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Introduction

A common problem in reinforcement learning is finding a balance between exploration
(attempting to discover new features about the world by a selecting sub-optimal action)
and exploitation (using what we already know about the world to get the best results we
know  of).  This  paper  will  investigate  the  merits  and  disadvantages  of  various  basic
strategies for exploration and exploitation, as well as a few more sophisticated ones, all of
which have been tested on reinforcement learning agents in a simple gridworld.

1. Reinforcement Learning  

Reinforcement learning is a way of getting an agent to learn; for example, it may need to
find the optimal path in a gridworld. The agent learns by receiving rewards after every
action. It somehow keeps track of these rewards, and then selects actions that it believes
will maximize the reward it gains, not necessarily only for the next action, but in the long
run. (Sutton & Barto, Introduction).

The agent usually goes through the same environment many times in order to learn how
to  find  the  optimal  actions.  Balancing  exploration  and  exploitation  is  particularly
important here: the agent may have found a good goal on one path, but there may be an
even better one on another path. Without exploration, the agent will always return to first
goal, and the better goal will not be found. Or, the goal may lie behind very low reward
areas, that the agent would avoid without exploration. On the other hand, if the agent
explores too much, it cannot stick to a path; in fact, it is not really learning: it cannot
exploit its knowledge, and so acts as though it knows nothing. Thus, it is important to
find a good balance between the two, to ensure that the agent is really learning to take the
optimal actions.

2. Basic Strategies  

There are several types of strategies whose aim is to achieve a healthy balance between
exploration and exploitation. In this section two basic types will be presented, as well as
the results each give.

2.1.State-action value updating strategies (Sutton & Barto, Chapter 6)

As mentioned above, a reinforcement learning agent receives rewards as it moves through
the environment. It uses these rewards for future reference; that is, when it reaches a state
it already seen, it picks an action that has given it good rewards in the past.
Thus, rewards need to be stored somehow. Since several actions may be taken from each
state, we store a value for each action from each state: the  state-action value, denoted
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Q state , action . This value depends in part on the reward received, in part on the
current value, and can also depend on other values as well. The way of determining this
value is the updating strategy. We will see two such strategies.

2.1.1.Updating strategy: Sarsa learning

Sarsa learning is an on-policy updating strategy. The new state-action value depends on
the reward received after taking an action, on the current value of the state, as well as the
value  of  the next  state-action  pair  seen.  This  method  was  tested  using the  following
algorithm, taken from Sutton & Barto (Chapter 6, Section 4).

// s , s '  states
// a , a '  actions
// Q state - action value
// , learning parameters learning rate , discount factor 
1. Initialize Q s , a arbitrarily
2. Repeat (for each episode)
2.1 . Initialize s
2.2 . Choose a from s  using policy derived fromQ (e.g.  -greedy)
2.3 . Repeat (for each step of episode) until s  is terminal
2.3.1 . Take action a  observe reward r , state s '
2.3.2 . Choose a ' from s '  using policy derived fromQ (e.g.  -greedy)
2.3.3 . Q  s , aQ  s , a[ r⋅Q  s ' , a ' −Q s , a]
2.3.4 . s s ' , aa '

2.1.2.Updating strategy: Q-learning

Q-learning, unlike Sarsa learning, is an off-policy updating strategy. Where the new state-
action value  in Sarsa  depends on the value of the  next  state-action pair  taken,  in  Q-
learning it depends of the  optimal state-action pair of the next state. This method was
tested using the following algorithm, taken from Sutton & Barto (Chapter 6, Section 5)

// s , s '  states
// a , a '  actions
// Q state - action value
// , learning parameters learning rate , discount factor 
1. Initialize Q s , a arbitrarily
2. Repeat (for each episode)
2.1 . Initialize s
2.2 . Repeat (for each step of episode) until s  is terminal
2.2 .1 . Choose a from s  using policy derived fromQ (e.g.  -greedy)
2.2 .2 . Take action a  observe reward r , state s '
2.2 .3 . Q  s , aQ s , a[ r⋅maxa 'Q s ' , a ' −Q  s , a]
2.2 .4 . s s '
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2.2.Action selection strategies (Sutton & Barto, Chapter 2)

It has been mentioned already that in each state (except a terminal state) the agent must
select an action. There are several ways in which to decide which action to take. The
simplest of these is greedy selection: the agent always selects the action that the highest
state-action value. This method is pure exploitation.  Two more sophisticated methods,
that aim to achieve a balance between exploration and exploitation, are presented in this
section.

