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Abstract

Learning the internal representation of partially observable environ-
ments has proven to be a di�cult problem. State representations which
rely on prior models, such as partially observable Markov decision pro-
cesses (POMDPs) are computation expensive and sensitive to the accuracy
of the underlying model dynamics. Recent work by Still and Bialek o�ers
an information theoretic approach that compresses the available history
into an internal representation and maximizes its predictive power. We
propose an alternative algorithm that ensures a more accurate internal
representation, and faster optimal policy convergence times. In addition,
in order to validate the asymptotic nature of the theoretical algorithm,
we present the �rst empirical results in the �eld, comparing the internal
representations returned by both approaches, their accuracy, and their
predictive powers.

1 Introduction

Increasing attention has been given to modelling partially observable systems,
where the agent is not allowed to observe the state directly; instead, observations
are received which allow the agent to infer information about the state.

Consider the problem of an agent who interacts with a dynamical system. In
this paper, we focus on an active scenario, in which the agent has the capacity
to act on the world, and in�uence the observations produced. Active scenarios
can be compared to passive ones, where the agent simply observes the data
produced by the world and constructs an internal representation of the system.
Thus, in the active scenario, the challenge becomes 1) deriving the internal
representation, given the available data as well as 2) deciding on an action
strategy.

Having the ability to predict the outcome of an action is central to all tasks
that a human or arti�cial agent may encounter. Thus, rather than trying to
solve the learning problem, in which the agent tries to discover the system struc-
ture by updating model parameters from observation data, we are interested
in constructing an internal representation that has maximal predictive power.
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That is, the internal representation of the system should be able to make good
predictions about future observations, based on available data.

There have been two predominant approaches in predicting a sequence of ob-
servations: partially observable Markov decision processes (POMDPs), and the
recently proposed predictive state representations (PSRs)[Littman et al., 2002].
We discuss the advantages and disadvantages of each of the methods, and pro-
pose an information theoretic approach based on that developed by [Still and Bialek,2004].
Our approach is di�erent from the above in that the internal representation
considers the information that both the internal state, as well as the action
performed by the agent have about the future.

Finally, to demonstrate the e�ectiveness of our approach we consider the ex-
ample of the �oat-reset problem, created by [Littman et al., 2002], and compare
the predictive powers of the two algorithms.

2 Background

Before discussing the speci�c details of each of the above approaches, we intro-
duce the basic terminology used in the paper. We de�ne a history, xpast

t as a �-
nite length sequence of action-observation pairs, xpast

t = [at−kot−k, ..., at−1ot−1],
where k is the length of the history and aioi the action-observation pair observed
at time step i in that history. Similarly, a test is an ordered sequence of action-
observation pairs t = [aooo, ..., at−1ot−1], from the current time step, into the

future. Finally, a future yfut
t is an observation otthat will be observed after

taking action at at time step t.

POMDPs

A partially observable Markov decision process (POMDP) is a general frame-
work for decision making under uncertainty. Formally, a POMDP is de�ned as
a tupleM = (S,A,O, bo, T, O) where the state set S is the set of states that the
system can be in, A is the discrete set of actions, and O is the discrete set of
observations. The set T consists of (n × n) transition matrices T a, where T a

ij

is the probability of reaching state j , by taking action a in state i. The set O
consists of diagonal (n× n) observation matrices Oa,o, where Oa,o

ii is the proba-
bility of an observation o , given that action a was selected in state i. Finally,
the (1×n) vector bo is an initial probability distribution over the system states
[Singh et al., 2004].

Intuitively, the transition function T determines the distribution over next
states, given that a certain action was selected in a state, while the observation
function O re�ects the partially observable nature of the system (the agent
cannot determine, with certainty, the true state of the system).

The state representation in a POMDP is a (1×n) belief vector b(h) , where
bi(h) is probability of the system being in the hidden state i , given that the
history h has been observed. The belief state is updated by computing:
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b(h, a, o) =
b(h)T aOa,o

b(h)T aOa,oeT
n

,

where eT
n is the 1× n vector of all 1's.

Thus, predictions are given by

P (t|h) = P (a1o1...akok|h) = b(h)T a1Oa1,o1 ...T akOak,okeT
n

The main disadvantage of the POMDP approach is that, as seen above,
estimating the state assumes perfect knowledge of the underlying model. Al-
gorithms that try to learn the dynamics require, at minimum, an assumption
about the topology of the model. In addition, belief state maintenance has, in
the worst case, complexity equal to the size of the state space, and exponential in
the number of variables. Taken together with the fact that there exist dynamic
systems with a �nite state space that cannot be modeled by any �nite POMDPs
[Jaeger, 1998], this shows that the capabilities of the POMDP framework are
rather limited.

