
User-Guided Interactive Graph Layout

Julia Ferraioli

August 11, 2005

1 Introduction

Current graph visualization techniques gather information found in a database
or a file and create output on the screen that represents that data. There are
different types of layouts from which to choose, such as force-directed layouts,
circle-layouts and spring layouts. These layouts are all either random, or based
upon the edges in the graphs. They do not lend any weight to what the nodes
might represent. By making the graph interactive, thereby allowing the user to
manipulate the graph, the graph slowly develops into the organization which
the user intends. However, with this method, the user would have to rearrange
every node in order to accomplish the intended arrangement. This is inefficient
and frustrating to the user.

If we incorporate the attributes into the arrangement of the nodes, we should
be able to arrive at the correct arrangement much faster than without taking the
attributes into account. This may be accomplished by various means, but the
two that we considered for this research are simple clustering and constrained
clustering. Just performing simple clustering, by using an algorithm such as
k -Means, does allow the graph to take attributes into consideration, but does
not allow user feedback. By employing an algorithm such as COP-KMeans or
PCKMeans, we take both attributes and user feedback and use them to arrange
the on-screen graph. We propose that combining a user-friendly interface with
some type of constrained clustering will allow the user to arrive at the desired
graph in a significantly shorter amount of time.

2 Existing Clustering Techniques

There were two primary clustering algorithms that we considered when conduct-
ing our research. The first algorithm is COP-KMeans, developed by Wagstaff
et al. [3], which takes a matrix of “must-link” constraints and “cannot-link”
constraints. Each pair of nodes has a “must-link” constraint, a “cannot-link”
constraint or no constraint at all. The algorithm then clusters using k -Means,
while ensuring that none of the cluster assignments violate the constraints. If the
constraint matrix is such that the graph is over-constrained, the algorithm fails.
The second algorithm is PCKMeans, developed by Basu et al. [1]. PCKMeans

1



also takes a constraint matrix of “must-link” and “cannot-link” constraints, but
the constraints can carry weights. This algorithm can violate constraints, but
it imposes a penalty upon itself for doing so. It clusters using k -Means while
minimizing the incurred penalty.

These two clustering algorithms fall under the category of “semi-supervised
clustering” since in both cases there is a definite goal in mind. These algorithms
are semi-supervised, in the sense that they use constraints to make decisions,
not that they have any real human supervision.

Cohn et al. address the issue of incorporating user feedback [2] when clus-
tering data, which does have an actual person overseeing the organization of the
data. Their approach allows the user to define the metric in which to cluster.
While we do not use their method of user-defined metrics, our goals coincide in
providing a way for the user to interact with the data.

3 Aims of the Research

The primary aim of this research is to allow the efficient organization of infor-
mation while considering the goals of the user. This ability can help users search
through databases in order to find the information that they are looking for in a
short period of time, it can organize databases in an efficient manner, and it can
make judgments on how to organize based on more than one definite attribute.
We intend to incorporate actual human supervision with semi-supervision to
accomplish our aim.

A secondary aim of our research is to explore the ways that a graph may
be visualized, and how this may impact a real human user. For example, if the
nodes are colored based on characteristics, does that assist or impede the user?
We wanted to analyze what sort of elements, or what combination of elements,
would expedite the arrival at the user’s idea of the correct graph. Could a
combination of shapes, colors and images work for the user?

However, our primary aim consumed most of our time, and the possibility
of user testing quickly became an impossibility within the time limit placed
upon us. Fully exploring the graphical element was also time-consuming, and
we decided to concentrate on our primary aim.