2.2.1.Є-Greedy selection

Є-Greedy is a variation on normal greedy selection. In both cases, the agent identifies the
best move according to the state-action values. However, there is a small probability Є
that, rather than take the best action, the agent will uniformly select an action from the
remaining actions. 

2.2.2.Boltzmann selection

Boltzmann selection also involves probability, but takes into account the relative values
of the state-action values. The probability that an action is selected depends on how it is
compared to the other state-action values. So, if one value is much higher, it  is most
likely to be taken, but if there are two actions with high values, both are almost equally
likely.
At a state s, an action a is selected with probability:

p= e
Q s , a−maxb Q s ,b

T

∑
a

e
Q s , a−maxb Q s ,b

T

where T is called the temperature, and increases the exploration rate as it increases.

2.3.Results

Both algorithm shown above were  tested  both  with  Є-Greedy and Boltzmann  action
selection in order  to  determine which combination  yields the most  promising results.
They were all tested in a simple gridworld similar to that described in Sutton & Barto
(Chapter 6, Section 5, Figure 6.12).
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The agent starts at point S, and can move up, down, left or right. For each action taken,
the agent gets a reward of -1. The goal G gives +100, and the gray zone is a 'cliff', which
gives a reward of -100 and sends the agent back to the start. The idea is, of course, for the
agent to learn to reach the goal in the least number of steps. The results obtained were
averaged from 100 trials of 500 episodes each.

Whether using Sarsa learning or Q-learning,  Є-Greedy was pretty much the same. As the
value of Є gets smaller, the higher the average reward gets. Technically, a lower value for
Є should be slower, but the difference does not show in the small, 5x8 world.

             Figure 2.1                                                 Figure 2.2

Boltzmann learning shows rather different results.  For a low temperature, there is not
much difference,  except that Sarsa learning is  somewhat  slower and more stable  (see
Figure 2.3). However, as the temperature gets greater, so does the difference. Q-learning
gets a higher peak early on, but quickly falls, whereas Sarsa never reaches as high, but
stays relatively stable, and gives better results in the end (see Figure 2.4). In both cases, a
lower temperature gives better results: better stability and higher reward. 
Between Є-Greedy and Boltzmann selection, it seems clear that Boltzmann is the better
of the two. We can comparing Є = 0.05 and T=10, both of which gave the best results.
While Boltzmann does learn slower in the beginning, it eventually gets better; not only
this, but it is almost perfectly stable (see Figure 2.5). An agent using Є-Greedy can never
achieve this, since it keeps exploring regardless of how many times it received very low
rewards.
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         Figure 2.3                 Figure 2.4

Figure 2.5        

Other than the reward, there is also the question of which path the agent takes. An agent
with Sarsa learning will learn to use a different path depending on the exploration rate:
for  a  low temperature,  it  will  stay close to  the  cliff,  and moves  further  away as  the
temperature increases. An agent using Q-learning will always select the optimal path (that
is, the path closest to the cliff).
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This brings us to some conclusions, keeping in mind that we want a sophisticated agent,
one that will not simply avoid cliff most of the time, but that will avoid them all of the
time. 
First of all, if, we cannot use Є-Greedy. Boltzmann selection, even though it is slower, is
much better suited to the task: if a move is very bad compared to others, the probability of
selecting it are correspondingly low.  Є-Greedy never varies the probability of choosing
moves, so it will inevitably return, by random chance, to spots that have been repeatedly
bad.
Secondly, Sarsa learning has more desirable properties than Q-learning. For one, an agent
using Sarsa  learning performs better  when the temperature increases.  But,  even more
important, it learns to avoid dangerous areas. In the case with  T = 40, the agent chose
safer and safer paths as episodes went on. The agent with Q-learning though, always tried
to stick to the shortest  path,  and a result  went into the cliff  more often,  getting poor
results.
For these reasons,  the experiments in the following sections are all  made with agents
using Sarsa learning and Boltzmann action selection.

