
FINAL REPORT

Project: Experts Can Finally Be Lazy: Lazy Approximation in Expert Systems
Student Researchers: Leha Blaney and Gina Castano
Advisor: Dr. Lynn Stauffer
Institution: Sonoma State University

The application of lazy evaluation to a fuzzy expert system proves to be one of
considerable complexity, with some significant problem areas. In the course of
our research, we isolated many of these problems. We can now offer ourselves
and other researchers many directions for further research, but much is yet to
be done before the real work of implementation, evaluation, and comparison with
other models may begin in earnest. Our paper discusses these problem domains,
the work we were able to do that was essential and preliminary to the
implementation of a truly lazy system, and how we plan to continue our research
from this point forward. This paper also outlines our experience with the
research process, itself, and what we have learned from that experience.

Our research project began with the search for a suitable topic. We were
interested in both expert systems and functional programming and wanted to see
if there was a useful way to tie the two together. We discovered the Watt
model of separation of control from calculation using lazy evaluation, and we
found this to be an interesting concept to apply in the expert system arena.
Gathering some preliminary papers and books on the two subjects, we were able
to come up with several ideas for the application of the Watt model in the
context of a fuzzy expert system. We made a thorough search of available
information to determine that no one had already done the work we were
planning. We then compiled our proposal based on this information, with the
details remaining to be worked out in the course of the research. The proposal
outlined several phases that were intrinsic to our plan of attack. Over the
course of the year, we executed each of these phases to the best of our
ability.

First, we set up an online conference for meetings, links, and discussions, and
a WWW page to give the public access to our proposal and findings.

We then began a more thorough effort to gather papers and other documents on
the subjects of lazy evaluation, expert systems, fuzzy logic, functional
languages, logic languages, expert system shells, and various combinations of
these.

Once we had gathered these materials we began the reading portion of study.
The first topic to read about was functional programming. We looked at Scheme,
Lazy ML, Haskell, and Miranda. Of these languages, Haskell seemed the most
applicable to our goals. However, There was no fuzzy Haskell that we could
find, and the task of creating a fuzzy Haskell expert system from scratch was
beyond the scope of our time constraints. We do not consider this to be a bad
concept, though, and hope that other researchers (or ourselves) will have the
opportunity to investigate it. We are also interested at this point in
creating a fuzzy expert system shell in Haskell. An expert system shell is a
very high level language, written in a medium to high level language,
specifically for the purposes of making the writing of expert systems as simple
and streamlined as possible. A shell written in Haskell would make the use of
lazy evaluation in the expert system natural and straightforward.

Our next topic of investigation was the mechanics of lazy evaluation, itself.
We investigated the use of list comprehensions and lazy lists in the various
functional languages we'd studied, and implemented various examples of the Watt
model in these languages. We had regular brainstorming sessions wherein we
expanded on our ideas for application of these tools in the expert system.

Then we read about fuzzy systems. None of us had had any prior experience
working with fuzzy logic, so this portion of our research was both intensive
and fascinating. We explored various areas in which fuzzy logic has
successfully been applied, with the main focus, of course, on expert systems.
Here, fuzzy logic is used to get an approximate answer when no exact answer is
possible, and to act as a rule builder for expert systems that actually grow in
expert knowledge over the course of use.

We learned the theory and organization of traditional expert systems. Much of
our course work in databases, data structures, and software engineering had
prepared us for more sophisticated models, such as the expert system, so we
were ripe for this part of our study and the concepts were quick and easy to
grasp. Expert systems are also generally written in logic, or relational
programming languages, so part of our work here was to survey a few of these
languages, learning more about how they work and looking for any that might
already be capable of lazy evaluation, or of using fuzzy logic. We found many
were capable of fuzziness, but only one had been altered to include lazy
evaluation at all, and this only a partially lazy amendment to the existing
language (Prolog). At this point, we determined that not only were we going to
have to use cross platform tools to make our system lazy, but if we were going
to be able to write a small expert system, to do so in one of these relational
languages would be a formidable and time-consuming task. Wanting to move on to
our chosen area of study as quickly as possible, we chose to look at expert
system shells.

