
CRA-E (Computing Research Association – Education)
White Paper

 Committee
 Andy van Dam, Brown (chair)
 Jim Foley, Georgia Tech
 John Guttag, MIT
 Pat Hanrahan, Stanford
 Chris Johnson, University of Utah
 Randy Katz, UC Berkeley
 Henry Kelly, DOE (formerly FAS)
 Peter Lee, DARPA and CMU
 David Shaw, D.E. Shaw Research

 Support
 Andrew Bernat, CRA Executive Director
 Rosemary Michelle Simpson, Brown (Editor)

 Substantive reviews
 Jeannette Wing, Lynn Andrea Stein, and Ed Fox

Contributors

2

 Causes for concern
 statistics and trends, pipeline issues (workforce, research

careers)
o CS AP course
o undergraduate enrollments
o diversity issues

 perception issues – how to recapture the magic?
 recognition issues

o NAS science education study currently out for public review
covers

 life, earth & space, and physical sciences, and engineering &
technology

 but not a word about Computational Thinking – purely
computer as a tool, like a microscope

 Many universities/departments are restructuring to
adapt to changing conditions

Context

3

 ACM's CSTA Model Curriculum for K-12
Computer Science (2003)

 NSF-triggered CS/10K project – K-12 (in
progress)

Related Efforts

4

CS 10K
GOAL: Develop an effective high school curriculum and get

it taught by in 10K schools by well-prepared teachers by
2015.

Curriculum based around new AP course: CS: Principles
– AP is the only point of national leverage, rigorous, popular with

students and schools, fidelity of replication
– CS: Principles covers fundamentals of computing & is engaging

and inspiring. It’s being piloted at 5 colleges 2010-11 with more to
follow 2011-2012

Deployment needs assessments, pre-service & in-service
teacher training, ongoing professional development, and
gain entrée into the schools

 We’ll need the computing community’s help!
www.csprinciples.org

Related Efforts

6

 CSTB "Report of a Workshop on The Scope
and Nature of Computational
Thinking" (2009)

ACM's CSTA Model Curriculum for K-12
Computer

 Science (2003)
NSF-triggered CS/10K project – K-12 (in

progress)
Denning's Great Principles and Rebooting

Computing:
 the Magic and Beauty of Computer Science

(2009)

 CRA-E's mission is to explore the issues of
undergraduate education in computing and
computational thinking for those who will do
research in disciplines from the sciences to the
humanities.

 As technology and teaching methodologies
continue to evolve, how should programs in
computer science, computational science, and
information science co-evolve?

 Can we communicate a core set of ideas,
principles, and methodologies that is domain-
independent?

Mission Statement

7

 Not part of our charter
 K-12
 preparing undergraduates for careers in general
 curriculum design

 Focus
 preparing undergraduates for computationally-

oriented research careers
 environment design

 We wanted to but weren't able to consider
co-evolving technology and pedagogy
 "A teacher for every learner"

o "Grand Challenge 3. Provide a Teacher for Every Learner" in Grand
Research Challenges in Information Systems workshop sponsored by CRA

Mission Boundaries

8

 Provide guidance enabling institutions to
 create an undergraduate environment that
 supports acquisition and internalization of the

computationally-oriented researcher mindset.
 Two sub-goals

 identify issues facing faculty charged with
educating computationally-oriented researchers in
all fields in the first part of the 21st century

 make recommendations that are relevant and
implementable within the current institutional
context

 Target audience
 university and college faculty, school chairs, deans,

provosts, as well as government policy-makers, and

Goal of White Paper

9

 Leverage best practices
 e.g. CMU, Cornell, Georgia Tech, Stanford

 Leverage best writings
 e.g. Jeannette Wing, Lynn Andrea Stein, Peter

Denning
 Focus on environment design

 not curriculum design
 focused on undergraduate education

o others are dealing with K-12, job training…

Method of Operation

10

 Introduce students to computational thinking
 foundational courses that address their interests
 persistent concepts and skills