3. Advanced Techniques  

A few techniques whose aim is to improve the agent's performance will be introduced in
this section.

3.1.Increased learning rate in disaster situations

As mentioned in Section 2.1, reinforcement learning agents store state-action values that
are updated at  each time-step of an episode. For Sarsa learning, the update is  rule is
shown in Section 2.1.1, on line 2.3.3 of the algorithm:

2.3.3 . Q s , aQ s , a[ r⋅Q s ' , a ' −Q s , a]
The parameter  α is called the  learning rate. This determines how much the new state-
action value tends towards the newly obtained reward and value of the next state-action
pair. The greater α, the more the state-action value tends towards new information. As a
general rule, higher values of α learn faster, but end up receiving slightly lower rewards.

The  increased  learning  rate  technique  consists  in  having  two  learning rates.  One  for
normal situations and rewards, and another, greater one for disaster situations. So, when
an agent moves into a cliff (or other disaster situation), the new state-action value tends
much more to the value of the received reward. We can replace the algorithm step shown
above by:

2.3.3 . if (disaster situation)
2.3.4 . Q  s , aQ s , afast [r⋅Q  s ' , a ' −Q  s , a]
2.3.5 . else
2.3.6 . Q s , aQ  s , a[ r⋅Q s ' , a ' −Q s , a]
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The idea behind this technique is that the agent should get the benefit of a high learning
rate, while avoiding disadvantages. It should quickly learn to avoid very bad areas while
still exploring the rest of the environment.
This technique can also be applied to goal situations. It can also be advantageous to have
the agent learn the goal's position more quickly. However, if there are additional goals,
this may prevent the agent from finding them.

3.2.Eligibility traces (Sutton & Barto, Chapter 7)

As shown in the algorithms above, at each step only one state-action value is updated, the
last  state-action pair  seen. With  eligibility traces,  the values of the sequence of state-
action pairs that led to the current state are updated. For each state-action pair, a new
value, the eligibility trace is stored. This value increases whenever the state-action pair is
seen, and decrements slowly at every other time step. The eligibility trace determines to
what extend the state-action value is updated: states with high eligibility traces tend more
towards the new information, whereas states with lower eligibility traces hardly change at
all.
The following is the algorithm used in testing, taken from Sutton & Barto (Chapter 7,
Section 5). It replaces line 2.3.3. in the Sarsa algorithm above.

for all s ,a  (at time step t  )
Q t1s , aQ t s , a⋅t⋅e t a , s

where
t=r t1Q t s t1 , at1−Q t s t , at 

e t  s , a={ e t−1s , a1
 e t−1s , a

if s=s t  and a=a t
otherwise }

λ is the parameter of the eligibility trace. The greater it is, the longer the sequence of
values of state-action pairs updated.

The purpose of eligibility traces is to propagate rewards to the state-action values faster.
Without  the traces, only the state-action pair  right before the goal or cliff is updated.
With, most of the path leading to it is updated. Hence, the next time the agent arrives on a
state in that path, it is more likely to avoid paths leading to the cliff, and to take paths that
led to a goal.
Ideally, this will improve the performance of the agent in the long run (in the beginning, it
may cause to avoid paths that lead to the goal if it veered off track and got a low reward
on the way)

4. Experiments  

Experiments were performed to test  the above techniques, as well as test a few other
features of reinforcement learning, and of the environments. The environments tested and
the experiments themselves, as well as the results will be presented in this section.
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4.1.Environments

With the exception of the ones mentioned above in the “Basic Strategies” section, all
experiments were performed on one of two environments. Both are gridworlds, one small
and one large. Their sizes were 24×15 (Figure 4.1) and 30×30 (Figure 4.2), respectively.
Their configurations are as follows:

Figure 4.1

Figure 4.2

In both  cases  cliffs  are represented  in  orange,  with  negative  values  (representing the
negative reward). Obstacles, areas that the agent cannot pass or go on, are in light blue.