We found and evaluated several expert system shells, a few of which could build
fuzzy expert systems. The most promising of these was FLOPS, a shell that
comes in both fuzzy and non-fuzzy flavors. We attempted to procure a copy of
FLOPS from its author, William Siler, but after several emails it was beginning
to seem like it was just going to take too long to achieve good communication
with Dr. Siler, so, pressed for time, we went ahead and began implementing our
system in CLIPS, a shell that is freely available, well documented, and quick
to download. CLIPS was developed by NASA, who at one point had considered
implementing the shell in LISP, a partially functional language in which it is
fairly straightforward to create the functions Delay and Force, which can be
used to implement lazy evaluation. For various reasons, however, NASA
ultimately chose to implement their shell in C, a procedural language. At the
time we began creating our expert system, we thought it would be possible to
either use cross platform tools to add laziness from functional code, or use
the Delay and Force functions in the C environment. As best as we can tell at
this time, neither of these is possible. Perhaps this is an area for further
research, but articles we read on the semantics of functional programming and
its differences from the procedural paradigm make it look less than promising.

Gina had the opportunity to attend the Symposium on Applied Computing 1999 in
San Antonio, Texas, where she participated in the Artificial Intelligence and
Fuzzy Logic tracks. She gained insight from the lectures on contemporary work
in the field.

Leha also plans to more fully develop our small bird identification expert
system. The system can currently identify a few immature birds of California.
Leha hopes to add the ability to identify adult birds and fledglings, and to
make the list of identifiable species more complete for a larger geographical
base.

We all hope to continue our work by either finding or creating an expert system
shell that is written in a functional (or partially functional) language.
Ideally, that language would be Haskell or Miranda. Other areas to for
possible research are, as mentioned above, the implementation of laziness in C,
or some other procedural language; use of lazy lists in a purely functional
environment for prototyping of expert system front ends; creation of a
relational language that has delayed evaluation, fuzzy logic and fuzzy sets
built in; and creation of a more fully lazy version of Prolog, Datalog,
Likelog, or some other existing relational language.

The opportunity to do research as undergraduates has helped us in many ways.
Through gathering and reading the contemporary information in our area of
study, we gained greater skill in the important area of surveying and reviewing
the work of peers and of computer science professionals. By implementing lazy
lists in the Watt model, choosing an expert system shell, evaluating several
languages, expanding our knowledge of artificial intelligence, encountering and
coping with obstacles in the course of seeking solutions, and working
collaboratively, we have gained a better understanding of the research process
and of the difficulties and challenges inherent in the pursuit of advanced
research topics. Finally, through choosing a research topic, writing a
successful proposal, and collecting and processing the results of our study,
attempting to produce an honest document that will be useful to others involved
in research, we have gained an important skill set that will help us in our
graduate level pursuits, and in our careers.

Mathematical Puzzles with Smart Objects Interfaces: Final Report
Student Researchers: Yuliya Dushkina and Shalva S. Landy
Advisor: Lori L. Scarlatos
Institution: Brooklyn University
by Shalva S. Landy

The Smart Objects project aims to enhance collaborative learning experiences by
providing feedback to students working in a physical space. To do this, the
system must "watch" as students manipulate physical objects, "decide" how close
the students are to meeting their goals, and then "respond" appropriately. The
specific application we were focusing on was a Tangram puzzle to be installed
at the Goudreau Museum of Mathematics in Art and Science. The work would be
general so it could be used for a wide range of other applications.
We are using a QuickCam as an "eye" to track the puzzle pieces. Image
processing techniques applied to the camera's input determines which sides
and/or corners of which pieces are adjacent to each other. Based on this
information, we can determine the state of the puzzle. If the user has
completed it, s/he receives a congratulatory animation; otherwise, we try to
help the user if s/he seems to be having trouble. We give help by suggesting
the user think about how two or more shapes may be used to construct one larger
shape. For example, "how can you make a triangle out of two triangles and a
square?" or "how can you make a larger triangle out of two smaller triangles?"
Then, we play an animation showing how to do so. This is supposed to start the
user thinking about how different shapes can fit together to ultimately form
the complete solution.

Three people worked on the project this semester: Lori Scarlatos (mentor) and
Shalva Landy and Yuliya Dushkina (students). We co-authored a paper titled,
"TICLE: a Tangible Interface for Collaborative Learning Environments." This
paper was accepted as a Late-Breaking Results paper for the ACM SIGCHI
Conference on Human Factors in Computing Systems.
Although the project has not yet been completed, Dr. Scarlatos and I will
continue working on it through the summer, so that it may be installed at the
museum for the next school year.
I have learned from this project many interesting things regarding research
that will hopefully help me when I do research in graduate school. First,
there may be many different approaches to solve a problem, and the one that is
taken may not necessarily be the best one. This calls for many unplanned
changes during the course of the project. Also, research involves more than
simply programming. Just because something sounds like a good idea does not
mean that it will work. Another important thing is working with reliable
people, but don't count on others; if you want the work to get done, do it
yourself.

