on an insufficient peak set – would be desirable. 
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Figures 2.3a and b: The autocorrelation map (right) on the image (left) is regular and 
a good set of peaks that generate the expected lattice can be found 
 

        
Figures 2.3c and d: However, after trying fewer peaks than required for the lattice, 
the program takes too many peaks (left), which yield shorter displacement vectors 
(right) than are correct  
3. The algorithm presented was aimed to correct a specific type of lattice failure, i.e. 

one where the autocorrelation has the potential to yield a good lattice, but fails to 
do so. However, there are reasons of failure that require a completely different 
approach – images where the autocorrelation itself is unsatisfactory owing to 
intensity or pattern distortions; take the edge-image discussed in Section 3.1 as an 
example. This requires a method that does not depend so much on autocorrelation. 
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Figure 2.4a: A pattern with a large amount of   Figure 2.4b: Such irregularities cause a  
color irregularity      highly inaccurate (or rather, undesirable)  

autocorrelation map 
 

   
 
  Figure 2.4c: It is, therefore, inevitable  Figure 2.4d: … which naturally results in 
  that a bad peak map will be found,   a poor lattice. The peak map does not 
  owing to the autocorrelation failure…  correspond in any way to the expected  

lattice and, thus, it is futile to try to find the 
displacement vectors using this map as a 
generator.  

 

3. Improving the Symmetry Detection  
 
The symmetry detection procedure assumes a chi-square noise distribution. The tile, as 
defined by the lattice, is rotated or reflected through each of the eight transformations and 
superimposed on the image. A symmetry on a rigid transformation exists when there is a 
good registration between the rotated/reflected tile and some part of the original image.  
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The program calculates relative correlations using a sum of squared difference (SSD) 
measure on the grayscale image. However, this is inefficient for certain kinds of images 
without the assumed noise and intensity distributions:  
 

 a. Those with large areas of homogeneity, so that only a small fraction of 
the tile (the edges) characterizes the symmetry  

 
 b. Those with near-symmetry, i.e., a very small, but visually 

distinguishable area of the tile is significant in negating a possible 
symmetry  

 
 c. Those with color ranges of ambiguous intensity, so converting into 

grayscale for comparison causes loss of color – and hence symmetry – 
information.  

 
a. and b. have similar problems: SSD weighs all pixels in the image equally. A large 
fraction of corresponding pixels will be interpreted as a good symmetry about the given 
rigid transformation, even if there are areas in the image that clearly preclude a symmetry.  
The problem with c. is that standard RGB to grayscale converters average the R, G and B 
values to get the intensity. This may result in intensity values that match closely even 
when the colors at those points are vastly different.  
 

3.1. Edge Weighted Symmetry Detection  
 
We begin by identifying images where the regularity of a pattern is primarily 
characterized by the edges. This involves performing a Sobel edge detection on the 
median tile and calculating the fraction of the edge pixels to the total area (henceforth 
called the ‘Edge Fraction’). A small fraction indicates what we shall term a ‘Rare Edge 
Image,’ one where the edge pixels weigh more than the rest in characterizing the pattern.  
 
Examining the Edge Fraction of several images, a threshold value is decided, below 
which symmetry detection is performed only on the edge image.  
 
There are two possible ways of comparing the edge image of the tile under 
rotations/reflections with the complete edge image. One technique is to use a simple SSD 
comparison. This is problematic because edge images are extremely sensitive to slight 
registration offsets. For one thing, the edge detection algorithm itself may not yield an 
edge image most compatible with the perceived symmetry. Further, even accurate edge 
marking might not cause the features to overlap perfectly in case of similarity.  
 
A better method, therefore, is the Chamfer edge registration/comparison method. This 
allows for errors in both edge detection and registration. Correct groups were detected for 
seven of the edge images using the Chamfer method. Unfortunately, it has a complexity 
of, at best, O(n2) in terms of the number of pixels n. Faster approximations to the 
algorithm are possible, including hierarchical and segmented variations; but it is hard to 
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score the metric appropriately. Thus, the simple Chamfer algorithm was implemented as 
well as the SSD, which takes over in case of very large images.  

3.2. Other Metrics  
 
Other measures of similarity were also implemented along with SSD, including 
correlation. However, these did not give very different results than SSD since they are 
essentially the same principle (pixel by pixel comparison).  

3.3. Score Interpretation and Clustering  
 
The symmetry detection methods give numerical score-values that should indicate the 
relative extents of similarity. The next step is to identify which of these scores indicate a 
good similarity and which do not. This is not a trivial problem, since the score range can 
vary widely depending on the type of image.  
 
The old code used a simple k-means (k=2) clustering to separate the scores. While this is 
the most efficient single algorithm for the purpose, it does fail on certain score 
distributions. (Of course, an ideal similarity measurement method would give clearly 
indicative scores, but that is an almost impossible target.)  
 
To improve the clustering, certain parameters were added. For instance, it was noticed 
that a lot of distributions that were clustered around 1 did not separate well under k-
means – a threshold of 1 is now used to cluster these distributions.  
 