PSRs

Predictive state representations are a recent approach that try to represent the
state of a system as a set of predictions of observable outcomes of experiments
that the agent can perform on the system.

A set of tests Q = {q1...qm} is called a linear Predictive State Representation
(PSR) if, for all histories h , the probability of any test t occurring can be
computed as a linear combination of the predictions for the tests in Q. More
generally, Q is a linear PSR if, for every test t, there exists a 1 × q projection
vector mt , such that, for all histories h, P (t|h) = P (h)mT

t . We call the tests
q1...qm in Q, the core tests of the PSR [Littman et al., 2002].

In addition, [Singh et al., 2004] de�ne a System Dynamics Matrix D as an
ordering over all possible tests and histories, of all lengths, where each of D's
entries is the probability of a test given a history, P (t|h). The �nitely many
linearly independent columns of D are the core tests of the PSR. The matrix is
generated by computing the weight vectors mt from the model parameters, for
each test t.

A reason for interest in PSRs is that the state representation is constructed
only from actions and observations seen, thus resulting in a less restrictive model.
However, empirical results show that learning the PSR weight vectors requires
signi�cant amounts of data, making learning algorithms both data and compu-
tationally expensive [Singh, Littman et. al].

Active Learning and Optimal Predictions

[Still and Bialek,2004] recently proposed a solution to the specifed problem.
Using principles from information theory, they propose a state representation
with the objective of extracting predictive information from a time series.
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The state representation is constructed as a �nite set of states st that should
1) compress the information contained by the past time series and 2) retain
maximal predictive powers. Intuitively, the better the state representation, the
closer its future predictions should be to those given by the available data alone.

We want to �nd a mapping from xpast
t → st, such the st is a lossy compression

of the past histories with maximal predictive power. Using information theory,
this can be formalized as the optimization principle :

F = maxp(st|xpast
t

)[I(st|yfut
t )− λI(st, x

past
t )]

where I(X, Y )is the mutual information of X relative to Y, given byI(X, Y ) =∑
x,y

p(x, y) log p(x,y)
p(x)p(y) .

Taken together with a Markovian assumption, the solution to the above
principle is the optimal xpast

t → st mapping. This is the Gibbs probability
distribution:

p(st|xpast
t ) ∼ p(st)e

− 1
λ

DKL[p(yfut
t |xpast

t )||p(yfut
t |st)]

,

where in place of the energy, we �nd the Kullbach-Leibler distance:

DKL[p(yfut
t |xpast

t )||p(yfut
t |st)] = p(yfut

t |xpast
t ) log

p(yfut
t |xpast

t )

p(yfut
t |st)

It has been proven that, in the limit as λ → 0, the assignment becomes
deterministic. Thus, the optimal internal state that a speci�c history is mapped
to is the one that gives a future prediction closest to that given by the history
alone (i.e. minimizes the DKL distance between p(yfut

t |xpast
t )and p(yfut

t |st) ):

s∗t (x
past
t ) = argminst

DKL[p(yfut
t |xpast

t )||p(yfut
t |st)]

The bane of the above representation is that the actions taken by the agent
are independent of the internal state. Since future observations are the result
of an action being taken, the intuition is that the internal state taken together
with the action should in fact be predictive.

3 Proposed Solution

The fundamental idea behind our approach is that actions, taken together with
the internal state are predictive, rather than just the state itself.

The motivation behind this approach is that the future produced is solely
caused by the action choice; therefore, it is reasonable to expect that predictions
that account for the action strategy should be more accurate than those that
depend on the state alone.

Thus, the above optimization principle can be modi�ed to incorporate the
information that the state and action jointly hold about the future. Formally,
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F = maxp(st|xpast
t

)[I({st, at}|yfut
t )− λI(st, x

past
t )]

The �rst term in the equation ensures that the internal representation max-
imizes the information held about the future, while the second represents the
compression of histories into states.

The xpast
t → st assignment in this case becomes stochastic. Since the ac-

tion choices are probabilistic and depend on the optimal action policy (given
by p(at|xpast

t )), the state-history mapping will be as well, and depend on the
aforementioned policy. By solving the optimization principle, we obtain another
Gibbs distribution:

p(st|xpast
t ) ∼ e−

1
λ

∑
a p(at|xpast

t ) ·DKL[p(yfut
t |xpast

t , at)||p(yfut
t |st, at)],

where

p(yfut
t |at, st) ∼

∑
x

past
t

p(yfut
t |xpast

t , at)p(at|xpast
t )p(st|xpast

t )p(xpast
t )∑

x
past
t

p(at|xpast
t )p(st|xpast

t )p(xpast
t )

.