Visual Simulation Environments & Robot Drivers

Students:

Maralee La Barge
Emily Greenfest
Sarah Klaum

Faculty Supervisor:

Deepak Kumar

Department of Mathematics & Computer Science
Bryn Mawr College
101 N. Merion Ave
Bryn Mawr, PA 19010

Final Project Summary

The goal of our project was to write a Macintosh virtual simulation of the
Khepera robot, based loosely upon work done by Olivier Michel, University of
Nice, which was written for the UNIX environment. Completing the project
involved three major steps:

1) developing an application for the Macintosh OS
2) modeling the physical Khepera robot accurately in a virtual environment
3) learning how to interface with a physical Khepera robot through the serial
port.

First, developing an application for the Macintosh involved learning PowerPlant
(part of the Metrowerks Code Warrior IDE), a collection of wrapper classes that
hide the foundation level details of the operating system. We were unfamiliar
with the package at the beginning of the project. Due to lack of tutorial
resources on PawerPlant, we spent more time learning this development
environment than we might have otherwise. By the end of the first semester, we
had completed a smaller project similar to what we hoped to attain with the
Khepera simulation. It brought to life the "Grid World" agent, an AI model of
stimulus response behaviors defined in Nils Nilsson's text, Artificial
Intelligence: A New Systhesis. Our GridWorld is freeware, available for
downloading at

http://mainline.brynmawr.edu/~mlabarge/darts/GridWorld.html

Through GridWorld, we learned essential ingredients for the Khepera simulation,
such as creating a single-window graphics interface and menu handling, as well
as the more advanced task of thread management. While these ideas were applied
to the more complex Khepera simulation, completing the full project included
the additional task of learning how to implement a multi-window GUI, as well as
the facility of saving, opening, and printing files.

The second step involved developing an accurate virtual model of the physical
Khepera robot. This portion of the project initially relied heavily on Michel's

implementation. However, as our project progressed, it became increasingly
clear that the mathematical representation of the Khepera robot used in the
UNIX simulation was incorrect in some areas. Consequently, we found it
necessary to undertake the challenging task of developing new mathematical
models for collision detection, sensor readings, and robot motion. At this
time, collision detection has yet to be perfected, but our simulation currently
models most behaviors of the physical Khepera more accurately than the UNIX
version.

Third, learning how to interface with the physical Khepera through the serial
port proved to be the most challenging (and least successful) portion of our
project. The task, which differed from other two as it involved unfamiliar
hardware concepts, was made more difficult by a lack of current information.
Consequently, the serial port interface to the physical Khepera is still
incomplete.

In sum, we feel that we have accomplished the majority of the work we set out
for ourselves. At this time, we have implemented a working Macintosh simulation
for the Khepera robot. The simulation, which provides a fully functional GUI
interface, allows users to create a virtual world with which the model robot
may interact and to write a program controlling that interaction. User defined
programs can utilize provided library functions that hide the inner workings of
the simulation. We hope that future students may be willing to undertake the
task of completing the project in full.

Trailblazing for the World-Wide Web
Student Researchers: Rachel Heck, Sarah Luebke, Weichao Ma, Hilary Mason
Advisors: Samuel A. Rebelsky
Institution: Grinnel College

This year we designed, built and began testing trailblazing tools for the
World-Wide Web. These tools allow users to create and maintain ordered
sequences of web pages that others can follow. We began our project by
designing multiple templates for displaying such a trail. Most test subjects
found some features of the designs useful, while others were more particular
about other features. For instance, one template displayed the trail in a
frame-based format. Some test subjects found this easy to use and aesthetically
pleasing, while other subjects preferred a way of displaying the trails without
frames.

After this testing phase, we determined that allowing users to specify some
preferences would be desirable, but in the constraints of the school year, we
decided to implement a default in such a way that we could add in user
preferences later. For example, in our current default trail representation, we
have a header and footer which give the trail information. Some people did not
like having both because they felt it cluttered the page. With the use of
preferences, we could allow the user to specify whether they want both the
header and the footer or not.