A few learning algorithms were also applied to the distributions, but none gave much 
better results than the k-means.  

3.4. Nearest Possible Group Detection  
To compensate for the clustering problem, a little margin was added to the code that finds 
the group from the score-values. In most of the failures, the problem was with just one 
score being misclassified as indicative of a similarity (‘good’) or not (‘bad’). The code 
was extended to drop the worst score classified as ‘good,’ or take into consideration the 
best ‘bad’ score, then consider the group that these sets would yield. The results of this 
are output along with the rest of the scores and group predictions.  
 
 

3.5. Results  
 
Since we did not greatly alter the basic algorithm as much as add flexibility to it, no 
previously correct images were detected wrong after the changes. The results of the new 
procedures implemented are summarized below:  
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 Total 
Images 

Wrong on 
group 
detection 
with old 
code 

Number 
improved 
by 
clustering 

Number 
improved 
by edge 
detection  

Number 
of correct 
nearest 
possible 
groups  

Drawings  75  29  5  4  5  

Real 
Images  

115  41  10  7  4  

 

 
Figure 3.1: Results of modifying symmetry group detection segments 
  

4. Code Readability and Technical Corrections  
 
Various changes were made over the course of the project to improve the readability, 
speed and organization of the code as well as the output.  
 
An unnecessary nested loop for bulk pattern analysis was optimized into a single loop, 
thus reducing the running time by 1/the number of images. The scope of the input image 
formats was extended to jpg as well as bmp files. The output of the program is now 
generated as a set of well-organized html files with labels for the image analysis pictures 
and a clear indication of the group detection results.  
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The condition for P1 (no symmetry) was also found to be too liberal – a lot of score sets 
which indicated a symmetry separation were classified as P1 because of the lax variance 
margin. The condition for P1 is now set to checking if all the scores lie below 1 or above 
3, which does not give any false positives.  
 
Finally, a synopsis of the program’s individual functions and their organizational 
structure was documented into a “readme” file for future programmers working with the 
code.  

5. Wallpaper Group Detection in Patterns under Global Distortions  
 
An important follow-up to the work on symmetry group detection is the paper on patterns 
under affine transformations. [3] This is important in terms of extending the pattern-
classification method in question (i.e. based on group theory) to real world textures that 
are not necessarily photographed from an orthogonal perspective. The paper discusses the 
theory of ‘skewed symmetry groups’ for regular textures under affine transformations.  
 
A further extension of this concept is to consider regular textures under a curvilinear 
transformation and research the possible group-theoretic classification schemes on them.  
 
The first step to this is to find an approximate mesh of displacement vectors throughout 
the image. This could be done by using the techniques employed by Liu, Lin and Hays 
(2004), or by a repeated local autocorrelation peak finding algorithm and vector stitching. 
If it is known what class of transformations the image has undergone (spherical, 
polynomial, etc), the curves defined by the lattice points against a parallelogram set can 
be parameterized. This would yield the actual function defining the transformation and, 
hence, an inverse mapping back to a parallelogram lattice.  
 
While more than one mapping from the points on the transformed image to a set of points 
defining a lattice is certainly possible, it’s likely that there is a finite set of optimal 
regular lattices that the curved mesh can be mapped onto. Once the lattice has been 
‘straightened,’ we can perform symmetry group detection on the new straightened image. 
 
Unfortunately, time did not permit an in-depth exploration of this idea. Some preliminary 
code was written within the program to identify and map curves from sets of points. It 
might, nevertheless, be interesting to explore this further.  

6. Wallpaper Group Distribution of Drawings and Real World Images  
 
Aside from the actual program, we also examined the distribution of images among the 
17 groups. (The images are patterns taken from the Carnegie Mellon Near-Regular 
Texture Database4.) Do patterns tend to be clustered within a few groups or is there an 

                                                 
4 http://graphics.cs.cmu.edu/data/texturedb/gallery/ 
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impartial distribution? How does the distribution vary between photographs and images? 
What are the psychological (or in some cases, physical) reasons for the given 
distributions and bias? Are some groups inherently preferred among the popular existing 
patterns, and for what reasons?  
 
The figure below show the number of drawings hand-classified under each of the groups:  

 
 

 
 

Figure 6.1: Distribution of the 75 drawings in the database  
 
The fraction of P4M patterns is interesting. Since we are working with a relatively small 
data set, it is not possible to draw accurate conclusions about the occurrence of certain 
groups in patterned drawings in general.  
 
However, there are some conjectures that can be made. P4M patterns have a sort of 
‘square’ symmetry – they reflect across their edges and diagonals, and have 900

 
and 1800 

rotation symmetries. So it could be reasoned, for instance, that this kind of symmetry 
allows a viewing relatively independent of orientation, since the patterns stay invariant 
under four different viewpoints. A more important reason, however, could be the inherent 
neurological bias towards bilateral and higher order (four- or six-fold) symmetries. This 
also explains the distribution towards P2, P6M and CMM groups.  
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Since these images are made by hand, the same kinds of arguments that have been made 
about the functions of symmetry in art [11] can be extended to account for the pattern-
artist’s design preference for certain symmetric combinations.  
 
