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Partially Observable Markov Decision Processes
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Problem De�nition

Partially observable system, discrete time

Hidden states: you can't see a state, but you can see an
observation

[Littman, Sutton and Singh, 2001]
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Problem De�nition (cont'd)

De�nitions

x
past
t ∈ X : histories (pasts)

�nite length sequences of action:observation pairs
x
past
t = [at−k : ot−k , ..., at−1 : ot−1]

y futt ∈ Y : future observations

Want to be able to predict what the outcome of an action will
be: i.e. predict p(y futt |at , x

past
t )
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Solution I
Partially Observable Markov Decision Processes

POMDP [Sondik, 1971]

De�nition

A belief state is used to keep track of the probabilities of being in
each of the hidden states. [Sondik, 1971]

Problem

Computationally expensive

Depends on a good model of underlying states
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Solution II
Predictive State Representations

PSR [Littman, Sutton and Singh, 2001]

Constructs a state representation based only on actions and
observations

De�nitions

A test is a sequence of future action:observation pairs

q = [at : ot , ..., at+l : ot+l ]

A history is a sequence of past action:observation pairs

h = x
past
t = [at−k : ot−k , ..., at−1 : ot−1]

PSR representation predicts p(q|h)
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Solution II (cont'd)
Predictive State Representations

De�nition

A System Dynamics Matrix is
an ordering over all possible
tests and histories.[Singh, James
et al, 2004]

In�nite matrix but with a �nite
number of linearly independent
columns called core tests.

[Singh, James et al, 2004]

Problem

Less restrictive model but very data expensive

No good learning algorithms
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Motivation

Flexible model based on �nite length histories

Data e�cient learning algorithm

Computation/memory a�ordable

Good predictions
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Information Theoretical Approach

Based on the Active Learning algorithm developed by S.Still
and W.Bialek, 2004

De�nition

We de�ne an internal representation st ∈ S such that:

1 There is a lossy compression of the information from x
past
t

2 It has a good predictive power
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Optimization Principle

De�nition

F = maxp(st |xpastt )[I ({st , at}, y
fut
t )− λI (st , x

past
t )]

First term: maximize predictive information about the future

Second term: compress information about the past

λ is a constant that trades 1) and 2) o�
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Solution

Theorem

The st ← x
past
t assignment is:

p(st |xpastt )∼exp(−1
λ

P
a p(at |xpastt )·DKL[p(y futt |at ,xpastt )||p(y futt |at ,st)]

The DKL compares how di�erent the future prediction as given
by the state is compared to the future prediction as given by
the entire history

A better state assignment →a prediction more similar to the
one returned by the history

λ acts as a temperature parameter; as λ→ 0, the st ← x
past
t

assignment becomes deterministic
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Algorithm

Input: # states st , length of xpastt , length of initial trajectory,λ
Output: p(st |xpastt )

1 create an initial trajectory by taking random actions

2 estimatep(xpastt ) and p(y futt |x
past
t , at)

3 for i←1 to t

4 while p(st |xpastt )does not converge

5 iteratively solve :

p(j+1)(y futt |at ,st)∼
P

h p(y futt |at ,xpastt )p(at |xpastt )p(j)(st |xpastt )p(xpastt )
P

h p(at |xpastt )p(j)(st |xpastt )p(xpastt )

p(j)(st |xpastt )∼exp(−1
λ

P
a p(at |xpastt )·DKL[p(y futt |at ,xpastt )||p(j)(y futt |at ,st)]

6 take a random action at and update p(xpastt ) and
p(y futt |x

past
t , at)
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Lossy compression of available pasts
The internal representation is a su�cient statistic of the system
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Good Predictive States
The internal representation retains good predictive powers
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Consistent clustering
Consistent st ← x

past
t assignment
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Conclusions and Future Work

The algorithm learns a predictive model with a limited amount
of data

Predictions are consistent

Future Work:

Compare predictive model with PSRs

Learn optimal action policies
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