Once we had developed a way to display trails we worked on two tools for
creating them. We chose to appeal to users with varying experiences by
implementing both a faster tool that requires computer expertise, and a slower,
but more user-friendly tool that uses a WWW interface.

Overall our research project was a valuable experience, and it has encouraged
each of us to continue doing research in Computer Science. We were only able
to begin testing of the tools we built this year. Next year we hope to explore
usability issues further and design the preferences mentioned above. Since we
have found this experience rewarding and we believe it encourages women
starting out in the field to continue with Computer Science, we intend to
recruite first and second year women to work with our team. This will give the
more senior research team members a chance to be mentors, as well.

One observation we made was that it became difficult to coordinate the research
project with course work, and at times we had to adjust our schedules to fit
these needs. For example, we were expecting to be able to test out tools for
creating trails before the end of the semester but due to spring break, we were
not able to completely meet this goal.

We found that meeting once a week or more as a group with the faculty mentor
was effective. We also communicated by e-mail frequently.

Faculty Sponsor's Report on CREW Project
Project Title: Trail-blazing on the World-Wide Web
Faculty Sponsor: Samuel A. Rebelsky
Students: Rachel Heck, Sarah Luebke, Weichao Ma, Hilary Mason

Goals and Purpose

As is presumably the case in all CREW projects, there were both research goals
and "personal" goals in the "Trail-blazers" research project. There was one
primary research goal: to understand how people might understand, build, and
use "trails", linked sequences of annotated pages, on the World-Wide Web. In
support of that research goal, the students had a number of technical goals: to
develop a file format for representing trails; to develop an interface or
interfaces for presenting trails; to develop tools for building trails; and to
do formative evaluation of the tools and interfaces.

On a more personal side, the students had goals of participating in a research
project and learning not only research techniques, but also the joys and
pitfalls of research.

Account of Process

Because the group had four student researchers, and the CREW grant only
provided funding for three, an early order-of-business was to apply to the
college for additional funds so that each student researcher could receive the
recommended stipend of $1000. The faculty mentor was responsible for the
proposal, which was funded through normal college channels. The faculty member
was also responsible for communication with the CREW administration when their
were delays in receiving funds.

With the funding arranged, our first real orders-of-business were to develop a
plan and schedule and to determine roles within the research team. The team
decided that weekly whole-group meetings (including the faculty sponsor) were
appropriate, with additional smaller-group or "sponsorless" meetings when
needed. Ms. Mason agreed to serve as director of the group, and Ms. Luebke
volunteered to serve as "rappateur".

As is appropriate in all projects, we then reviewed the proposal that funded
the project and began a literature search to identify related projects.
Although the student researchers did read some of the papers referenced in the
original proposal, they were initially not able to identify related papers.
(It may also be that they wanted to move ahead in the project and I was perhaps
too willing to let them do so.)

Our first goal was to identify the interface most appropriate for presenting
trails. We began with discussions of potential interfaces for showing trails.
These interfaces included a framed version, with "table-of-contents" on the
left; a simple "next/previous" interface; a slightly richer "numbered pages"
interface, which included a list of pages running across the top and bottom of
each page; and a multiple-window interface, in which the table-of-contents was
presented in a separate window. In preparation for discussions with the
research subjects, the student researchers created a number of sample trails,

and then manually developed each form of interface for each trail.

The student researchers then began some informal formative evaluation of the
various interfaces using a variety of subjects culled from the college
community. Rather than looking at particular numeric factors, such as which
form of trail permitted readers to scan the material the fastest, the
researchers decided to target more aesthetic qualities, asking subjects which
they preferred, and determining which best indicate the "trail" quality to the
clients. Before beginning these interviews (which are a form of research with
human subjects), the researchers submitted a proposal to the Institutional
Review Board which was approved. The faculty sponsor was responsible for much
of this proposal, although the student researchers contributed to its
development and provided the main questionnaire.

The evaluation revealed some surprising issues. For example, subjects who
indicated that they didn't like frames in general nonetheless found the "framed
with table-of-contents" interface appealing. In addition, many subjects
preferred less information. In particular, few subjects wanted to see titles
of all the pages in the trail. The research team developed a single interface,
based on the information they had gathered from these subjects.