Consideration must also be given to the viewer’s preference. For the most part, no special 
attempt was made to have a uniform distribution of groups when collecting images for 
the database. Perhaps viewers who seek out symmetric patterns tend to look towards 
P4M-like patterns (since those symmetries are the most intuitive conception we have of 
symmetric visuals) and, hence, the size of their representation.  
 
The photographs of real textures also show a four-fold/axis-reflective bias, except that 
CMM and PMM are more prevalent than in the drawings.  
 
 

 

 
 
Figure 6.2: Distribution of the 115 photographs in the database  

 

7. Future Work  

 
7.1. Lattice Detection:  
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The automatic verifier now works by comparing the central tile defined by the lattice 
with the four tiles laterally adjacent to it, using an SSD comparison score. The limitations 
of this are similar to the limitations of the original program’s symmetry detection – SSD 
is not a reliable enough indicator of similarity. If the lattice found is wrong but the 
adjacent tiles thus defined are more or less similar, the verifier might fail to detect the 
error. Similarly, it could detect an error in an otherwise regular pattern if one or two tiles 
are irregular.  
 
An improvement would thus be to find a good tile for tile comparison metric that is 
sensitive enough to detect significant differences. For the second problem, we need an 
efficient way to compare all the tiles with one another to get a measure of overall 
regularity.  
 
Another approach that could be examined would be to use something besides 
autocorrelation to get the peak map. The problem with autocorrelation is that it 
propagates the translation similarity from the center outward. Thus, the peak map 
sometimes gets clustered around the center if the tiles all over the image aren’t perfectly 
similar. A procedure that would combine local autocorrelations starting from the center 
as well as from the edges would be more flexible when dealing with certain images.  

7.2. Symmetry Detection  
 
The key goal now is to find a measure of similarity that will reliably give a sharply 
defined separation between good and bad matches. In the absence of an unambiguous 
similarity detection procedure, a good clustering method – preferably one that adjusts 
itself in some way to the score range and variance – is needed.  
 
A fast and reliable Chamfer matching variant would also be useful for the edge image 
comparison.  
 
For a few images, a wrong symmetry is detected because of loss of color information 
when they are converted to grayscale (as mentioned in section 3). Implementation of a 
more robust algorithm for color to intensity conversion would help greatly. We explored 
some existing methods that claim a better conversion – particularly the recently 
developed color2gray program presented at SIGGRAPH 2005 [13]. However, as of now, 
color2gray cannot handle images of the size that are typically processed by our program 
(the performance is on the scale of O(S4) for an SxS size image). If a future, more 
powerful version is developed soon, it could potentially be used for all color to intensity 
conversions within our program.  
 
 

7.3. Group Distribution of Pattern Occurrences  
 
A good first step in this area would be to identify relevant research on cognitive 
perception of textures, in particular, the perception of specific kinds of symmetry. An 
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examination of this in conjunction with the occurrence distribution across groups of 
images might yield some explanations about why some groups are more prevalent than 
others; if there is a neural preference for some symmetry types over others.  
 
It might also be interesting to look at textures defined by natural or engineered objects 
and see if they correspond to mathematically optimal lattices. A related project would be 
mapping the symmetry groups to other characteristics of the image and determining if 
there are any definable relationships.  

7.4. Other Ideas  
 
As mentioned earlier, a major project idea would be to look at textures under global 
transformations – the properties of curvilinear transforms on images in terms of lattices, 
straightening of patterns using displacement vector detection, and the class of functions 
mapping points on a straight line to the various curves of real-world image distortions. A 
further topic would be to explore the relationships between the groups and the pattern 
properties under distortion.  
 
As mentioned in the source paper [2], the application of symmetry in images to data 
compression is also an interesting topic. Over the course of this project, I wrote some 
code that ‘compresses’ a texture to a single tile and further cuts down the tile on some 
possible symmetry axes. If the lattice vectors are stored with this cut image, it can then be 
uncompressed fairly simply. However, this is a relatively primitive way of approaching a 
data compression question – a more sophisticated method that takes maximum advantage 
of the lattice packing and group structure of the image would be a great topic for future 
research.  

8. Conclusion  
 
The algorithm used for lattice detection was optimized in time complexity as well as 
flexibility and accuracy, resulting in a % overall improvement in finding the lattice. The 
procedures for similarity detection to indicate symmetry were extended to accommodate 
special classes of images, most notably, images with sparse edges. More similarity 
detection methods were implemented and score distributions tabulated. The clustering 
procedure for separating good and bad symmetry scores was sharpened and an extension 
was added to the group detecting function that would compensate for clustering errors by 
finding the nearest possible group. These procedures resulted in a % overall improvement 
in symmetry group identification/estimation. Ideas for future research were also explored 
and preliminary thoughts were given on pattern identification of textures under global 
transformations and on the wallpaper group distribution of patterns in art and the real 
world.  
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