 Refactor CS curricula
 lean core plus flexible and adaptable set of options
 address future computationally-oriented directions

 Identify cognitive, mastery, and research skills
 pervade the entire curriculum from introductory

courses through advanced senior-level courses

Categories of Recommendatons

11

 Computationally-Oriented Foundations
1. Introductory Courses
 addressing a broad range of student interests

 Refactoring Computer Science Curricula
2. Core/Foundation for All CS Graduates
 lean core with focus on enduring concepts, techniques,

and skills
3. Specialization: Tracks, Threads, and Vectors
 flexible approaches to gaining deeper understanding

and skills
4. Specialization: Integrated Joint Majors
 deep collaboration among disciplines

 Develop Mastery across the Curricula
5. Design Under Constraints and the Gaining of Mastery
 deepen the skill set
6. Prepare Students for Research Careers
 develop computationally-oriented researchers

CRA-E Recommendations

12

 Problem
 how do we address a diverse undergraduate population to

these introductory courses?
 what cognitive skills, concepts, and techniques should be

included in these courses?
 how do we leverage the personal interests and abilities of

students?
 Approach

 provide range of introductory courses that address the
interests of a broad range of students
o contextualized computing
o theoretical/abstraction-oriented
o traditional CS intro programming

 experiment with non-traditional approaches such as building
robots, working with collecting, analyzing, and visualizing

1. Introductory Courses

13

 Cognitive skills
 A cognitive skill is a mental skill required to

understand and practice computational subjects.
 Concepts

 A concept is a named abstraction that has a
definition, such as recursion and concurrency

 Techniques
 A technique is a goal-directed set of strategies and

operations, such as modeling, simulation, and
machine learning

Working Definitions

14

 Concepts/techniques students should have
learned at the end of one semester
 converting patterns of data to information (to

knowledge)
o methods for exploring an interesting domain to

understand what constitutes ‘data’ in that domain, and
then extract and represent that data

o methods for analyzing the data to determine what the
fundamental issues are for modeling, simulation, and
validation

o methods for deriving and validating information from data,
including simple statistical and visualization tools

Introductory Course (1/3)

15

 representing relationships as models and programs
o systematic approach to designing, writing, and debugging

several hundred line programs, including an understanding
of

 reasons why programming is a way to manipulate
patterns as well as a tool for problem solving and
modeling, and

 how it compares with - and augments - other
strategies such as the scientific method, mathematics,
and classic humanities analytic strategies.

o moving from ambiguous problem statement to
computational formulation

 method for decomposing and solving the problem as a
set or hierarchy of subproblems that solve/implement
them.

o meaning and use of algorithms
 including the importance of and strategies for scaling

Introductory Course (2/3)

16

 exploring and validating hypotheses and models
o methods for using simulations shed light on problems

 that are ambiguous
 that don’t have an obvious (closed form) solution

o validation strategies
 that analyze the results of a simulation against the

initial hypotheses and data

Introductory Course (3/3)

17

 Problem
 what cognitive skills, concepts, techniques, and

content should the core consist of
 how should this be decided
 how should it be embodied in specific courses and

programs
 what curricular change mechanisms can evolve as

the inevitable changes occur
 Approach

 identify enduring concepts, techniques, and skills to
form the foundation for a lean core

 emphasize mastery and skills across the curriculum
 develop institutional relationships that build on the

