Information Theoretic Approaches for Predictive Models Results and Analysis

Monica Dinculescu Supervised by Doina Precup

Undergraduate Summer Research Symposium August 31, 2006

Problem Definition

- Partially observable system, discrete time
- Hidden states: you can't see a state, but you can see an observation

[Littman, Sutton and Singh, 2001]

4 3 b

Partially Observable Markov Decision Processes Predictive State Representations

Problem Definition (cont'd)

Definitions

$$x_t^{past} \in X$$
 : histories (pasts)

• finite length sequences of action:observation pairs $x_t^{past} = [a_{t-k} : o_{t-k}, ..., a_{t-1} : o_{t-1}]$

 $y_t^{fut} \in Y$: future observations

• Want to be able to predict what the outcome of an action will be: i.e. predict $p(y_t^{fut}|a_t, x_t^{past})$

(4月) (1日) (日)

Partially Observable Markov Decision Processes Predictive State Representations

Solution | Partially Observable Markov Decision Processes

• POMDP [Sondik, 1971]

Definition

A **belief state** is used to keep track of the probabilities of being in each of the hidden states. [Sondik, 1971]

Problem

- Computationally expensive
- Depends on a good model of underlying states

イロト イ得ト イヨト イヨト

Partially Observable Markov Decision Processes Predictive State Representations

Solution || Predictive State Representations

- PSR [Littman, Sutton and Singh, 2001]
- Constructs a state representation based only on actions and observations

Definitions

A test is a sequence of future action:observation pairs

•
$$q = [a_t : o_t, ..., a_{t+1} : o_{t+1}]$$

A history is a sequence of past action:observation pairs

•
$$h = x_t^{past} = [a_{t-k} : o_{t-k}, ..., a_{t-1} : o_{t-1}]$$

• PSR representation predicts p(q|h)

4 冊 ト 4 三 ト 4 三 ト

Partially Observable Markov Decision Processes Predictive State Representations

Solution II (cont'd) Predictive State Representations

Definition

- A System Dynamics Matrix is an ordering over all possible tests and histories.[Singh, James et al, 2004]
- Infinite matrix but with a finite number of linearly independent columns called **core tests**.

$$\begin{array}{c|c} \mathbf{h}_{1} = \phi & \mathbf{t}_{1} & \cdots & \mathbf{t}_{j} & \cdots \\ \mathbf{h}_{1} = \phi & \mathbf{p}(\mathbf{t}_{1} \mid \mathbf{h}_{1}) & \mathbf{p}(\mathbf{t}_{j} \mid \mathbf{h}_{1}) \\ \mathbf{h}_{2} & \vdots \\ \vdots & & \\ \mathbf{h}_{i} & \mathbf{p}(\mathbf{t}_{1} \mid \mathbf{h}_{i}) & \mathbf{p}(\mathbf{t}_{j} \mid \mathbf{h}_{i}) \\ \vdots & & \\ \end{array}$$

A (1) > A (2) > A

-

[Singh, James et al, 2004]

Problem

- Less restrictive model but very data expensive
- No good learning algorithms

Monica Dinculescu Information Theoretic Approaches for Predictive Models

Motivation

- Flexible model based on finite length histories
- Data efficient learning algorithm
- Computation/memory affordable
- Good predictions

• = • •

Information Theoretical Approach

 Based on the Active Learning algorithm developed by S.Still and W.Bialek, 2004

Definition

We define an internal representation $s_t \in S$ such that:

- **1** There is a lossy compression of the information from x_t^{past}
- It has a good predictive power

Optimization Principle Algorithm Results

Optimization Principle

Definition

$$F = max_{p(s_t|x_t^{past})}[I(\{s_t, a_t\}, y_t^{fut}) - \lambda I(s_t, x_t^{past})]$$

- First term: maximize predictive information about the future
- Second term: compress information about the past
- λ is a constant that trades 1) and 2) off