4 Packages and Layout Implementation

In our program, we use the package Prefuse to handle the visualization of the
nodes, and the package WekaUT to handle the clustering aspect and to evaluate
the results. Prefuse renders the images, the animation and the interactive aspect
of the nodes. The user has the ability to drag a node to a specified location on
the screen and “lock” it in place. It also has other features such as different types
of layouts, the ability to “highlight” nodes and edges in response to user input
and to read in files through different formats. WekaUT includes the standard
Weka package, and adds to it different clustering algorithms such as k -Means,

2



PCKMeans, MPCKMeans and XMeans.
Our layout is a force-directed, spring-embedded layout, which visualizes the

nodes with a simple label of the node identification. The data files which we
use are standard XML files using the convention for formatting graphs. Each
attribute name in the XML file is preceded by a symbol indicating the type of
attribute value it represents. Categorical data is preceded by “@” and numerical
data is preceded by “#.” Data that is to be ignored is preceded by “$.” The
program automatically ignores the ID and label of the node, as they are not
used for clustering. Prefuse takes the data provided in the XML file and creates
a visualization based on it.

5 Metrics

The metrics implemented in our program follow two basic cases.
Case 1: Data to be averaged is numerical.
Case 2: Data to be averaged is categorical.
If the data is numerical, then we use the standard Euclidean Distance metric

which is 2

√
∑

(x − x1). If the data is categorical, then we use a distance metric
that returns a distance of 0 if the data being compared is the same, or 1 if the
data is different. In many data sets, numerical and categorical data are mixed.
If they are, then we simply differentiate between the two types of data when
calculating distance.

The program does not take values other than numerical or categorical into
account. Therefore, it will not calculate the difference between a set of strings
to tell how far apart each of them are from each other. This type of data would
be preceded by “$” and disregarded.

6 Constraint and Cluster Generation

We gather the data about the nodes, normalize it, and create an Instance for
each node. We then associate each Instance with an Instances. After this, the
program captures the x, y coordinates of each node on the screen. When the
user moves a node, it calls several methods including itemPressed, itemDragged
and itemReleased. If only one node is moved, the program continues as be-
fore. If more than one node is moved, itemReleased generates constraints, calls
PCKMeans and creates nodes for the cluster centers and edges to those in the
appropriate cluster.

The constraints in our program are dependent on two variables, which are
δ and ε. When two or more nodes are moved, the most recently moved node
is compared to all of the other nodes which have already been moved. If the
distance between the compared nodes is greater than δ, then a “cannot-link”
constraint is generated for that pair. If the distance between the compared
nodes is less than ε, then a “must-link” constraint is generated for that pair of
nodes. If the distance between the two nodes is less than δ but greater than

3



ε, then no constraint is generated. Essentially, the user tells the program that
s/he definitely does or does not want these two nodes together.

When itemReleased calls PCKMeans, it feeds the current constraints into
the algorithm. If only two nodes have been moved, it passes only one constraint,
provided that the distance between the two nodes is greater than δ or less than
ε. PCKMeans returns with cluster assignments, which we then use to generate
nodes and edges. A cluster center is represented by a node with the label “clus-
ter” and a greater mass than the other nodes. Its attribute space coordinates are
the mean of the numerical attributes and the mode of the categorical attributes
of the nodes in its cluster. The on-screen coordinates of the cluster centers are
the mean of the nodes connected to it that are fixed. If only one node in the
cluster is fixed, then the cluster center is directly on top of that node. The edges
start from the cluster center and go to the nodes that are in that cluster. The
edges have a weight of “3” in order to make their spring settings stronger.

Each time an item is pressed, the itemPressed checks to see if there are any
cluster centers in the graph. If there are, those nodes are destroyed, along with
their edges. This way, every time that PCKMeans is called, it adds nodes to the
original graph. By running PCKMeans every time the user clicks on a node, the
algorithm is constantly updating the cluster assignments based on a growing set
of constraints.

7 Visualization

For the experiments, we leave the cluster centers and their edges visible, so that
we may also observe the process rather than only analyzing the results. In the
final project, the cluster centers and their edges are set to the same color as
the background, effectively making them invisible to the user. In the future, we
could give the items in the same cluster some sort of visual attribute to identify
them specifically.

8 Experiments

We have designed four sets of experiments to test the effectiveness of this ap-
proach.

1. A purely manual sort. This experiment does not use a force-directed
layout, it does not cluster, it picks a node at random and places it near
the other nodes that are of the same class (cluster) type.

