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Abstract

Motion planning consists of finding a sequence of motions for a robot (movable object) to move from a start con-
figuration to a goal configuration without colliding with any obstacle. PRMs create a roadmap that paths can be
extracted from. To create the roadmap, nodes are generated in the environment at random. Each node represents
a possible position the robot can move to. Only feasible nodes are stored in the roadmap. Feasibility of nodes is
usually determined through a collision detection test. The nodes in the roadmap are connected with local planners.
One local planner that is currently used is Rotate At S. This planner rotates at a given value between configura-
tions before connecting them. Rotating between connections helps to avoid collision. The original implementation of
Rotate At S only allows one rotation between the pair of nodes. We implemented a method that will allow several
rotations between connections. Several rotations between connections may increase the chance of finding connections.
Feature-Sensitive Motion Planning is a method of motion planning that divides a given environment into sections and
uses a planner that will create the best roadmap for that section. Once a roadmap is generated in each section they
are combined to create one map. The methods currently available to connect roadmaps are the most expensive step
in Feature-Sensitive Motion Planning. They can be optimized. One of these methods makes a list of nodes from each
section. Each node on the list tries to make a connection with every node on the other list. We will create a method
that will be faster and more efficient. It will generate a list of nodes for each section and try to connect it to the
closest nodes from the other list.
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1 Introduction

The motion planning (MP) problem is that of finding a sequence of valid states for a movable object, usually called
a robot, to get from an initial to a goal state. A robot’s state or configuration is a set of parameters that describe
the position, orientation, and any linkages associated with the robot. A configuration is said to be valid if it satisfies
all constraints given in the MP problem (e.g., in many cases the configuration is valid if it is collision free). Many
applications address the problem of path planning from robotics and CAD to computational biology.

There is strong evidence that any complete planner will require exponential time in the number of degrees of freedom

(dof) of the robot [5, 13, 14]. Thus, the motion planning problem is thought to be intractable except for robots with
few dofs. Initially, heuristic methods based on cell decomposition [4] and potential fields [9] were explored to address
this complexity but after the introduction of the Randomized Path Planner (RPP) [2] randomized methods have been
the focus of extensive research. The roadmap-based probabilistic roadmap methods (PRMs) [7] and several tree-based
methods that explore the planning space starting from one or two points [3, 6, 10] are notable examples. Remarkable
results, including solutions for previously unsolved MP problems, have been obtained with randomized methods.

Although there are many randomized planners, their performance varies depending on their individual strengths
and weaknesses and on the construction of the problem instance to solve. Some planners are best suited for problems
with few obstacles while others show their real strength in cluttered areas. In addition, many environments have vastly
different regions, so there may not be any planner that can deal efficiently with all the pieces of the problem by itself.

In our previous work [12], we proposed a meta-planner for motion planning that would oversee the coordinated
application of multiple planners. We used a machine learning approach to characterize and partition C-space into
regions that were suited to one of the methods in a library of roadmap-based motion planners. After the best-suited
method was applied in each region, the resulting regional roadmaps were combined to form a roadmap of the entire
planning space.

Our prototype meta-planner for feature-sensitive motion planning demonstrated the promise of this approach
by outperforming any of the individual planners on a variety of problem instances [12]. However, our results also
illustrated some performance bottlenecks in the prototype system. For example, our rather naive subdivision strategy
was not actually feature sensitive and hence did not always result in the most natural subdivisions. Of greatest impact,
however, was our straight forward brute force strategy for integrating regional roadmaps – in many cases this step
accounted for the majority of the computation costs!

In this paper, we discuss a new method for connecting maps. This connection method will help reduse the
computation cost. We also discuss a variation in one of our local planners. The new implementation will help increase
node connection.

Figure 1: Motion Planning Problem
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2 Preliminaries

A robot is a movable object that can be controlled through n parameters or degrees of freedom, each corresponding to a
unique component ( e.g., object positions, object orientations, link angles, or link displacements). A robot’s placement,
or configuration, can be uniquely described by a point (x1, x2, ..., xn) in an n dimensional space (xi being the ith dof).
This space, consisting of all robot configurations (feasible or not) is called configuration space (C-space) [11]. The
subset of all feasible configurations is the free C-space (C-free), while the union of the unfeasible configurations is the
blocked C-space (C-obstacle). Thus, the MP problem becomes that of finding a continuous trajectory for a point in C-
space connecting the start and the goal configurations that completely lies in C-free. And, although it is intractable to
compute C-space, we can often determine whether a configuration is feasible or not quite efficiently, e.g., by performing
a collision detection test in the workspace, the robot’s natural space.

