
1

The Adaptive Coach for Exploration:
An Intelligent Open Learning Environment

Heather Neilson

heatherneilson@gmail.com

Department of Computer Science
University of British Columbia

2366 Main Mall
Vancouver, B.C. Canada V6T 1Z4

1. Introduction

Open learning environments are computer-based systems that promote student exploration of a
domain rather than explicit instruction (Bunt, Conati, Huggett & Muldner, 2001). They allow
students to explore new concepts at their own pace and without the constraints of a question-and-
answer format. With this approach, the student takes on a bigger role in her own learning (de Jong
& van Joolingen, 1998); it is hoped that this will promote deeper understanding of the material
(Bunt, Conati, Huggett & Muldner). Not all students benefit from an open learning environment
though. Students must take the initiative to thoroughly explore the concepts; in open learning
environments, students often explore only a relatively small portion of the available possibilities
(Kuhn, 1992). Students must also have certain meta-cognitive skills in order to learn by exploration
(Njoo & de Jong, 1993; Shute & Glaser, 1990); some students have difficulty generating hypotheses
(de Jong & van Joolingen). As such, the skill of self-explanation is valuable for students using an
open learning environment; a student self-explains by reasoning about the solution to an example
problem (Conati & VanLehn, 2000). The Adaptive Coach for Exploration (ACE) aims to capture
the benefits of open learning while providing tailored support to guide students in their exploration
and encourage them to self-explain (Bunt & Conati, 2002; Bunt, Conati, Huggett & Muldner).

2. Description of ACE

 ACE is an interactive open learning environment for exploration of mathematical functions; it
employs a Student Model and a Coach to provide intelligent support. The Student Model
dynamically represents the learning behaviour of a student and the knowledge that she has. The
Coach uses the Student Model to generate appropriate hints and guide the student through the
exercises at the right pace.

2.1 The Graphical User Interface (GUI)

The ACE GUI has three main window areas: the graphics window, the feedback window and
the help window. The interactive exercises are displayed in the graphics window. Hints and tips are
displayed in the feedback window, and a button is available to get a hint at any time. Next to the
hint button is a toolbar for moving between exercises and opening a variety of tools, which are
discussed at the end of this section. The help window explains how to use the program, what to do
in each unit and what the learning goals are in each unit.

There are three units in ACE: the Machine Unit, the Arrow Unit and the Plot Unit. In the
Machine Unit (Figure 1), the student drags and drops different inputs into the function machine. The

2

machine substitutes in the input, and the student clicks to see each step in the solution. In the Arrow
Unit (Figure 2), a list of possible inputs and a list of possible outputs are displayed along with a
function equation. With the help of a calculator tool, the student connects inputs to their
corresponding outputs. In the Plot Unit (Figure 3), an equation and its graph are displayed. The
student explores the function by dragging the graph around and observing the changes in the
equation, or by entering new values into the equation and observing the changes in the graph.

Each unit contains a number of exercises, defined in a curriculum file. Exercises can be about
constant, linear, power or polynomial functions. The student can move through the exercises in
sequential order, or she can jump to any exercise using the Lesson Browser tool in the toolbar.

In addition to the �Next Exercise� and �Previous Exercise� buttons and the Lesson Browser tool,
the toolbar contains buttons for opening the Calculator, the Exploration History, and the Self-
Explanation dialog box. The student can use the Calculator for the computations needed in the
Arrow Unit, and the Exploration History shows a list of inputs or concepts she has explored (see
Figure 4). The Self-Explanation dialog box allows the student to answer a multiple-choice question
about a concept of her choice. This tool encourages the student to test her self-explanations.

Figure 1: In the Machine Unit, the student plugs different inputs into the machine to see the function solution.

3

Figure 2: In the Arrow Unit, the student connects inputs to outputs for the given function.

Figure 3: In the Plot Unit, the student explores the relationship between a function and its graph.

4

a. b.
Figure 4: The exploration history (a) indicates which concepts have been explored so far. The Self-Explanation
dialog (b) allows the student to test her hypotheses.

