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1. Introduction 

 Epilepsy is one of the most common serious neurological disorders, affecting 

nearly 1 percent of the population (Mormann 2007). For some patients, the seizures can 

be controlled with medication, but for many they cannot be fully prevented. Because of 

the unpredictable nature of the seizures, many patients are consigned to constant worries 

about when the next one will occur. The ability to predict seizure occurrence would be of 

incredible value, allowing patients the ability to prepare for a seizure before its onset. 

Moreover, it could also provide clinical benefits, allowing medical interventions to be 

administered and prevent the seizure before it begins. 
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 Seizure prediction has therefore been an area of active research over the past three 

decades. The main focus has been on predicting seizure onset from EEG recordings, 

which provide a window into the electrical activity of the brain (Ebersole and Pedley, 

2003). Early work yielded promising results, as different groups identified measures 

which undergo shifts before a seizure. However, by focusing simply on predicting a 

seizure, and ignoring interictal periods, they failed to test the specificity of their 

algorithms: whether they predict seizures even when none are imminent (Mormann, 

2007).  

 A wide variety of research has been carried out since then, and no attempts have 

yielded overwhelming success. Mormann et al. (2007) provide a list of all recent studies, 

and despite the number of different methods applied, no approach has been shown to be 

particularly effective.  

 In all the past papers, however, the more recent advances of computer science are 

largely ignored. The characteristics of this problem (an extremely complex state 

representation and large volume of data) provide an excellent opportunity for the 

application of machine learning algorithms. It is possible that employing machine 

learning in this context could allow more complex relationships in the data to be 

identified, improving prediction results. 

 This project explores this possibility, by implementing a range of machine 

learning approaches and applying them to EEG recordings of patients experiencing 

seizures. All the data used in this project was obtained from the Freiburg Seizure 

Prediction Group. It consists of two groups of patients, for whom recordings were 

obtained under slightly different circumstances. The data is made up of continuous, long-

term intracranial EEG recordings in patients who will be undergoing surgery, and is 

supplied by the Epilepsy Centre of the University Medical Centre, Freiburg, Germany. 

 

 

2. Method 

 2.1 Data processing:  

 Certain data processing and normalization techniques were used throughout the 

project. To remove noise from the data, the average value of all channels was subtracted 
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from each channel, eliminating common artefacts. The data was then sectioned into two-

second windows. These windows present an initial challenge for learning: even when 

limited to a two-second time period, the amount of data is too large to learn from. To 

reduce the dimensionality of the data, and still preserve important information, three 

types of features were extracted from every time window. The first was the frequency 

information: I ran an FFT to calculate the magnitude of different ranges of frequencies. I 

also included a measure of maximum linear cross-correlation (Mormann, 2007) and a 

measure of phase synchronization (Mormann, 2000) between every pair of channels. 

These sets of features became the data instances used for prediction.  

 A second issue is due to the fact that, since most of the time is seizure-free even in 

the most severely afflicted patients, the original data contains a large class imbalance. 

There tends to be around 500 times as many interictal windows as there are preictal 

windows. This large imbalance negatively affects the performance of many machine 

learning algorithms. Therefore, the data was undersampled in all experiments throughout 

this report, so that the preictal windows made up 15-30% of the data. 

 Windows were labelled as either interictal or preictal by looking ahead 30 

seconds. If a seizure occurred in those 30 seconds, the window was labelled as preictal; 

otherwise, it was labelled interictal. Ictal windows (recorded during a seizure) were 

omitted. 

 

 2.2 Measuring accuracy: 

 Methods for determining the success of a particular approach vary considerably 

across the literature. The problem originates in the class imbalance inherent in seizure 

prediction: even in the most severely afflicted patients, there is far more time spent 

between seizures than there is during them. This means that when using a short seizure 

prediction horizon, it is almost always true that there will not be a seizure within that time 

period. Algorithms can therefore achieve very high accuracy simply by never predicting 

seizures.  

