
CRA-E (Computing Research Association – Education)
White Paper

 Committee
 Andy van Dam, Brown (chair)
 Jim Foley, Georgia Tech
 John Guttag, MIT
 Pat Hanrahan, Stanford
 Chris Johnson, University of Utah
 Randy Katz, UC Berkeley
 Henry Kelly, DOE (formerly FAS)
 Peter Lee, DARPA and CMU
 David Shaw, D.E. Shaw Research

 Support
 Andrew Bernat, CRA Executive Director
 Rosemary Michelle Simpson, Brown (Editor)

 Substantive reviews
 Jeannette Wing, Lynn Andrea Stein, and Ed Fox

Contributors

2

 Causes for concern
 statistics and trends, pipeline issues (workforce, research

careers)
o CS AP course
o undergraduate enrollments
o diversity issues

 perception issues – how to recapture the magic?
 recognition issues

o NAS science education study currently out for public review
covers

 life, earth & space, and physical sciences, and engineering &
technology

 but not a word about Computational Thinking – purely
computer as a tool, like a microscope

 Many universities/departments are restructuring to
adapt to changing conditions

Context

3

 ACM's CSTA Model Curriculum for K-12
Computer Science (2003)

 NSF-triggered CS/10K project – K-12 (in
progress)

Related Efforts

4

CS 10K
GOAL: Develop an effective high school curriculum and get

it taught by in 10K schools by well-prepared teachers by
2015.

Curriculum based around new AP course: CS: Principles
– AP is the only point of national leverage, rigorous, popular with

students and schools, fidelity of replication
– CS: Principles covers fundamentals of computing & is engaging

and inspiring. It’s being piloted at 5 colleges 2010-11 with more to
follow 2011-2012

Deployment needs assessments, pre-service & in-service
teacher training, ongoing professional development, and
gain entrée into the schools

 We’ll need the computing community’s help!
www.csprinciples.org

Related Efforts

6

 CSTB "Report of a Workshop on The Scope
and Nature of Computational
Thinking" (2009)

ACM's CSTA Model Curriculum for K-12
Computer

 Science (2003)
NSF-triggered CS/10K project – K-12 (in

progress)
Denning's Great Principles and Rebooting

Computing:
 the Magic and Beauty of Computer Science

(2009)

 CRA-E's mission is to explore the issues of
undergraduate education in computing and
computational thinking for those who will do
research in disciplines from the sciences to the
humanities.

 As technology and teaching methodologies
continue to evolve, how should programs in
computer science, computational science, and
information science co-evolve?

 Can we communicate a core set of ideas,
principles, and methodologies that is domain-
independent?

Mission Statement

7

 Not part of our charter
 K-12
 preparing undergraduates for careers in general
 curriculum design

 Focus
 preparing undergraduates for computationally-

oriented research careers
 environment design

 We wanted to but weren't able to consider
co-evolving technology and pedagogy
 "A teacher for every learner"

o "Grand Challenge 3. Provide a Teacher for Every Learner" in Grand
Research Challenges in Information Systems workshop sponsored by CRA

Mission Boundaries

8

 Provide guidance enabling institutions to
 create an undergraduate environment that
 supports acquisition and internalization of the

computationally-oriented researcher mindset.
 Two sub-goals

 identify issues facing faculty charged with
educating computationally-oriented researchers in
all fields in the first part of the 21st century

 make recommendations that are relevant and
implementable within the current institutional
context

 Target audience
 university and college faculty, school chairs, deans,

provosts, as well as government policy-makers, and

Goal of White Paper

9

 Leverage best practices
 e.g. CMU, Cornell, Georgia Tech, Stanford

 Leverage best writings
 e.g. Jeannette Wing, Lynn Andrea Stein, Peter

Denning
 Focus on environment design

 not curriculum design
 focused on undergraduate education

o others are dealing with K-12, job training…

Method of Operation

10

 Introduce students to computational thinking
 foundational courses that address their interests
 persistent concepts and skills

 Refactor CS curricula
 lean core plus flexible and adaptable set of options
 address future computationally-oriented directions