2.2 The Student Model

 The Student Model uses a Bayesian network to represent the student�s knowledge and behaviour
(for an introduction to Bayesian networks, see Heckerman & Wellman, 1995). The Model is used to
assess the student�s learning patterns and generate appropriate hints. When the student performs an
exploratory action, such as putting an input into the function machine or moving a function graph,
the Student Model is updated.
 The network contains several different types of nodes. The knowledge nodes reflect correct
actions in the Arrow Unit; if the student correctly matches an input with an output, it is taken to be
more likely that the student understands the relevant concept. The exploratory nodes represent the
student�s exploration at different levels of granularity. Exploration is assessed at the levels of
individual exercises, concepts, function types and units. Concept exploration is hierarchically
organized; the positive slope exploration, negative slope exploration and zero slope exploration
nodes are all linked to the slope exploration node. Each exercise has an associated set of relevant
exploration cases, depending on the current unit. In the Machine Unit and the Arrow Unit, the
relevant exploration cases correspond to the different types of available inputs (small positive
inputs, large positive inputs, zero, small negative inputs and large negative inputs). In the Plot Unit,
the relevant exploration cases correspond to exploration of the different properties of the function.
For example, exploration cases for a linear function include negative slope and positive intercept,
and exploration cases for a power function include odd exponent and positive shifting. The Student
Model�s assessment of exercise exploration and concept exploration is based on evidence from the
relevant exploration case nodes. That evidence also affects a node representing the student�s
tendency to self-explain. See Figure 5 for a diagram showing some of the network connections.

5

Figure 5: Node organization in the Student Model. (Figure taken from Bunt, Conati, Huggett & Muldner, 2001.)

2.3 The Coach

 The Coach queries the Student Model to generate appropriate hints and guidance. If the student
requests a hint, the hint given will be determined based on which concepts have not been thoroughly
explored. When the student chooses to move on to another exercise, the Coach will check whether
the exercise has been properly explored (the exercise exploration node is compared with a threshold
value). If the exercise has not been explored well enough, the Coach will suggest that she should
stay and get a hint.
 In the Plot Unit, the Coach also provides occasional prompts to encourage the student to self-
explain. After each exploratory action, a decision is made as to whether a prompt should be given.
This decision is based on the student�s tendency to self-explain (if the Model indicates that the
student is very likely to self-explain on her own, a prompt will not be generated) and the student�s
exploration so far of the concept currently being explored. This information is represented by the
tendency to self-explain node and the appropriate concept node, respectively.
 Two types of prompt can be given � gentle prompts that are less intrusive, and strict prompts
that are more intrusive. A gentle prompt (Figure 6) is a highlighted message that appears on the
graph or above the equation, suggesting that the student should think carefully about the
relationship between the equation and the graph. The first prompt given for any concept is a gentle
prompt; if another prompt is needed for that concept after a later exploratory action, a strict prompt
is given. When a strict prompt is given, the student is asked to consider how the graph would look
given a particular change in the equation (related to the concept she is currently exploring). The
student chooses one of several possibilities and then she is given an indication of whether she chose
correctly (see Figure 7). The prompts are designed not to interfere with the student as long as she is
generating explanations on her own, and to encourage self-explanation if she is not.

6

Figure 6: An example of a gentle prompt that is given to encourage the student to self-explain.

Figure 7: An example of a strict prompt that is given to guide the student to explain the concept of negative
intercepts.

3. My Contributions to ACE

 My contributions to ACE were mostly concerned with improving the interface by keeping it in
line with the goal of providing the level of support that the student needs while minimizing
intrusiveness (Bunt, Conati, Huggett & Muldner, 2001) and making it more user-friendly. I also

7

created new algorithms to determine when to give the student a prompt to self-explain, and to select
an appropriate hint when the student asks for one. This section will highlight some of the most
important changes made and describe the new algorithms for generating prompts and hints.