 Given this issue, it is important to use accuracy measures that are less susceptible 

to class imbalances. This paper relies on the concepts of ‘recall’ and ‘precision’. Recall 

and precision are measured for the minority class – in this case, they are measured for 
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preictal periods as opposed to interictal. Recall measures how successful a given 

algorithm at identifying a given class, whereas precision measures this in comparison to 

how many times the class label was assigned inaccurately. More specifically, recall is 

equivalent to the percentage of preictal periods that were correctly identified. Precision is 

calculated as the percentage of time windows labelled as preictal that were in fact 

preictal, and not mislabelled.  

 To maximize the amount of data available for training, I performed leave-one-out 

cross-validation. Throughout the paper, the data is separated into a test set of a single 

seizure and surrounding interictal period, and a training set of all remaining data. The 

results are then reported as the average across all seizures. I also report the percentage of 

the data that is preictal, since this indicates the recall and precision scores that could be 

achieved by a random classifier. 

 

3. Experiments 

 3.1 Dataset #1 

 I began by focusing on data from two patients. The recordings are intracranial 

EEG, 44 channels for patient A and 60 for patient B. They were recorded at a sampling 

rate of 512 Hz for at least 24 continuous hours. Patient A had ten seizures and patient B 

had six. To reduce the dimensionality of the data, I selected 20 channels at random to 

focus on (results from different combinations of channels indicated that the random 

channel selection does not significantly affect the results). 

 

 3.1.1 Random Forests: 

 I used Weka, a machine learning software package (Witten and Frank, 2005), to 

classify interictal versus preictal windows. After processing the data as described in 

section 2.1, I ran Weka’s implementation of the Random Forests algorithm (Breiman, 

2001) on the data, separately for each patient. The Random Forests was selected because 

randomized decision tree algorithms have been shown to be useful when learning from 

high-dimensional datasets (Ernst et al., 2005; Guez et al., 2008). 
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Patient Precision Recall Percent preictal data 
A 0.0313 0.0263 27.16% 
B 0.7049 0.4479 24.18% 

 

Table 1: Results from Random Forests 

 

 The results are shown in Table 1. The high precision and recall scores on patient 

B indicate that the classifier is able to predict seizures in most cases. However, this is 

clearly not the case with patient A, whose prediction results are quite poor. Further 

strategies were used to try to improve these results. 

 

 3.1.2 Principal Components Analysis: 

 An initial improvement was attempted with the introduction of principal 

components analysis (PCA) into the data processing (Joliffe, 2002). After feature 

extraction, each time window is left with 720 features, which form the input for the 

machine learning algorithm of choice. This is a lot of information, and it is possible that 

the sheer volume of data prevented an appropriate strategy from being learned.  

 To reduce the quantity of data involved, I used PCA to reduce the feature set. This 

method takes in the 720 features, and constructs new ones. The first features it constructs 

are designed to capture the maximum possible amount of variance in the data, and the 

following features contain decreasing amounts of variance. Since the first few features 

contain so much of the variance, it is possible to discard a large number of the other 

features without losing a significant amount of information. 

 I began by running PCA on patient B, since he exhibited the best results. Figure 1 

illustrates the results when running Random Forests on the converted data. Although 

there is not a clear trend to the data, the results seem to be improved when the number of 

features retained is around 10. In this case, the algorithm achieves a precision score of 

0.7667 and a recall score of 0.7188. Since reducing the number of features with PCA 

seems to yield an improvement, as well as reducing the complexity of the learning, I used 

PCA to reduce the features in all of the following experiments.  
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Figure 1: Precision and recall scores after using PCA to reduce the number of features 

 

 3.1.3 Regression: 

 Because there was such a discrepancy between patients, we decided to explore 

whether the prediction horizon we were using (30 seconds) was appropriate for each 

patient. To do this, I shifted focus from classification to regression. Rather than predict 

whether a seizure would occur within the prediction horizon, I used regression machine 

learning techniques to predict the time left until seizure.  