2. Core/Foundation for All CS

18

 Problem
 accommodate changing domain-specific interests,

both current and as yet unknown future trends
 develop the increased depth that comes from

focused specialization over time
 Approach

 use the lean core skills and concepts in domain-
specific courses and sequences

 experiment with a variety of mechanisms ranging
from one-time experimental courses to major sets
of interwoven tracks such as Georgia Tech's
Threads

 work with other departments and institutions to
optimize resource use

3. Specialization:

19

 Problem
 how to develop deep collaboration, an integrated

mindset, among two or more different fields such as
computer science and biology

 Approach
 identify and address some of the barriers to fully-

integrated joint majors, and provide detailed example
prototypes as models

 explore joint special courses, e.g., seminars, as
testing grounds for more extensive collaborative
development

 encourage cross-departmental student groups

4. Specialization:

20

 Problem
 course concepts and techniques are siloed so

students don't make connections between courses
 wide gap between introduction to concepts and

their application to real-world problems
 Approach

 create projects that tap into student enthusiasms
 build real artifacts whose performance and

effectiveness can be measured
 treat design as an iterative process throughout the

curriculum
 practice debugging and dealing with real-world

issues
 create integrative capstone-like experiences in all 4

5. Design Under Constraints and

21

 Problem
 how to attract, select, and prepare students for

computationally-oriented research careers
 Approach

 embed seductive research examples in the
introductory courses

 establish an apprenticeship culture for
undergraduates as well as graduate students

 identify and teach skills needed for success in
graduate school
o analysis of 'related work' and synthesis with research problem
o identification of hidden assumptions in self and others
o balancing vision, detail-orientation, rigor, and persistence under

failure

6. Attracting, Selecting, and

22

 Draft location
 http://www.cs.brown.edu/~avd/CRA-E-

Snowbird2010-draft.pdf
 Tools

 recommendations
o each recommendation section contains background issues,

examples, and solution approaches; resulting
recommendations are summarized at the end of the section.

o the complete recommendation set is provided as a single
document in Appendix A to give a sense of the set as a
whole.

 references (Appendix B) contain both a bibliography
and the complete set of all the URLs that are
mentioned in the report.

 index supports both search and browsing modes

Tools for Using this Report

23

 Benefits for all undergraduates, not just future
computationally-oriented researchers
 all CS students independent of their career goals
 non-CS students who just want a particular

sequence
 Graduate students benefit from serving as

mentors and models for research-oriented
undergraduates

 Early identification and nurturing of potential
researchers deepens the skills needed for
success in graduate school

 ...

Summary

24

 Release final CRA-E white paper
 posted on CRA website http://www.cra.org/

uploads/documents/resources/rissues/CRA-E-
Researcher-Education.pdf

 'blurbs' in Computing Research News, CACM, ...
 Fork CRA-E "Mark 2"

 committee chaired by Rich DeMillo
 website

Next Steps

25

Comments?
Questions?

26

http://www.cs.brown.edu/~avd/CRA-E-Snowbird2010-
draft.pdf

 Brown – multiple versions and styles
 CS15/16, CS17/18, CS19, CS40, CS53, CS931

 CMU – CS15-105 – Principles of computation
 Georgia Tech – CS1315/CS1316 – digital media
 Harvey Mudd – CS for Scientists
 MIT – 6.00 – Introduction to CS and Programming for

students with no programming experience
 MIT – 6.01/6.02 – Mobile robots focus on

computational engineering
 Princeton – CS116 – The Computational Universe
 Purdue - SECANT: Science Education in Computational

Thinking

Example Introductory Courses

27

 Abstractions – creating and validating
 Algorithmic thinking - representing information,

working with constraints and automating the process
 Analysis - examining the components and structure of

concepts, data, and research results
 Approximations - estimating from data observations

and representing in algorithmic form
 Assumptions - identifying and validating
 Automation - representing processes in terms of

repeated operations such as iteration and recursion
 Comparing and contrasting - identifying the way in

which two or more things are similar and different.
The basis for creating abstractions.