3 Related Work

Probabilistic roadmap planning methods have been shown to perform well in a number of practical situations. The
idea behind these methods is to create a graph of randomly generated collision-free configurations with connections
between these nodes made by a simple and fast local planning method. These methods run quickly and are easy to
implement; unfortunately there are simple situations in which they perform poorly. When required to pass through
narrow passages in C-free their performance degrades [8]. The Medial Axis Probablistic Roadmap Method (MAPRM)
samples the configuration space in which randomly generated configurations, free or not, are retracted onto the medial
axis of the free space. This improves performance on problems requiring traversal of narrow passages. The Obstacle
Based Probablistic Roadmap Method (OBPRM) samples points on or near obstacles in C-space (C-obstacle) [1]. This
node generation strategy will have more chances of generating some configurations in the narrow passages since those
passages are near C-obstacles.

Although there are many variants of randomized planners, no single variant performs well for every problem. The
characteristics of the problem often dictate the performance of the method applied. For example, OBPRM [1], a PRM
where configurations generated on or near C-obstacle surfaces, performs better in cluttered regions. On the other
hand, Basic PRM [7], a PRM where configurations are generated through uniform random sampling, performs best
in free regions.

4 Feature-Sensitive Motion Planning Framework

In [12], we proposed a machine learning based characterization and partitioning approach to motion planning problems.
The C-space of the instance is recursively partitioned, so that in each level a region may be subdivided into different
overlapping subregions. Subdivisions stop when a region is classified as homogeneous (based on a set of features
measured for each region). Then, the best suited planner available is applied to find a regional solution. When all
the subregions have been mapped, their roadmaps are combined to produce a regional roadmap. At the end of this
process we have a global roadmap for the environment.

The classification of a region was performed with the use of a trained decision tree. This method requires the
collection of descriptive features of each region. We use 21 different features that are easy to collect during and after
the creation of a small PRM roadmap. Based on the values of these features, the trained decision tree classifies a
region as homogeneous (free, cluttered, or narrow passageway) or non-homogeneous.

The feature-sensitive framework depends on the effectiveness of the partitioning into homogeneous regions. Previ-
ously, we applied a technique that selects, at random, both the positional dimension to subdivide and the point to split
the selected dimension. Regions were partitioned so that they overlap in 10% to 15% of their neighboring area. While
this method eventually created homogeneous regions, it created numerous regions. Also, while the classification was



“Feature-Sensitive Motion Planning”, Horton et al. DMP, Parasol Lab, Texas A&M, Summer 2005 3

performed using descriptive features collected for the space, this information, although available, was not considered
when creating and selecting the partition. This framework is skecthed in Fig.[2].

Techniques
Motion Planning

class & methods partial roadmap

partition features C−space partition

Global RoadmapMP problem

Classifier Planner

Motion Planning
Controller

space subdivision and
roadmap integration

Figure 2: Block diagram of framework for feature-sensitive motion planning

The feature-sensitive meta-planner recursively subdivides the environment. In the process, it creates a tree rep-
resenting the subdivision where each node in the tree represents a C-space region that is the union of the regions
of the leaves of the subtree rooted at that node. This process is sketched in the divide-and-conquer Algorithm 1:
FeatureSensitiveMap.

Algorithm 1 receives as input a C-space region and outputs a region mapped. Initially, FeatureSensitiveMap is
called for the C-space of the whole problem. First, the characterizer analyzes region features to try to identify a
good planner for the corresponding region (Line 1). Next, the partitioner tests whether it should subdivide the region
(Line 2), and if so, it places boundaries based on region features to define subregions (Line 3). Then, each subregion
is mapped with a recursive call to FeatureSensitiveMap (Lines 4-6). Finally, the planner combines the subregion
roadmaps to form the roadmap of the parent (Line 7). At the bottom of the recursion, when the region is not
subdivided, it maps the leaf with the planning strategy determined by the characterizer (Lines 8-9). The bottom-up
merging process produces a roadmap for the region covering the problem’s C-space.

Algorithm 1 FeatureSensitiveMap

Input: C-space region[boundaries, features(roadmap, characterization), planner strategy, roadmap],
C-space parent, constraints[maximum tree height, subdivision limit], node height

Output: C-space region R with [roadmap]
1: Characterizer.MatchPlanner(region)
2: if Partitioner.Subdivide(region, parent, constraints, height) then

3: subregions = Partitioner.PlaceBoundaries(region, constraints)
4: for all subregioni in subregions do

5: subregioni = FeatureSensitiveMap(subregioni, region, constraints, height + 1)
6: end for

7: region.[roadmap] = Planner.CombineRoadmaps(subregions)
8: else

9: region.[roadmap] = Planner.MapRegion(region)
10: end if

11: Return region
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5 Map Connection for Feature-Sensitive Motion Planning

C-Space roadmap combination consists of constructing one roadmap for the parent region from roadmaps of the child
regions (subregions). These subregions are divided by a (possibly overlapping) boundary in n-dimensional C-space.
The input of this problem is the two roadmaps and the regions to which they correspond, the output is a roadmap
combining the two original roadmaps (See Figure 3).