In the next phase, the students developed a format for "trail files" and then
each student researcher chose a different development project to support the
construction of trails. One student was responsible for turning "trail files"
into a sequence of Web pages. A second was responsible for building a
Web-based tool for constructing trail files. A third was responsible for
building a tool that extracted links from an existing page and turned those
links into a trail file. The fourth was responsible for support architecture,
particularly support for downloading and manipulating files. The development
and tuning of the tools took significantly longer than the students or the
faculty sponsor expected.

During this development time, the student researchers also began to consider a
number of other issues. In particular, they began to decide upon the next
round of testing, which they decided would involve testing of the
trail-construction tools. Towards the end of the development phase, they wrote
a second proposal for the institutional review board. This time, the students
were able to write the complete proposal, with little input from the faculty
sponsor. Because they expected that the second study would involve more time
and effort from the subjects, the researchers also began to look at mechanisms
for compensating participants. They talked to a number of possible subjects,
trying to identify appropriate compensation (enough to encourage subjects to
participate; not too much, so that there were sufficient funds to support a
number of subjects). They discovered that the compensation was more difficult
than in many such experiments because of the odd funding of the CREW program.
Typically, the institution would receive the funds and distribute them to the
subjects when the researchers requested them to do so. Unfortunately, the CREW
funds were handled from a separate institution, an arrangement not amenable to
such small-scale funding. As a compromise, they settled on gift certificates
from the college bookstore. This permitted mass purchase but individual
distribution.

The tools neared completion at an awkward time; just before Spring break. It
was clear that the college's long Spring break (two weeks) impeded progress.
It was not possible to gather subjects before Spring break, and the

fine-turning that was necessary right before Spring break took much longer than
expected. In fact, assorted delays resulted in the interviews occurring too
close to the end of the semester for all the recruited subjects to be
available. Nonetheless, they gathered some interesting information, and the
students expect to write a paper addressing their results in the near future.

The last half of the second semester also raised a number of related issues.
The group gave an impromptu presentation to a visiting human factors scholar.
The group identified some related research (Walden's Trails) and began to
compare their own efforts and results to that related research. The group
began to consider the form of the final report, and encountered the
difficulties of developing a research report in the midst of other activities
(e.g., classes, finals, work, the research itself). The group also began to
develop a second CREW proposal, one intended to share their own good
experiences by bringing less-experienced women into the research progress, and
discovered the difficulty of coordinating grant writing and submissions within
a group. The group also attempted to arrange funding from the Conference
Experiences for Women program for travel to a conference on educational
hypermedia, but were saddened to discover that that program no longer has
funds. In the last week of the semester, the team also found an unexpected
downside to their work: one of the trails that their subjects had constructed
involved pages from another site, and the owners of the other site discovered
the trail and objected to what the owners considered "thievery". Fortunately,
a short explanation of the research project repaired the confusion.

Conclusions and Results

There are three main research outcomes from this project. First, we have
evidence to show that both expert and novice Web users can understand the
concept of trails, and can envision building and using trails. Second, we have
some information on the interfaces that readers seem to prefer when using
trails. Third, we have a number of tools that can be used for building and
presenting trails on the World-Wide Web.

We do not consider our project complete. We clearly need more experience with
"blazers" building new trails and readers following those trails. We also hope
to do some comparative testing of the interfaces we and others have developed.
We have applied to CREW for additional funding, but expect to continue the
project in any case.

Lessons Learned

The students learned a number of important lessons about research and doing
research. They worked on many of the technical skills necessary to be
successful in research: writing grants, writing reports, coordinating subjects,
meeting formal requirements (such as those of the Institutional Review Board),
developing surveys, and otherwise building the infrastructure for research.
Obviously, they have not yet mastered all of these skills, but they are on
their way.

Many of the informal lessons will also stick with them. In particular, they

learned that many things take longer than anyone expects, that it's difficult
to coordinate many people and many parts of research, that it is important to
work harder at identifying background materials, and that the rhythms of
research do not always correspond conveniently to the rhythms of the academic
year.

Other Outcomes

Happily, this was a good experience for all of the student researchers (and for
the faculty mentor). All four indicate that they plan to go on to graduate
school in computer science when they complete their undergraduate degrees.
This summer, two of the students (Heck and Luebke) will be working on a related
research project, one student (Ma) will be working on another research project
at the college, and the forth student (Mason) will be participating in a
research internship at AT&T labs.