 Although the algorithms were not very successful at predicting time to seizure, 

the results were still quite informative (see fig. 2). For patient B, there is a clear dip in the 

predictions approximately 30 to 40 seconds before the seizure. This shows that the 

algorithm is able to detect a change in state, and that the prediction horizon that I used 

previously was well-chosen. For patient A, there is no discernible change at any point. 

This seems to indicate that the learning algorithm cannot detect a change in state at any 

point before a seizure, and that changing the prediction horizon would not make any 

difference for this patient. 
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Figure 2: Prediction of time left to seizure (straight line indicates the correct time left to 

seizure). 

 

 3.2 Dataset #2: 

 The results from the first dataset are not conclusive, since different results were 

obtained for each patient. I therefore turned to a second dataset to test the same 

approaches, and find out whether the results from patient A or B are more typical. This 

dataset consists of intracranial EEG recordings from 21 different patients. Each patient 

has recordings from six channels: three near the focus of the seizure, and three at more 

distant locations. They were recorded intracranially in patients about to undergo surgery, 

at a sampling rate of 256 Hz. Each patient experiences between two and five seizures 

during the recording period.  

 

 3.2.1 Random Forests 

 The data was treated in the exact same manner as described in section 3.1.1. 

Results are shown in Table 2. Unfortunately, they show that results were on average no 

better than a random predictor would achieve. It is possible that the method can 
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successfully predict seizures for a few of the patients, since the results vary widely 

between patients, but it could also be that but the large variation is due to the randomness 

inherent in the Random Forests algorithm. Since the average score across all patients is 

no better than a random predictor, we cannot conclude that this method is achieving 

prediction. This indicates that different methods will be needed for reliable results.  

 

 
Patient 
number Precision Recall 

Percent 
preictal 

1 0 0 0.1496 
2 0.4545 0.2222 0.1673 
3 0.2742 0.2267 0.2273 
4 0.0606 0.0533 0.1825 
5 0.2609 0.1 0.1911 
6 0.075 0.0667 0.1685 
7 0.0455 0.0444 0.1585 
8 0.4444 0.1333 0.1765 
9 0.3478 0.1067 0.1724 
10 0.42 0.28 0.1697 
11 0.4167 0.25 0.176 
12 0.8182 0.375 0.16 
13 0 0 0.1622 
14 0.2759 0.1333 0.1923 
15 0.1622 0.1 0.1412 
16 0.4839 0.2 0.1596 
17 0.1304 0.04 0.1179 
18 0.3333 0.0533 0.1391 
19 0.1818 0.1 0.1128 
20 0 0 0.1462 
21 0.2308 0.04 0.155 

      
Mean 0.2579 0.1202 0.1631 

 

Table 2: Random Forests results for dataset #2 

 

 3.2.2 Multitask learning: 

 The results from the previous section show that all methods attempted so far have 

not been particularly successful. However, the large number of patients contained in 
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dataset two allows for different approaches to be used. Methods used so far have always 

examined a single patient at a time, and this is quite limiting when applied to patients 

with only a small number of seizures. However, while these patients have few seizures, 

this dataset is rich in information from other patients, recorded with similar methodology. 

This allows the opportunity to explore whether information acquired from one patient 

might in fact be useful in predicting seizures in another. Although epilepsy varies 

considerably between patients, the fact that recordings are available from 21 different 

patients increases the likelihood that useful similarities might exist.  

 This situation presents an opportunity for multitask learning. Multitask learning is 

a method which involves using one machine learning algorithm to learn several tasks 

simultaneously. If the tasks are related, then combining them can lead to better 

performance on both. For example, in a medical database, one might be trying to predict 

whether a given patient has pneumonia. Adding a secondary, related task of trying to 

predict whether a patient has a fever can increase performance, as it aids in decomposing 

the task into relevant subcomponents.  