Thus, the optimal internal state that a speci�c history is mapped to is:

s∗t (x
past
t ) = argminst

∑
a

p(at|xpast
t ) ·DKL[p(yfut

t |xpast
t , at)||p(yfut

t |st, at)

Algorithmic Implementation

Based on the theoretical analysis presented above, we have constructed an it-
erative algorithm that performs well in any partially observable setting. The
algorithm is composed of three parts. First, we simulate the initial estimates
of p(yfut

t |xpast
t , at) and p(xpast

t ), by taking random actions and creating a �nite
length initial trajectory. Secondly, we iteratively solve the above two equations,
until p(st|xpast

t ) converges. This result is the optimal xpast
t → st assignment that

maps the speci�c history being observed to an internal state. Finally, an action
is taken according to an action policy, producing a new history and observation,
which are used to update the p(yfut

t |xpast
t , at) and p(xpast

t ) distributions.
The iterative algorithm converges to a local optimum after every iteration,

according to the same arguments that were previously used by [Still and Bialek,2004].

4 Example: Interactively learning a �oat-reset

system

Description

We describe a very simple partially observable system, created by [Littman et al., 2002].
The system is composed of 5 hidden states, 2 actions and 2 observations. The
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�oat action moves to the state on the left/right with uniform probability, and
always produces an observation of 0. The reset action moves to the state on the
far right. If the system was already in that state, the observation produced is a
1; otherwise, a 0 is observed. Each observed history is of length 3 (i.e. extends
3 time steps into the past).

Figure 1. Float-reset problem

We have evaluated both the initial algorithm proposed by Still and Bialek, as
well as our proposed algorithm, in 4 di�erent scenarios:

• The agent has su�cient knowledge of the past (i.e. the initial distribu-
tions are su�cient to capture all the structure in the environment), and
the internal representation is an uncompressed mapping of the available
histories (the number of internal states st is equal to that of hidden states
in the system, namely st = 5).

• The agent has su�cient knowledge of the past, and the internal repre-
sentation is a compression of the available histories (the number of inter-
nal states st is smaller than that of hidden states in the system, namely
st = 3).

• The agent has insu�cient knowledge of the past (i.e. the initial distribu-
tions are too sparse and do not capture all the structure in the environ-
ment), and the internal representation is an uncompressed mapping of the
available histories (st = 5).

• The agent has insu�cient knowledge of the past and the internal repre-
sentation is an compression of the available histories (st = 3).

Empirical results

Due to space constraints, we will only present the results for the fourth sce-
nario, where the agent has insu�cient knowledge of the past, and the internal
representation is a compression of the available histories. The results for the
other three scenarios are consistent with the presented one. We are concerned
with determining which algorithm produces the internal representation with the
greatest predictive power, and that best compresses the available data.

Optimization Function To begin, we compare the values of each of the
optimization functions over time. This ensures that the trade o� between the
predictive power and the compression capacities of the internal representation
is maintained.
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Figure 2 : Optimization function F. The horizontal axis in each plot is the num-
ber of iterations of the algorithm.

Notice that the value of the optimization function in our approach increases
with the number of iterations. This implies that the accuracy of the internal
representation increases as well. Conversely, the internal representation as con-
structed by the original Active Learning algorithm does not vary much. In other
words, its predictive powers improves very little past the initial ones. This is
problematic, as a noisy initial distribution will result in a very inaccurate state-
history mapping.

Lossy Compression The internal representation has to be a lossy compres-
sion of the past histories. In other words, the predictions given by a state should
be very similar to those given by the histories that become assigned to it.

Proposed algorithm Active Learning algorithm
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Figure 3 : History-state mapping. The horizontal axis in each plot contains the
possible future observations, namely yfut

t . The vertical axes are p(yfut
t |xpast

t ),
in black, and p(yfut

t |st), in red.

Notice that the number of states used in the internal representation di�ers
between algorithms. This is because, while the original Active Learning al-
gorithm is deterministic, and thus employs all 3 available internal states, our
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proposed algorithm is probabilistic. Since there are two possible observations,
there are two di�erent possible predictions, and thus only 2 internal states are
needed to represent the system.

If the internal representation is to be a compression of the available histories,
then the future predictions as given by it (the red lines) should best approximate
the future predictions given by the entire data (the black lines). The future
information contained in the available history is better approximated by the 2
internal states as constructed by the proposed algorithm, than the 3 states used
in the Active Learning algorithm, as can be seen from the above graph.