 Identify cognitive, mastery, and research skills
 pervade the entire curriculum from introductory

courses through advanced senior-level courses

Categories of Recommendatons

11

 Computationally-Oriented Foundations
1. Introductory Courses

 addressing a broad range of student interests

 Refactoring Computer Science Curricula
2. Core/Foundation for All CS Graduates

 lean core with focus on enduring concepts, techniques,

and skills
3. Specialization: Tracks, Threads, and Vectors

 flexible approaches to gaining deeper understanding

and skills
4. Specialization: Integrated Joint Majors

 deep collaboration among disciplines

 Develop Mastery across the Curricula
5. Design Under Constraints and the Gaining of Mastery

 deepen the skill set
6. Prepare Students for Research Careers

 develop computationally-oriented researchers

CRA-E Recommendations

12

 Problem
 how do we address a diverse undergraduate population to

these introductory courses?
 what cognitive skills, concepts, and techniques should be

included in these courses?
 how do we leverage the personal interests and abilities of

students?
 Approach

 provide range of introductory courses that address the
interests of a broad range of students
o contextualized computing
o theoretical/abstraction-oriented
o traditional CS intro programming

 experiment with non-traditional approaches such as building
robots, working with collecting, analyzing, and visualizing

1. Introductory Courses

13

 Cognitive skills
 A cognitive skill is a mental skill required to

understand and practice computational subjects.
 Concepts

 A concept is a named abstraction that has a
definition, such as recursion and concurrency

 Techniques
 A technique is a goal-directed set of strategies and

operations, such as modeling, simulation, and
machine learning

Working Definitions

14

 Concepts/techniques students should have
learned at the end of one semester
 converting patterns of data to information (to

knowledge)
o methods for exploring an interesting domain to

understand what constitutes ‘data’ in that domain, and
then extract and represent that data

o methods for analyzing the data to determine what the
fundamental issues are for modeling, simulation, and
validation

o methods for deriving and validating information from data,
including simple statistical and visualization tools

Introductory Course (1/3)

15

 representing relationships as models and programs
o systematic approach to designing, writing, and debugging

several hundred line programs, including an understanding
of

 reasons why programming is a way to manipulate
patterns as well as a tool for problem solving and
modeling, and

 how it compares with - and augments - other
strategies such as the scientific method, mathematics,
and classic humanities analytic strategies.

o moving from ambiguous problem statement to
computational formulation

 method for decomposing and solving the problem as a
set or hierarchy of subproblems that solve/implement
them.

o meaning and use of algorithms
 including the importance of and strategies for scaling

Introductory Course (2/3)

16

 exploring and validating hypotheses and models
o methods for using simulations shed light on problems

 that are ambiguous
 that don’t have an obvious (closed form) solution

o validation strategies
 that analyze the results of a simulation against the

initial hypotheses and data

Introductory Course (3/3)

17

 Problem
 what cognitive skills, concepts, techniques, and

content should the core consist of
 how should this be decided
 how should it be embodied in specific courses and

programs
 what curricular change mechanisms can evolve as

the inevitable changes occur
 Approach

 identify enduring concepts, techniques, and skills to
form the foundation for a lean core

 emphasize mastery and skills across the curriculum
 develop institutional relationships that build on the

2.
Core/Foundation for All CS

18

 Problem
 accommodate changing domain-specific interests,

both current and as yet unknown future trends
 develop the increased depth that comes from

focused specialization over time
 Approach

 use the lean core skills and concepts in domain-
specific courses and sequences

 experiment with a variety of mechanisms ranging
from one-time experimental courses to major sets
of interwoven tracks such as Georgia Tech's
Threads

 work with other departments and institutions to
optimize resource use

3.
 Specialization:

19

 Problem

 how to develop deep collaboration, an integrated

mindset, among two or more different fields such as
computer science and biology

 Approach
 identify and address some of the barriers to fully-

integrated joint majors, and provide detailed example
prototypes as models

 explore joint special courses, e.g., seminars, as
testing grounds for more extensive collaborative
development