Final Report, Collaborative Research Experience for Women in Undergraduate
Computer Science and Engineering

Students: Michele R. Cofield and Kamilah K. Walker
Faculty: Dr. Albert C. Esterline
Institution: Department of Computer Science, North Carolina A&T State
University, Greensboro, NC 27411

Our one year of research addressed multiagent motion planning. We distinguish
high- and low-level aspects of motion planning. The low-level aspects involve
laying out paths with explicit metric properties. The high-level aspects
involve task structures, agent intentions, and generally more abstract
features. Our goals were to extend the low-level implementation we had begun,
translate C code to Java, address high-level planning, and integrate high- and
low-level aspects as much as possible. We held weekly meetings to formulate
algorithms and to review code. Standard sources on planning were consulted.
Starting with the low-level aspects, path planning is handled differently in
static and dynamic environments. When we began, we had already implemented in
C a significant part of a visibility-graph approach to static path planning.
This code has been completed and most of it has been translated into Java. We
also completed Java code for dynamic environments where objects have constant
linear motions. This code used an accessibility-graph approach. A start has
been made on a graphical user interface for the dynamic case.

We have developed algorithms for special cases of multiagent path planning,
which apply in the first instance to static environments. We assume that
agents are associated into groups. All the agents in a group are assumed to
have start and destination points near to each other and to move in roughly the
same directions (generally linear) with roughly the same speed. We also assume
that the environment is sparse, that agents are prioritized within groups, and
that the groups are prioritized among themselves. We approach such a problem
hierarchically. For each group, we find a rectangular envelope with a constant
linear motion that encloses all the agents throughout. This envelope should be
as small as possible. After the paths of the individual agents are computed
(disregarding the other agents), collisions among agents within a group a
found. A collision between two agents is resolved by delaying the agent with
lower priority just enough to avoid the collision. Once all collisions within
groups are resolved, the possibility of collisions between agents in different
groups is eliminated by resolving collisions between pairs of envelopes. When
two envelopes collide, the envelope corresponding to the group with the lower
priority is delayed just enough to avoid the collision. This delay is added to
the delays already imposed on its members. The generalization of this approach
to dynamic environments can be done rather straightforwardly by treating
obstacles as highest-priority agents.

For high-level aspects of motion planning, we have worked with Statechart
representations of multiagent plans that are being used in Dr. Esterline’s
research. We have written Java code that interprets the concurrent behavior of
a system of agents which have been assigned roles in a plan Statechart. The
code exploits Java’s monitors.

Not much progress was made on integrating high- and low-level aspects of motion
planning. The key to this integration would appear to involve developing ways
for high-level decisions to impose constraints on the low-level planning
algorithms. It would also be helpful to have some way to classify low-level

configurations in ways that are meaningful to a high-level planner.
We feel fortunate that we took an incremental approach with a topic with which
we already had some experience. Motion planning was found to be an excellent
topic for advanced undergraduate research. It is manageable yet offers
unlimited opportunities for developing sophisticated techniques.
We presented our research at the North Carolina Alliance for Minority
Participation Conference (North Carolina Central University, Raleigh) in April.
We also have a paper in the Proceedings of the NASA ACE/PURSUE Student
Conference, also held in April.

Report to the Computing Research Association Committee on the Status of Women
in Computing Research Collaborative Research Experience for Women

Project Title: Processor Allocation to Independent Tasks in Low Dimensional
Mesh Systems.

Collaborators: Erin B. Greening, student
Jessica (Tze-Yun) Lin, student
Bonnie E. Melhart, advisor
Craig A. Morgenstern, advisor

Our research project has been concerned with the allocation of processors to
independent tasks in a two-dimensional mesh system. We have focused on
heuristics to manage the tradeoff between the competing goals of optimizing for
high processor utilization versus optimizing for low inter-task bandwidth
contention.

Goals and purpose for the project
Our project goal was four-fold:
* to examine the performance of existing allocation strategies,
* to propose, develop, and test new allocation strategies to try to raise

processor utilization while lowering task completion time,
* to determine how well new and existing strategies scale as the mesh

and/or communication requirements increase, and
* to provide a realistic and successful research experience for

undergraduate students in Computer Science.

The purpose of the project was to better understand the problems of such mesh
systems and to contribute new strategies for allocation and scheduling that
improve the overall system efficiency in the presence of communication between
processors allocated to independent tasks.