(a) Split regions (b) Roadmaps to combine (c) Regions combined

Figure 3: Roadmaps of neighboring subregions are combined

There are two main issues in combining roadmaps: selecting source nodes from each source roadmap to connect
to the target roadmap, and mechanisms to perform the connection. In our initial prototype we used a brute-force
connection strategy where for each node in either of the roadmaps we selected the k-closest nodes and we tried
connections with a straight-line local planner [12]. In this system, roadmap combination used from 50% to 90% of
the total validity tests. This shows that better strategies for combining roadmaps is a key requirement to make our
feature-sensitive framework feasible. Our initial naive strategy was poor because it considers connecting all the nodes
in the two roadmaps without taking into account the fact that the nodes are already organized into roadmaps of the
subregions.

5.1 Map Connection Methods

The Brute Force method of map connection is the most expensive step in Feature-Sensitive Motion Planning. This
approach performs k-closest connection over all the nodes in the regional roadmaps without utilizing any proximity
information. It will retest all the edge connections including the edges that have been declared unfeasible. This step
took from 50 to 90 percent of the total collision-detection calls. The brute force method is expensive, but it has the
best connecttivity and is used as a base method to help test the other map connection methods.

The Naive method of map connection also uses the k-closest connection. The naive method recongnizes the
different regions as seperate entities and only tries to connect the k-closest of one region to the k-closest of another
region. Unlike the brute force method, the naive method does not retest edges in the same region. It only tries to
make connections with nodes in the other region. This method

The brute force and naive methods ignore the fact that nodes are already in two roadmaps of neighboring regions.
We need a method that exploits this fact to make more efficient connections. The Regional Overlap method of map
connection attempts connections between nodes in or close to the overlapping regions of neighboring sections. Only
the k-closest nodes will be attempted. The brute force and naive method are expensive becuse of their attempt to
connect many useless nodes. Regional overlap only connects the closest nodes in an overlapping region, this reduces
the cost of merging regional maps. The first step in Regional overlap is to make a list of nodes for each section. Once
a list of the nodes is created they are tested to see which nodes are in the overlap. A vector of nodes in the ovelap is
created for each section. A connection method is applied to the nodes in the overlap.

Algorithm 2 receives as input an environment divided into regions with roadmaps in each region and outputs one
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roadmap for the environment. First, a list of all the nodes in each region is made (Line 1 and 2). Next, the nodes
are compared to see which nodes are in the overlap (Line 3). A vector of the nodes in the overlap is created for each
region (Line 4 and 5). Finally, a connection method is called to connect the nodes in the overlap(Line 6 and 7). Once
the nodes are connected a roadmap for the entire environment is returned.

Algorithm 2 Regional Overlap Map Connection

Input: An environment divided into sections of left region and right region. Each section has a roadmap
Output: An environment with one roadmap

Make l subregions a list of nodes in the left region
2: Make r subregions a list of nodes in the right region

Calculate which nodes are in overlaping region
4: Make l subregion a list of nodes in l subregions that are on the overlap

Make r subregion a list of nodes in r subregions that are on the overlap
6: Connet nodes in l overlap to right map

Connet nodes in r overlap to left map
8: Return One roadmap

Figure [4] shows the three methods of map connections that are listed above. Each method is shown in a ba-
sic environment with two sections. The roadmap in each section contains five connected nodes. The brute force
method(figure[4a]) connects every node to evry other node. It tried 35 edges. The naive method (figure[4b])connects
the k-closest (k=2) nodes in one section to the k-closest nodes in the other section. It tries 15 edges. The regional
overlap method (figure[4c]) connects the k-closest nodes in or near the overlapping area. This method generates 7
edges. The results of this map connection test show that regional overlap method is the best method of connection.