 encourage cross-departmental student groups

4.
 Specialization:

20

 Problem
 course concepts and techniques are siloed so

students don't make connections between courses
 wide gap between introduction to concepts and

their application to real-world problems
 Approach

 create projects that tap into student enthusiasms
 build real artifacts whose performance and

effectiveness can be measured
 treat design as an iterative process throughout the

curriculum
 practice debugging and dealing with real-world

issues
 create integrative capstone-like experiences in all 4

5.
 Design Under Constraints and

21

 Problem
 how to attract, select, and prepare students for

computationally-oriented research careers
 Approach

 embed seductive research examples in the
introductory courses

 establish an apprenticeship culture for
undergraduates as well as graduate students

 identify and teach skills needed for success in
graduate school
o analysis of 'related work' and synthesis with research problem
o identification of hidden assumptions in self and others
o balancing vision, detail-orientation, rigor, and persistence under

failure

6.
 Attracting, Selecting, and

22

 Draft location
 http://www.cs.brown.edu/~avd/CRA-E-

Snowbird2010-draft.pdf
 Tools

 recommendations
o each recommendation section contains background issues,

examples, and solution approaches; resulting
recommendations are summarized at the end of the section.

o the complete recommendation set is provided as a single
document in Appendix A to give a sense of the set as a
whole.

 references (Appendix B) contain both a bibliography
and the complete set of all the URLs that are
mentioned in the report.

 index supports both search and browsing modes

Tools for Using this Report

23

 Benefits for all undergraduates, not just future
computationally-oriented researchers
 all CS students independent of their career goals
 non-CS students who just want a particular

sequence
 Graduate students benefit from serving as

mentors and models for research-oriented
undergraduates

 Early identification and nurturing of potential
researchers deepens the skills needed for
success in graduate school

 ...

Summary

24

 Release final CRA-E white paper
 posted on CRA website http://www.cra.org/

uploads/documents/resources/rissues/CRA-E-
Researcher-Education.pdf

 'blurbs' in Computing Research News, CACM, ...
 Fork CRA-E "Mark 2"

 committee chaired by Rich DeMillo
 website

Next Steps

25

Comments?
Questions?

26

http://www.cs.brown.edu/~avd/CRA-E-Snowbird2010-
draft.pdf

 Brown – multiple versions and styles
 CS15/16, CS17/18, CS19, CS40, CS53, CS931

 CMU – CS15-105 – Principles of computation
 Georgia Tech – CS1315/CS1316 – digital media
 Harvey Mudd – CS for Scientists
 MIT – 6.00 – Introduction to CS and Programming for

students with no programming experience
 MIT – 6.01/6.02 – Mobile robots focus on

computational engineering
 Princeton – CS116 – The Computational Universe
 Purdue - SECANT: Science Education in Computational

Thinking

Example Introductory Courses

27

 Abstractions – creating and validating
 Algorithmic thinking - representing information,

working with constraints and automating the process
 Analysis - examining the components and structure of

concepts, data, and research results
 Approximations - estimating from data observations

and representing in algorithmic form
 Assumptions - identifying and validating
 Automation - representing processes in terms of

repeated operations such as iteration and recursion
 Comparing and contrasting - identifying the way in

which two or more things are similar and different.
The basis for creating abstractions.

Cognitive Skills – A Sample Set
(1/4)

28

 Critical reading and writing - close attention to the
semantics of terms, unstated assumptions, and
relationships with other work. Related work sections
in research papers and reporting on papers in
seminars provide training in this skill

 Debugging - detecting pattern anomalies, using
isolation strategies

 Decomposing - complex entities into simpler ones
 Designing - integrating user, performance, simplicity,

and reliability concerns
 Evaluating results in terms of assumptions and goals
 Exploring - observing and identifying patterns for

possible classification
 Hypotheses - pattern recognition and assumption use

Cognitive Skills – A Sample Set
(2/4)

29

 Integrating disparate data and concepts
 Interaction - identifying and representing different

roles and their interrelationships; developing
communication mechanisms among the different roles