4 3 5 4

Introduction	Optimization	Principle
T Approach	Algorithm	
Conclusion	Results	

Solution

Theorem

 $\begin{array}{l} The \ s_t \leftarrow x_t^{past} \ assignment \ is: \\ p(s_t | x_t^{past}) \sim exp(\frac{-1}{\lambda} \sum_a p(a_t | x_t^{past}) \cdot D_{KL}[p(y_t^{fut} | a_t, x_t^{past}) || p(y_t^{fut} | a_t, s_t)] \end{array}$

- The *D_{KL}* compares how different the future prediction as given by the state is compared to the future prediction as given by the entire history
- A better state assignment →a prediction more similar to the one returned by the history
- λ acts as a temperature parameter; as $\lambda \to 0$, the $s_t \leftarrow x_t^{past}$ assignment becomes deterministic

Algorithm

Input: # states s_t , length of x_t^{past} , length of initial trajectory, λ **Output:** $\rho(s_t | x_t^{past})$

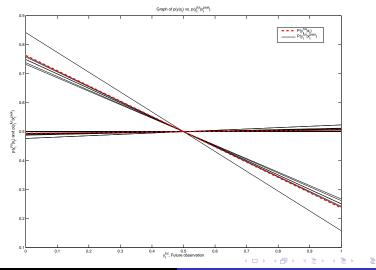
- Create an initial trajectory by taking random actions
- 2 estimate $p(x_t^{past})$ and $p(y_t^{fut}|x_t^{past}, a_t)$
- **③** for i←1 to t
- while $p(s_t|x_t^{past})$ does not converge

$$\begin{array}{l} \hline \textbf{S} & \text{iteratively solve:} \\ p^{(j+1)}(y_t^{fut}|a_t,s_t) \sim & \frac{\sum_h p(y_t^{fut}|a_t,x_t^{past})p(a_t|x_t^{past})p^{(j)}(s_t|x_t^{past})p(x_t^{past})}{\sum_h p(a_t|x_t^{past})p^{(j)}(s_t|x_t^{past})p(x_t^{past})} \\ p^{(j)}(s_t|x_t^{past}) \sim exp(\frac{-1}{\lambda}\sum_a p(a_t|x_t^{past}) \cdot D_{KL}[p(y_t^{fut}|a_t,x_t^{past})||p^{(j)}(y_t^{fut}|a_t,s_t)] \\ \hline \textbf{S} & \text{take a random action } a_t \text{ and update } p(x_t^{past}) \text{ and} \\ p(y_t^{fut}|x_t^{past},a_t) \end{array}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction Optimization Principle IT Approach Algorithm Conclusion Results

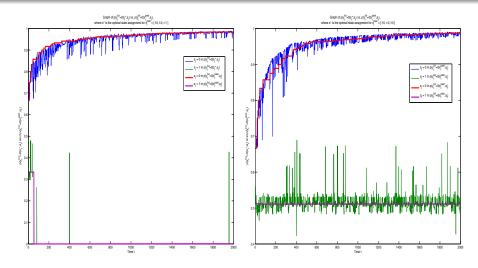
Lossy compression of available pasts The internal representation is a sufficient statistic of the system



Monica Dinculescu Information Theoretic Approaches for Predictive Models

Introduction Optimization Principle IT Approach Algorithm Conclusion Results

Good Predictive States The internal representation retains good predictive powers

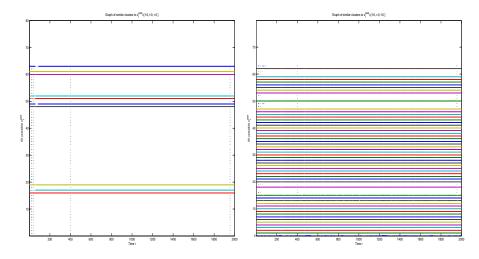


Monica Dinculescu

Information Theoretic Approaches for Predictive Models

< D > < P > < P > < P >

Consistent clustering Consistent $s_t \leftarrow x_t^{past}$ assignment



Monica Dinculescu

◆□ > ◆□ > ◆豆 > ◆豆 > Information Theoretic Approaches for Predictive Models

э

Conclusions and Future Work

- The algorithm learns a predictive model with a limited amount of data
- Predictions are consistent
- Future Work:
 - Compare predictive model with PSRs
 - Learn optimal action policies