Predictive Powers From the problem de�nition, we know with certainty
that a �oat action will produce an observation of 0. Consequently, a good
internal representation should make the same prediction regardless of previous
observations. On the other hand, the observation produced by a reset action
depends on the action taken on the previous time step. Speci�cally, if the
previous action was a reset, we know with certainty that the system is in the end
state. Thus, taking another reset action is expected to produce an observation
of 0. If the previous action was a �oat, then the probability of observing a 1 is
identical to the probability of the system being in the end state.

With this in mind, we begin by considering the case when the last action
taken is a reset.

Proposed algorithm Active Learning algorithm
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Figure 4 : Future predictions. The horizontal axis in each plot is the number of
iterations of the algorithm. The vertical axis di�ers between the plots. In the
case of the proposed algorithm, it is p(yfut

t = 0|xpast
t = [f0f0r0], a = float), in

red, vs. p(yfut
t = 0|s∗t , a = float), in blue, and p(yfut

t = 0|xpast
t = [f0f0r0], a =

reset), in purple, vs. p(yfut
t = 0|s∗t , a = reset), in green. In the case of the orig-

inal Active Learning algorithm the vertical axis is p(yfut
t = 0|xpast

t = [f0f0r0]),
in red vs. p(yfut

t = 0|s∗t ), in blue. Here, s∗t is the optimal state to which the
history is mapped.

In the case of the original Active Learning algorithm, the internal repre-
sentation is independent of the action choice, and thus the future observations

8



depend on the state alone. Notice that the predictions given by the proposed in-
ternal representation converge very quickly to the value of the predictions given
by the history alone, thus proving its accuracy. This convergence is faster than
that of the original algorithm.

Proposed algorithm Active Learning algorithm
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Figure 5: Future predictions. The horizontal axis in each plot is the number of
iterations of the algorithm. The vertical axis di�ers for both plots. In the case of
the proposed algorithm, it is p(yfut

t = 0|xpast
t = [f0r0f0], a = float), in red, vs.

p(yfut
t = 0|s∗t , a = float), in blue, and p(yfut

t = 0|xpast
t = [f0r0f0], a = reset),

in purple, vs. p(yfut
t = 0|s∗t , a = reset, in green. In the case of the original

Active Learning algorithm the vertical axis is p(yfut
t = 0|xpast

t = [f0r0f0]), in
red vs. p(yfut

t = 0|s∗t ), in blue. Here, s∗t is the optimal state that the history
gets mapped to.

Since the previous action was a �oat, the system can be found in either the
end state, or the one to the left of it, each with a probability of 0.5. Thus,
the probability of seeing an observation of 0 after taking another reset action
is also 0.5. Again, the internal representation constructed by the proposed
algorithm predicts future observations that are closer to those predicted from
all the available data alone.

Clustering Finally, we are interested in whether the predictions given by the
internal representation are consistent. In other words, whether the same type
of histories consistently get mapped together, over time.
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Proposed algorithm Active Learning algorithm
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Figure 6 : History clusters. The horizontal axis in each plot is the number of it-
erations of the algorithm. The vertical axis represents all the histories of length
3 that get mapped to the same state as xpast

t = [f0f0r0].
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Figure 7 : History clusters. The horizontal axis in each plot is the number of it-
erations of the algorithm. The vertical axis represents all the histories of length
3 that get mapped to the same state as xpast

t = [f0r0f0].

Using the same argument used in the lossy compression case, we expect
to see two di�erent clusters being formed by the proposed algorithm. All the
histories that are mapped to the same state as xpast

t = [f0f0r0] are, in fact,
histories that end in either an r0 or r1 action-observation pair. This is because
the future prediction based on each of these histories is known with certainty.
Consequently, the remaining histories will be mapped to the second state, as
the future prediction in each of these cases is probabilistic. If these histories
were to be mapped to two di�erent states, rather than one, it may be possible
to tell small probability di�erences in the case of the reset action. However, it is
unrealistic to assume that this could happen, as the agent is learning from noisy
and insu�cient data. This however, is not the case when considering the original
Active Learning algorithm. Since the state-history mapping is deterministic, in
order to retain good predictive powers, the states need to be more spread out
among the possible histories.
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5 Conclusion

We have presented an information theoretic approach to the problem of pre-
dicting future observations from limited available data, by proposing that the
internal representation, together with the action strategy employed by the agent,
should retain maximal predictive powers, and compress the past histories seen by
an agent. We have compared our proposed algorithm to that of [Still and Bialek,2004]
in four di�erent tasks. The experimental results illustrate an increase in the pre-
dictive power of the internal representation, as well as a faster convergence to the
optimal state-history mapping. These experiments suggest that our approach
of considering actions in creating the internal state representations is a viable
solution for predicting partially observable systems, using a limited amount of
data. Future work will analyze further problems that can be addressed by our
approach, as well as compare our internal representation of the world to that
constructed by a PSR.
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