Each world is designed to test different things. The small goal has a nearby, fairly easy to
reach goal, and another bigger goal further away. The idea is to see which goal the agent
will  find,  and  how  temperature,  increased  disaster-learning  rate,  and  eligibility  trace
influence this.
The large world has only one goal,  with two paths leading to it.  The shorter  path is
closely lines  by cliffs,  a  dangerous  route.  The  agent  can  also  use  the  safe  path,  but
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because of the obstacles it is much longer. In this case, the goal of the experiments is to
see which path the agent will take.

4.2.Experiments and results

The experiments consisted of running an agent through the environments multiple times,
while slowly changing a single parameter, to see its effect.
The effect of the increased learning rate was tested in the small gridworld; temperature,
and eligibility traces in both environments. In addition, the effect of different rewards for
the goal was also tested, since the value originally set (+500) was too low, and regardless
of all other parameters the agents would not learn.

4.2.1.Experiment 1: increased learning rate

The first experiment tests the value of the increased learning rate in disaster situations. In
this case the environment is the small gridworld, as shown in Figure 4.1. The agent uses
Boltzmann action selection with a temperature  T=20, Sarsa learning with  α  = 0.1, and
eligibility traces with λ = 0.3.  αfast was increased 0.1 by 0.1, starting from 0.2.
Generally, the results are as predicted. The agent quickly learns not to go into cliff areas;
after going only a few times on any cliff square, it is not likely to ever go there again, a
clear advantage in the static gridworld. As αfast is increased, the agent needs to go fewer
times in the cliff before learning not to return. 
The best value for αfast seems to be around 0.5. Each 0.1 increase before 0.5 makes a large
difference in the learning rate, but after this value the difference is smaller and smaller. It
seems, then, that 0.5 is a good value to take; this environment is static, but in a non-static
environment a high value for  αfast might stop the agent from ever returning to a square
that is bad only a few times.

This technique results in high rewards much faster. However, it does not increase the
maximum reward gained. In the end, the agent performs as well, but peaks faster (see
Figure 4.3).

4.2.2.Experiment 2: temperature

Next comes a series of experiments that examine the effect of the temperature parameter.
For these experiments,  the agents were made to go through the environments  several
times, with varying temperature. All other parameters remained the same, for comparison.

The  first  series  looks  at  the  difference  made  by temperature  variations  in  the  small
environment. The agent uses Sarsa learning with α = 0.1, αfast = 0.5, no eligibility traces,
and  temperatures  varying  from  T=1  to  T=30.  At  first  glance,  it  seems  that  lower
temperatures perform better: they are faster to learn, and receive higher and more stable
rewards once they settle on an 'optimal' path (see Figures 4.4 and 4.5).
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                   Figure 4.3:  Note the difference between the green (increased learning rate) and 
                                        red (normal learning rate) curves, particularly in the first few trials.

             Figure 4.4 Figure 4.5

However,  in  the  environment  all  these  low-temperature  agents  find  the  nearer,  lower
reward. Higher temperature agents, that explore more, also find the lower reward, at first.
But an agent with a high enough temperature (in this case, T=30), even if it has already
found an 'optimal' path and its received rewards have stabilized, will eventually find the
better goal, and start using that path more and more often. The agent with T=30 finds the
better goal after about 8000 episodes, after seemingly have peaked at 400 episodes, and in
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    Figure 4.6            Figure 4.7