Process used in completing the research
We began weekly meetings last fall semester. The advisors distributed a few
essential papers and we discussed those together at first and made plans for
the next weeks activities. We acquired the Procsimity simulator, developed at
the University of Oregon, and began running experiments to duplicate the
findings we had read about. This served to acquaint us with the workings of
the simulator and helped us to understand the technical papers.
As we ran more experiments, we examined the simulation results and strategized
about new allocation algorithms that might take advantage of the strong points
of previous ones without the weak points they exhibited. For each new strategy,
a series of experiments was designed to compare it to old strategies. As we
began to consider the added problems of communication between the processors,
we added experimental measurements for the effects of this to our simulation
studies. We considered various messaging patterns and ways to simulate that
would allow us to run the experiments efficiently. (Some experiments use
several days of machine time to finish.)

Conclusions and results achieved
Our studies included comparisons of existing allocation strategies and a new
strategy we developed that is a variation of the contiguous Fast Frame Sliding
(FFS). Our Closest Shape (CS) strategy allows allocations the FFS would not by
considering submeshs of a different size and shape than the request. For

example, suppose a task requests a 3x5 submesh of 15 processors when there are
no such submesh blocks available. If there are free submeshes of 2x8 or 4x4,
FFS will not allocate, but CS will. None of the contiguous strategies can
match the utilization when scattered (non-contiguous) allocation is allowed,
however. Intuitively, utilization will be favored with scattered allocations
if there is no communication between the processors.

Our further studies looked at the same strategies when communication is
considered among the processors. Scattered allocations we studied included
random and multiple-buddy allocation strategies. The Procsimity simulator
allowed us to simulate various communication levels between the processors
allocated to a specific task. Intuitively, high levels of communication will
be handled better with contiguous allocations. It seems reasonable that one
would want to at least limit the length of the path between communicating
processors, though it is certainly possible to pass messages through as many
other processors as it takes to deliver the message, including those allocated
to other tasks. For our experiments we used wormhole routing, an XY-routing
scheme that routes a message in the horizontal direction first and then in the
vertical direction to its destination. The whole message follows along from
processor to processor in a pipeline fashion.
We have simulated these strategies extensively for 16x16 and 32x32 meshes and
have preliminary results for 64x64 mesh systems. In all cases, the utilization
is better for the scattered allocation multiple-buddy. As the mesh size grows
larger, the contiguous strategies improve their utilization for heavy traffic,
while the scattered allocation maintains the same high utilization. Closest
Shape has the highest of the contiguous strategies. The response time and
finish time of contiguous vs. non-contiguous fluctuated depending on the
severity of messaging traffic and the mesh size. The observed trend is that as
the mesh system gets larger, there is little difference in performance between
the best of the contiguous methods and the best of the non-contiguous methods.
That is, contiguous methods can be competitive with non-contiguous methods.
However, more studies are needed to determine the benefits and trade-offs of
each type of allocation strategy. We hope to continue the studies with these
strategies for the largest mesh systems that we can simulate. There is still
much to explore for ways to improve the contiguous vs. non-contiguous
allocations when processors require communication.
Our most useful outcomes are the new ideas for areas to consider with further
heuristics and experimentation. The funding from the CREW program made it
possible to get other funding from our university for equipment that we will be
able to use solely for this project next year.
Jessica Lin is starting graduate school in Computer Science at the University
of Texas at Arlington, while Erin Greening is starting her senior year of
studies at TCU and plans to continue her involvement with this research
project.

Crew research project - final report:

- goals and purpose of the project

Humans are very good at picking out composite features to use as landmarks in
unstructured environments and to use those landmarks to navigate or identify
objects around themselves. The goal of this work was to decide what features in
a typical unstructured environment an automated navigation system could use as
landmarks and how properties of those features could be combined to provide
localization superior to that obtained by using beacons or point features.

- account of the process used in completing the research

Most of the previous research using landmarks in outdoor environments has used
point features, such as mountain peaks, as opposed to composite features. Point
features are easier to identify but produce more error when used for
localization than do composite features. To identify a composite land feature,
a precise definition must be known. Since no clear, formal definitions existed
for any of these features, they had to be formulated. By interpreting previous
work and consulting with researchers in the area, the terms for such features,
such as ridge line, saddle, circ and bowl, and their definitions were
developed. The features were separated into two categories: Primitives and
Formations. The Primitives are themselves composite while the Formations are
groupings of Primitive composite features. It was decided to focus this work
on ridge lines since the La Crosse area provided numerous examples with which
to work.