(a) Brute Force (b) Naive (c) Regional Overlap

Figure 4: Map connection methods

Method Nodes K #Edges

Brute Force 10 2 35
Naive 10 2 15
Regional Overlap 10 2 7

Table 1: Map connection method results
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6 Local Planning

Local planners are used to make connections between roadmap nodes when building the roadmap, and also between
the start and goal configurations and the roadmap when processing queries. There is a trade-off between the ability
of a local planner to make connections and its running time. The general strategy of PRMs is to use a “dumb”
local planner during initial roadmap construction, that is, a planner that is fast, perhaps not very powerful, and
deterministic. The reason for this is that the faster the planner, the more connections can be attempted and most
connection attempts will fail when environments are cluttered. The planner should be deterministic so that the paths
don’t have to be saved (they can be re-generated when needed). A full PRM will also need a “smart” local planner,
that is, a planner that is slower, but is more likely to make connections. Smarter local planners csn be used during
enhancement to connect different connected components of the roadmap, or during query processing to connect the
start and goal to the roadmap; these planners could be randomized since they will be invoked fewer times and their
paths can be saved.

(a) Straight-Line

(b) Original Rotate At S

(c) New Rotate At S

Figure 5: Local Planners Straight-Line and Rotate At S

Two local planners that are used in Motion Planning are Straight-Line and Rotate At S. The straight-line local
planner slowly rotates to change orientation before connecting configurations. In Figure[5(a)] the starting configuration
(1) slowly rotates to connect to the ending position (2). The Rotate At S local planner will rotate at a given value
before connecting two nodes.The value represents a precentage between two nodes. In Figure[5(b)] the starting
configuration(1) moves to the given point and makes a rotation to change orientation (2). After making the rotation
it continues to make the connection with the ending configuration(3). To improve the Rotate At S planner we added
the ability to perform several rotations between connections. When multiple values are given the robot will divide the
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rotation between each point. In Figure [5(c)] the starting configuration(1) moves until it gets to its first point. At
the first point it makes a partial rotation(2) and continues to the next point. At the next point (3) it completes the
rotation and moves to the ending configuration(4). Several rotations between connections may increase the chance of
finding connections.

Algorithm 3 receives as input multiple values of ’s’ in a vector and the configurations c 1 and c 2 to connect. It
outputs true if c 1 and c 2 can be connected. First, sequence is created as a vector of configurations(Line 1). The
configuration c 1 is added to sequence vector(Line 2). A temporary variable is created with the weighted sum of
c 1, c 2, and the value of s i(Line 4). The configuration partial 1 is created with the same position as the temporary
variable and the same orientation of the last configuration in the sequence vector(Line 5), then partial 1 is added
to the sequence vector. The partial 1 configuration marks the starting rotation point between connecting the nodes.
RotWeight is a value that is inversly porportional to the product of ’s i’ and ’1’(Line 7). A temporary variable is
created with the weighted sum of c 1, c 2, and rotWeight(Line 8). The configuration partial 2 is created with the
same orientation as the temporary variable and the same position as partial 1(Line 9), then partial 2 is added to the
sequence vector. The partial 2 configuration marks the last rotation point between connecting nodes. Afterwards the
c 2 configuration is added to the sequence vector and an attempt to connect every configuration in the sequence vector
is made(Line 13). If the configurations can be made, true is returned.

Algorithm 3 Rotate At S: is connected

Input: Multiple values of ’s’ in vector svalues, configurations to connect c1 and c2

Output: Return true if c1 and c2 can be connected
1: let sequence be an empty vector of configurations
2: add c1 to sequence

3: for all si in the vector svalues do

4: let tmp be the weighted sum of c1 ∗ si and (1 − si) ∗ c2

5: make partial1 be a configuration with same position as tmp and same orientation as sequences.last()
6: add partial1 to sequences

7: let rotWeight be inversely proportional to si times i

8: let tmp be the weighted sum of c1 ∗ rotWeight and (1 − rotWeight) ∗ c2

9: let partial2 be a configuration with same position as partial1 and same orientation as tmp

10: add partial2 to sequences

11: end for

12: add c2 to sequences

13: if can connect every configuration sequencei to sequencei+1 with straight line local planner then

14: Return True
15: else

16: Return False
17: end if

7 Conclusions and Future Work

We introduced techniques to improve feature-sensitive motion planning. Our early work on this topic produced a
framework based on machine learning that subdivides a problem into regions which are then mapped with a randomized
planner determined by the features of the region. Here, we proposed more efficient integration methods that do not
waste effort in mapping areas that specialized planners have already mapped.

To get a better idea of how the new implementation of Rotate At S compares to the old version and the straight-line
method, several test will be conducted. Thes test will show how well each method works and for which environment
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they work best in. In this paper a simple test to show the differences in each method of map connection was shown.
As part of our future work we would like to run several test to compare the different map connection methods.
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