 Logical analysis of representation relationships
 Parallel thinking - identifying sub-components that

don't share dependencies
 Patterns - recognition and classification
 Planning - setting goals, developing strategies, and

outlining tasks and schedules to accomplish the goal
 Problem solving - working with time and space

constraints, decomposing complex problems

Cognitive Skills – A Sample Set
(3/4)

30

 Reasoning under uncertainty - reasoning and making
decisions based on incomplete and/or uncertain data
and models

 Representing abstractions and their relationships
through notations and language

 Scaling - understanding time/space/and power
constraints

 Searching - focused exploration
 Symbols and notations - representing and

manipulating information and relationships
 Synthesis - combining components of concepts, data,

or research into a new construction
 Tinkering - manipulating portions of existing entities

Cognitive Skills – A Sample Set
(4/4)

31

 CMU CS Department new curriculum
 http://www.csd.cs.cmu.edu/education/bscs/

currreq.html
 MIT EECS new curriculum

 http://www.eecs.mit.edu/ug/newcurriculum/
index.html

 Stanford CS Department new curriculum
 http://csmajor.stanford.edu/Considering.shtml

Lean Core Examples

32

 Algorithmic thinking and problem analysis
 problem decomposition

o divide and conquer
o levels of abstractions

 Reasoning
o correctness, logics, invariants, verification, debugging
o reasoning under uncertainty, probability
o planning, learning…

Lean Core Concepts – A Starter

33

 Abstractions (levels of)
 Identify what to model

o salients, constraints, pitfalls in assumptions and in
approximations

 How to model it
o what type
o multi-disciplinary models

 How to implement the model
o solve analytically
o simulate

 kinds of simulation
o visualize the results

Lean Core Concepts – A Starter

34

 Representation, approximation, and dealing
with errors
 Data

o types of data to be represented
o representation techniques and formats, and their

limitations
 Processing techniques and their limitations

o linearization
o kinds of simulation
o granularity in spatio-temporal sampling

Lean Core Concepts – A Starter

35

 Constraints on computation and
computational complexity
 Models of computations

o automata and grammars
o computation graphs
o dataflow and Petri Nets
o ATN

 Constraints and tradeoffs in time, space, power, ...
o fault-tolerance, reliability

 Complexity, intractability, undecidability

Lean Core Concepts – A Starter

36

 Data structures and algorithms
 (the usual and growing collections)
 Graphs and networks

o physical
o virtual
o social
o hypertext

Lean Core Concepts – A Starter

37

 Transformation and Patterns
 Transformation

o mapping between representations
o rule-based systems

 Patterns
o defining->searching v.s. discovering/recognizing
o machine learning
o planning

 Language models

Lean Core Concepts – A Starter

38

 Information, Knowledge, and Machine Learning
 Information

o data models
o query languages
o data integrity

 Knowledge
o representaton
o logical reasoning and cognition
o natural language processing

 Machine learning
o supervised and unsupervised learning
o robotics
o data mining

Lean Core Concepts – A Starter

39

 Communication and coordination
 Abstraction layers and protocols
 Models such as

o synchronous/asynchronous
o broadcast/P2P
o client‐server
o shared memory/message‐passing
o blackboard architecture
o cloud

 Error handling
o concurrency control problems and deadlock

Lean Core Concepts – A Starter

40

 Flow of control
 Sequential
 Conditional
 Iteration
 Recursion
 Parallelism

o co-routines
o threads and processes
o multi-processing
o multi-core
o distributed

 Non-deterministic computation

Lean Core Concepts – A Starter

41

 Optimization
 The human element

 Why the human element matters
 Perception
 Cognition
 Interaction
 Social dynamics

Lean Core Concepts – A Starter

42

 Abstraction mechanisms
 Combinatorics
 Distributed processing
 Exploration of data-intensive subjects
 Machine learning
 Modeling
 Numerical Methods

Techniques – Examples (1/2)

43

 Programming
 Proof techniques
 Scientific method
 Simulation
 Symbol manipulation
 System design

Techniques – Examples (2/2)

44

NRC – A Framework for Science
Education

45

NRC – A Framework for Science
Education

46