3.1 Interface Improvements

 When the student requests a hint, she should receive a clear and helpful message. The set of hint
messages was updated to include increased variation in wording and sentence structure in order to
minimize repetition. It is hoped that this will help to maintain the student�s interest and avoid
annoyance with the hints. For the same reason, instead of giving exactly the same message each
time a gentle prompt pops up in the Plot Unit, a message is randomly selected from a set of different
messages each time a gentle prompt is given.
 A balance is important between minimizing intrusiveness and providing enough supportive,
directive and reinforcing feedback. Several changes were made to reduce ACE�s intrusiveness. For
example, if the student is prompted to answer a question but she closes the dialog box without
answering, the same question will not be asked again after her next action, even if she still has not
thoroughly explored the concept. Previously, when the student moved on to a new exercise (and the
Coach determined that she was ready to do so) a �Great Work!� message would pop up. This
message provided positive feedback, but it also stopped the flow of the program, requiring the
student to click �OK� to continue. In this case, priority was given to reducing the number of popups,
and the message was removed for the current version.
 The previous version of the Machine Unit interface displayed only one step in the equation
solution at a time. After each click to see the next step, the previous step disappeared and the new
step reappeared in its place. In order to allow the student to pay more attention to solution process
rather than remembering the previous step in the solution, the interface was updated to instead
display each step underneath the last one (see Figure 8).

Figure 8: Each step in the function solution is displayed in the function machine.

8

3.2 The Prompt Algorithm

 Each time the student performs an exploratory action an exploration case node is created. These
nodes are stored in the case history, as a record of the student�s exploration; they also contribute
evidence to the Student Model, by influencing the appropriate concept node. After every
exploratory action, the algorithm depicted in Figure 9 is carried out to determine whether the
student should be prompted to self-explain.

Figure 9: A schematic representation of the algorithm for determining whether a prompt should be given.

3.3 The Hint Algorithm

The hint algorithm is called when the student requests a hint. It begins by checking whether
the student is currently stepping through a function in the Machine Unit. If she is, a hint is given

9

telling her to click �step� or enter a new input. Otherwise, if the current exercise exploration node
indicates that the exercise has already been thoroughly explored, a hint is given that suggests
moving to the next exercise.

In addition to the above-mentioned special cases, there are three levels of hints; level zero is the
most general, and level two is the most specific. Each time the user starts a new exercise the level is
set to zero. A level-zero (general) hint is given at most once per exercise; subsequent hints alternate
between level one and level two such that one medium and one specific hint are given for each
unknown concept.
 The topic of the hint is determined by a function that queries the Student Model to find out
which of the concepts relevant to the current exercise and unit have not been thoroughly explored
yet. These (unexplored) concepts are stored in a vector, such that the hints given cycle through in a
rotation.

4. Future Developments

 ACE is an intelligent open learning environment that provides tailored support for students as
they explore mathematical functions. It is geared towards helping students learn the domain-general
skill of self-explanation; as such, the Student Model and Coach components of ACE could be
incorporated into learning tools for other subject areas with only superficial changes.

References

Bunt, A. & Conati, C. (2002). Assessing effective exploration in open learning environments using
Bayesian Networks. Proceedings of ITS 2002, 6th International Conference on Intelligent Tutoring
Systems. Biarritz, France, 698-707.

Bunt, A., Conati, C., Huggett, M. & Muldner, K. (2001). On improving the effectiveness of open
learning environments through tailored support for exploration. Proceedings of AIED 2001, 10th
World Conference of Artificial Intelligence and Education, San Antonio, TX, U.S.A., 365-376.

Conati, C. & VanLehn, K. (2000). Toward Computer-Based Support of Meta-Cognitive Skills: a
Computational Framework to Coach Self-Explanation. International Journal of Artificial
Intelligence in Education, 11, 398-415.

de Jong, T. & van Joolingen, W.R. (1998). Scientific discovery learning with computer simulations
of conceptual domains. Review of Educational Research, 68, 179-202.

Heckerman, D. & Wellman, M.P. (1995). Bayesian Networks. Communications of the ACM, 38, 27-
30.

Kuhn, D., Schauble, L. & Garcia-Mila, M. (1992). Cross-domain development of scientific
reasoning. Cognition and Instruction, 9, 285-327.

Njoo, M. & de Jong, T. (1993). Exploratory learning with a computer simulation for control theory:
Learning processes and instructional support. Journal of Research in Science Teaching, 30, 821-
844.

Shute, V.J. & Glaser, R. (1990). A large-scale evaluation of an intelligent discovery world:
Smithtown. Interactive Learning Environments, 1, 55-77.