2. Uses the force-directed layout, but it does not cluster. It selects a node
by choosing the one that is farthest from the other nodes that are of the
same class.

3. Uses the force-directed layout and does cluster, but it chooses nodes at
random.

4



4. Uses the force-directed layout, clustering, and the farthest-first heuristic
for choosing nodes to move.

To evaluate the performance of these experiments, we are using the Adjusted
Rand Index (ARI) to measure the accuracy of cluster assignments. The ARI
returns a value between -1 and 1 each time. A return value of -1 means that the
clustering assignments were completely wrong, and a return value of 1 means
that the clustering assignments were exactly correct. The ARI is called in the
first two experiments every time a node is moved, or in the second two, every
time PCKMeans is called.

Our experiments essentially measure how quickly the ARI approaches 1.
Every experiment will achieve an ARI value of 1 if all of the nodes are moved
correctly. We assume that the user is going to put the nodes in the correct clus-
ter, based on their understanding of the classification of data. Our expectations
of these experiments is that their performance will rise in ascending order, the
first having the lowest performance. Indeed, preliminary results support this
supposition.

The Adjusted Rand Index for a 13 Node Data Set

This table shows the results of the four experiments over a five run period. The
resulting ARIs for each experiment and each run are averaged together and
entered below.

NodesMoved Experiment1 Experiment2 Experiment3 Experiment4
1 0.06 -0.08 0.0 0.0
2 0.11 -0.03 0.52 0.54
3 0.12 0.06 0.55 0.57
4 0.18 0.13 0.57 0.61
5 0.27 0.28 0.64 0.61
6 0.33 0.39 0.64 0.74
7 0.4 0.54 0.73 0.82
8 0.47 0.69 0.83 0.88
9 0.56 0.81 0.87 1.0
10 0.7 0.91 0.96 1.0
11 0.78 0.96 0.96 1.0
12 0.91 0.96 1.0 1.0
13 1.0 1.0 1.0 1.0

These results support our expectations, but these are also the first set of
experiments that we have run whatsoever. The data set used above is part of
the famous iris data set, cut down to a manageable size and translated into an
XML format.

We have not yet run any experiments such as above with categorical data,
and since with a mix of categorical and numerical data we would be mixing
distance metrics, it is difficult to predict the outcome of such an experiment.
There is no reason to expect that the number of dimensions of the nodes should
have any significant impact on the performance of the program.

5



9 Conclusion

The design phase of this project has ended, but the experimentation phase is
just beginning. It would be hasty to judge the outcome of this project based on
one data set and five experiment runs. We are still working on the final paper for
this project, pending the outcome of more experiments with more datasets. We
hope that we will finish in time to submit the paper to the 2006 International
Conference on Intelligent User Interfaces, either as a short or a long paper.
However, it seems logical that these preliminary results would reflect the results
of other data sets of a similar type.

It seems as though the combination of visual supervision and semi-supervised
clustering yields in general a better result than semi-supervised clustering alone,
and then to combine this with a force-directed layout performs even better. If
these conclusions hold true, this could have an impact on such services as search
engines, since visualization of the web is becoming more popular and in demand.

Future work includes more experiments, and the integration of the design
aspect with the organizational aspect. Finding an optimal balance between the
two would make the program even more effective to the user. By working with
people in computer graphics, this could turn into a product that would be seen
implemented outside a laboratory setting.

References

[1] S. Basu, A. Banerjee, and R. Mooney. Active semi-supervision for pair-
wise constrained clustering. In Proceedings of the 2004 SIAM International
Conference on Data Mining, pages 333–344, FL, USA, April 2004.

[2] D. Cohn, R. Caruana, and A. McCallum. Semi-supervised clustering with
user feedback. Technical Report TR2003-1892, Cornell University, 2003.

[3] Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schroedl. Constrained
k-means clustering with background knowledge. In Proc. of 18th Intl. Conf.
on Machine Learning (ICML-2001), 2001.

6