 Previous work has largely used multitask learning to predict several related tasks 

from the same data instance (Caruana, 1997). However, this is not appropriate for the 

Freiburg dataset. In our case, the multiple tasks consist of trying to predict seizures for 

different patients. These cannot be carried out on a single data instance, since each 

sample can only come from one patient, so the previously suggested methods for 

multitask learning do not apply. Therefore, we developed two different algorithms that 

attempt to use the concept of multitask learning in an approach that is appropriate for our 

data.  

 3.2.2.1 Retraining trees: 

 The first approach was to build a set of decision trees from the data of all but one 

patients. The trees were built using the Extremely Randomized Trees algorithm (Guerts 

et al., 2006), using code written by Arthur Guez and myself. After building the trees, the 

structure of the trees is fixed. Then, all but one of the seizures from a single patient are 

used to retrain the trees. This is done by classifying the data according to the trees, and 

then relabelling the output according to what is found in the new data. If there are no data 

instances in a given leaf, it is removed. This method allows the classifier to learn from all 
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patients what sort of structure can differentiate preictal versus interictal, but then tune the 

outputs specifically for a single patient.  

 The results from this method showed that the classifier consistently classified 

every instance as interictal. It is clear than this learning method is not able to cope with 

the large class imbalance in the data. I tried reducing the class imbalance so that the 

preictal data made up 40% of all instances, but the classifier still had very poor 

performance on all patients. There was also no improvement when the patient’s seizures 

were used to cross-validate and pick suitable parameters for the tree-building algorithm. 

 

 3.2.2.2 Patient-specific trees: 

 Since the first approach was not very effective, I developed a second approach. 

Instead of building a set of trees from all the data, I built a small set of trees for each 

patient. By looking at each patient at a time, this algorithm imposes more structure on the 

data. It then uses all but one seizures from a single patient to weight the trees, and 

determine which should contribute the most to the final output.  

 Two methods for determining the final output were used: weighting the trees with 

linear regression, and using their output in a RandomForest classifier. Results are shown 

below in Table 3. Again, they are not better than what would have been achieved by a 

random classifier. 
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Patient 
number  Precision  Recall  

Percent 
preictal 

1 0 0 0.1496 
2 0.0909 0.0222 0.1673 
3 0.25 0.12 0.2273 
4 0 0 0.1825 
5 0.5385 0.1167 0.1911 
6 0.2 0.0286 0.1362 
7 0 0 0.1585 
8 0 0 0.1765 
9 0 0 0.1724 

10 0 0 0.1697 
11 0 0 0.176 
12 0.6429 0.1875 0.16 
13 0 0 0.1622 
14 0.1 0.0167 0.1923 
15 0.125 0.0167 0.1412 
16 0.3548 0.1467 0.1596 
17 0.1667 0.0133 0.1179 
18 0.05 0.0133 0.1391 
19 0 0 0.1128 
20 0.1818 0.0267 0.1462 
21 0.1111 0.0133 0.155 
        

Mean 0.1339 0.0344 0.1616 
 

Table 3: Results from weighting predictions of patient-specific trees 

 

4. Conclusion 

 None of the methods I implemented could reliably predict seizures. It is possible 

that our features simply did not contain enough information. For the majority of the 

patients, whose seizures could not be predicted, any improvement may require the 

development of an addition type of feature, which would more accurately represent the 

patient’s state. Future work could attempt identify new features that are useful for these 

patients, potentially improving results. 

 Furthermore, some improvement might be yielded if during group analysis, 

patients were grouped according to clinical characteristics, such as location or cause of 
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seizure. This change might allow information to be more readily generalized across 

patients.  

 Despite the lack of general success, there were positive results for a few specific 

patients. In particular, patient B yielded good results when several different approaches 

were used. It is encouraging that even techniques that may not contain general promise 

may still be helpful for specialized detection for specific patients. 
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