Figure 4.8

the end earns much better rewards than T=20 (see Figures 4.6, 4.7, 4.8).
In the large environment, with no 'secret' goal to find, the results were very clear. For an
agent  using  Sarsa  learning  with  α  = 0.1,  αfast =  0.5,  eligibility  traces  with  λ =  0.5,
temperatures varying from T=10 to T=20, and a goal reward of +2500 (as opposed to 500
in  Figure  4.2),  lower  temperatures  were  better  in  all  respects.  As  in  the  small
environment, agent using smaller temperatures learn faster and stabilize at higher values,
and vary much less (see Figures 4.9 and 4.10). However, there is no hidden goal, so high 
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Figure 4.9: Note how the blue curve (T=10) is much higher than 
      the green curve (T=20), and has much smaller variance

Figure 4.10

temperatures do not eventually lead to an increase.

The results found on both world lead to somewhat problematic conclusions.  If there is
more than one goal, it is clearly advantageous to use higher temperatures; this will help
the agent find all  the different goals,  and settle on a path that is best (most probably
straying every so often). On the other hand, on a world with a single goal, or perhaps even
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a world with multiple goals, but with the nearest being the best, low temperatures are
much better. 
It seems that there is no way to set a good temperature right from the start. It is necessary
to use fore-knowledge about the environment (if any) to decide what is best, or run an
agent with a high temperature at first to get an idea of the environment.

4.2.3.Experiment 3: eligibility traces

This series of experiments deal with eligibility traces. As in the other experiments, agents
were made to go through an environment with all values remaining the same, except for
the  parameter  λ.  As  for  the  experiments  with  temperature,  both  the  small  and  large
environments are used.

The experiments on the small  environment were conducted with an agent using Sarsa
learning with  α  = 0.1,  αfast = 0.5, temperatures varying from  T=20 to  T=30, eligibility
traces with  λ varying from 0.1 to 0.4. As was mentioned in the preceding section, low
temperatures could not find the second goal in this environment. According to the test
results,  this is precisely what eligibility traces help with. Without  eligibility traces, an
agent with temperature 20 did not find the second goal.  With eligibility traces, it can.
With λ = 0.3, the agent finds the second goal after about 7500 episodes (see Figure 4.11).
Also, the traces help with the speed at which the agent finds the second goal. With λ =
0.4, the agent with T=20 finds the goal after only about 6000 episodes; for each increase
of λ the agent with T=30 finds the second goal a little bit faster; however, the difference
between each increase becomes smaller and smaller (see Figure 4.12)

       Figure 4.11           Figure 4.12
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The tests also show that the traces can help improve the speed at which the agent learns.
In both cases (T=20 and T=30), the agents with higher λ values saw better results in the
first few trials (see Figures 4.13 and 4.14). They do not, however, have any impact on
how well an agent finds its preferred goal. Before and after the increase in rewards due to
the agent finding the second goal, the rewards are all the same: only the speed at which
the agent gets to the better rewards improves.

        Figure 4.13             Figure 4.14

The experiments in the large environment are all performed using an agent using Sarsa
learning with  α  = 0.1,  αfast = 0.5,  a temperature of 15,  a goal  reward of +3500,  and
eligibility traces with λ varying from 0.1 to 0.6.
In these cases, the value of λ changes almost nothing. When the agents stabilize, all of
them are collecting rewards of the same value (with higher values of  λ   showing a  bit
more variance) (see Figure 4.15). There is a small difference as well in the initial learning
rate, higher values of λ learning a bit slower, but not very noticeably (see Figure 4.16).
One important thing must be noted, however: the difference between λ = 0.5 and λ = 0.6
is enormous. The latter fails completely, taking weeks to finish a single trial of 70000
episodes (whereas the agent with λ = 0.5 completed this in less than a day), and receiving
extremely poor rewards: the agent is confused and the long trace causes it to travel almost
circularly.

One final thing to note on eligibility traces: the added computation time is not negligible.
The higher the value of λ, the longer it takes to compute. It can be useful to set a limit for
updating state-action values. If the eligibility trace is smaller than the limit, you do not
update it. This can be important, since low values really don't change much, and in large 
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      Figure 4.15           Figure 4.16

environments the trace can get very long.