Digital images of the bluffs surrounding La Crosse were taken. An image library
was created consisting of images taken at multiple locations and from different
viewpoints at each location in order to clearly capture distinguishable land
features within the bluffs.

USGS (United States Geological Survey) elevation data for the La Crosse area
was obtained and used to render a terrain map of the area. The data used was
7.5 minute DEM (Digital Elevation Model) with readings taken every 30 meters.
This allowed for simulated terrainsto be rendered covering the same areas as
the images in the library and for the elevation at any given point to be
electronically available.

The digital images were then converted into a form that allowed for easy access
to the actual pixel values. They were cropped so that extraneous features in
the image were eliminated and ridge lines were featured. The cropped images
were then converted from color to grey scale, then into a matrix of numerical
values with each value ranging from 0, representing black, to 255, representing
white. These pixel values were then written into a text file. Visual patterns
of pixel values were visible in this text file. An algorithm was developed to
color different ranges of pixel values different colors. It was found that
there was a unique number pattern that represented the ridge line. The unique
pattern consisted of a contrasting pattern of lighter number values located in
close proximity to darker number values. Although ridge lines along the sky
line were easy to find, these patterns were also apparent along ridge lines
that did not border the sky.

Finally, pattern recognition algorithms were developed in an attempt to
identify this unique pattern that represented the ridge line. The goal was to

produce from the pixel intensity values a single entity which could be labeled
``Ridge line''. Although ridge lines on the map as well as on the scene
rendered from the map data are shown as lines, they appear as blobs in the
actual images. Once the blobs are identified, they must be compared in some
way to the linear map data in order to match the view to the map.

The first algorithm pulled out pixels with values exceeding a given threshold.
There were two problems with this approach:
1. When images are taken in an outdoor setting, there is no control over the
light intensity. Images existed in the library with ridge lines visible to the
human eye which had no pixel values over the threshold.
2. It was then necessary to add another level of processing to the algorithm in
order to decide which of these thresholded pixels were part of the ridge line
and which were outliers and to connect the legitimate pixels into a single
entity.

At this point, it was decided that, to deal with the light intensity problem,
instead of an absolute threshold, a difference measure should be used, pulling
out pixels which differed from their surroundings by a percentage of the total
range of pixel values. The second problem was dealt with by grouping pixels
into a blob, using a standard region growing algorithm. A ``Ridge line
signature'' was then developed for each connected blob for matching with the
map ridge lines.

- conclusions and results achieved

A set of rigorous definitions for composite features in outdoor environments
was developed.

It was found that there is a unique pixel value pattern when a ridge line
appears in a digital picture and this pattern can be extracted using a pattern
recognition algorithm.

After examining the U.S. Geological Survey data available, it was clear that
the data is smoothed to the point that many land features commonly recognized
by a human observer, such as cliffs and outcroppings of rock are lost in the
smoothing. Although the U.S. Geological Survey data might be of more value if
it included more data using smaller intervals than 30 meters, the additional
data would then add to any required processing time.

It should therefore be noted that using the USGS data for localization on a map
will require that large scale features be utilized rather than some of the
smaller distinguishable features so often used by humans.

Weather conditions can change the view significantly. For example, when the
sky is overcast, the image is dark, leading to a smaller range of pixel values
and less likelihood of picking up differences that signify ridge lines. A
scaling of the pixel values can often widen the spread, but only if there are
not too many outliers to skew the distribution. As an example, an image taken
with an overcast sky might contain pixels in the range of 0 to 150. By scaling
the pixel values, the range can be changed to 0 to 255, providing a larger
difference in values along the ridge lines. However, a patch of white in the
image, such as a piece of pavement in the foreground, produces outliers and
will skew the distribution and mitigate the effect of the scaling. Vegetative
growth can also change the look of the surroundings. A tree line may be

mistaken as a ridge line when analyzing the digital image. However, it should
be noted that human navigators also occasionally mistake tree lines for ridge
lines.

- students and mentor(s) involved:

Students: Jennifer Davison, Kelly Hasler
Faculty Mentor: Karen T. Sutherland Ph.D.

Department of Computer Science
University of Wisconsin--La Crosse
La Crosse, WI 54601