Some useful conclusions can be drawn from these experiments, particularly when taken
together  with  experiment  2,  dealing  with  temperatures.  As  was  seen  in  the  small
environment, eligibility traces can help a lower temperature find its way to multiple goals.
So,  using  the  traces  allows  us  to  set  the  initial  temperature  lower,  which  was  very
advantageous in the large environment.
Another  point  to  note  is  that  the  value  of  λ must  be  kept  low enough,  around 0.3;
otherwise the agent may end up learning nothing at all

The  best  way  to  use  of  eligibility  traces  seems  to  be  in  conjunction  with  low
temperatures. They allow the high, stable rewards, while still finding new goals, if any.
The increased computation time can be well worth the results, particularly when a limit is
set on how high a eligibility trace must be to update a value.

4.2.4.Experiment 4: goal rewards

This is the only experiment that was not actually planned before hand. But, none of the
agents were able to learn anything on the large environment at first (as shown in Figure
4.2). Not only this, but changing values for λ or T did not change anything. It turns out
that the value of the goal reward is critical. No matter what the other parameters are, the
Sarsa cannot learn in an environment where it does not receive enough positive feedback.

The experiments are performed using an agent using Sarsa learning with α = 0.1, αfast =
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0.5, a temperature of 15, eligibility traces with  λ =0.5, and goal rewards varying from
+500 to +3500.
The  results  of  the  experiment  show that  the  value  of  the  goal  reward  makes  a  big
difference. The agent collects much greater rewards. For an increase of only 1000, the
agent  was  able  to  go from earning  rewards  of  -5000  to  earning  positive  rewards,  a
difference  much  greater  than  the  extra  1000  given  by the  goal.  As  the  goal  reward
increases, the agent performs better and better, up to a certain point (see Figure 4.17). The
goal reward cannot be increased indefinitely for infinitely good performance. Eventually,
the  agent's  performance  peaks;  however,  even  though  it  is  no  longer  earning  better
rewards, it has a tendency to earn more stable rewards (see Figure 4.18).

      Figure 4.17           Figure 4.18
A certain amount was subtracted from each curve, to make up
 for the difference between the goal rewards. All were brought

down to a reward of 500 for Figure 4.17 (i.e. 1500 was subtracted
from the 2000 curve) and to 3000 for Figure 4.18

It becomes clear that setting an appropriate goal reward is quite important. We already
know what happens if it is too low, but it can also be too high. The stabilizing effect
noticed when increasing the reward is due to the state-action values leading to that goal
increasing faster when the reward is larger. If the state-action values are much greater
along that  path,  the  probability of  taking another  path  becomes  smaller  and smaller,
which  means  that  the  agent  will  not  explore  as  much.  As  we  saw  in  the  small
environment, exploration is critical in certain environments.

These experiments show the importance of setting rewards that are neither too big nor too
small.  In these cases the rewards were hard coded into the environment.  However, in
cases that allow the agent's programmer to decide on a reward (for example, what reward
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to give when a robot bring you coffee in the morning), it might be useful to test a range of
rewards and select one of the smallest values that gives high performance (if the agent
needs to explore).

5. Conclusions  

The  techniques  tested  all  showed  some  kind  of  promise:  improving  performance,
increasing the learning rate, helping to find better goals. All this is  very useful for a
reinforcement learning agent.
However,  these  techniques  require  a  certain  amount  of  fine-tuning of  the  parameters
involved, and in some environments it is even preferable not to use some (in particular,
eligibility traces in a one-goal environment). This somewhat limits the usefulness of the
techniques,  in  that  they  cause  the  reinforcement  learning  agent  to  require  more
supervision.
In  general,  the  various  techniques  can  bring  significant  improvement,  when  a  little
supervision is possible, or if there is prior knowledge about the environment, and when
used with appropriate parameters. 
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