Cognitive Skills – A Sample Set
(1/4)

28

 Critical reading and writing - close attention to the
semantics of terms, unstated assumptions, and
relationships with other work. Related work sections
in research papers and reporting on papers in
seminars provide training in this skill

 Debugging - detecting pattern anomalies, using
isolation strategies

 Decomposing - complex entities into simpler ones
 Designing - integrating user, performance, simplicity,

and reliability concerns
 Evaluating results in terms of assumptions and goals
 Exploring - observing and identifying patterns for

possible classification
 Hypotheses - pattern recognition and assumption use

Cognitive Skills – A Sample Set
(2/4)

29

 Integrating disparate data and concepts
 Interaction - identifying and representing different

roles and their interrelationships; developing
communication mechanisms among the different roles

 Logical analysis of representation relationships
 Parallel thinking - identifying sub-components that

don't share dependencies
 Patterns - recognition and classification
 Planning - setting goals, developing strategies, and

outlining tasks and schedules to accomplish the goal
 Problem solving - working with time and space

constraints, decomposing complex problems

Cognitive Skills – A Sample Set
(3/4)

30

 Reasoning under uncertainty - reasoning and making
decisions based on incomplete and/or uncertain data
and models

 Representing abstractions and their relationships
through notations and language

 Scaling - understanding time/space/and power
constraints

 Searching - focused exploration
 Symbols and notations - representing and

manipulating information and relationships
 Synthesis - combining components of concepts, data,

or research into a new construction
 Tinkering - manipulating portions of existing entities

Cognitive Skills – A Sample Set
(4/4)

31

 CMU CS Department new curriculum
 http://www.csd.cs.cmu.edu/education/bscs/

currreq.html
 MIT EECS new curriculum

 http://www.eecs.mit.edu/ug/newcurriculum/
index.html

 Stanford CS Department new curriculum
 http://csmajor.stanford.edu/Considering.shtml

Lean Core Examples

32

 Algorithmic thinking and problem analysis
 problem decomposition

o divide and conquer
o levels of abstractions

 Reasoning
o correctness, logics, invariants, verification, debugging
o reasoning under uncertainty, probability
o planning, learning…

Lean Core Concepts – A Starter

33

 Abstractions (levels of)
 Identify what to model

o salients, constraints, pitfalls in assumptions and in
approximations

 How to model it
o what type
o multi-disciplinary models

 How to implement the model
o solve analytically
o simulate

 kinds of simulation
o visualize the results

Lean Core Concepts – A Starter

34

 Representation, approximation, and dealing
with errors
 Data

o types of data to be represented
o representation techniques and formats, and their

limitations
 Processing techniques and their limitations

o linearization
o kinds of simulation
o granularity in spatio-temporal sampling

Lean Core Concepts – A Starter

35

 Constraints on computation and
computational complexity
 Models of computations

o automata and grammars
o computation graphs
o dataflow and Petri Nets
o ATN

 Constraints and tradeoffs in time, space, power, ...
o fault-tolerance, reliability

 Complexity, intractability, undecidability

Lean Core Concepts – A Starter

36

 Data structures and algorithms
 (the usual and growing collections)
 Graphs and networks

o physical
o virtual
o social
o hypertext

Lean Core Concepts – A Starter

37

 Transformation and Patterns
 Transformation

o mapping between representations
o rule-based systems

 Patterns
o defining->searching v.s. discovering/recognizing
o machine learning
o planning

 Language models

Lean Core Concepts – A Starter

38

 Information, Knowledge, and Machine Learning
 Information

o data models
o query languages
o data integrity

 Knowledge
o representaton
o logical reasoning and cognition
o natural language processing

 Machine learning
o supervised and unsupervised learning
o robotics
o data mining

Lean Core Concepts – A Starter

39

 Communication and coordination
 Abstraction layers and protocols
 Models such as

o synchronous/asynchronous
o broadcast/P2P
o client‐server
o shared memory/message‐passing
o blackboard architecture
o cloud

 Error handling
o concurrency control problems and deadlock

Lean Core Concepts – A Starter

40

 Flow of control
 Sequential
 Conditional
 Iteration
 Recursion
 Parallelism

o co-routines
o threads and processes
o multi-processing
o multi-core
o distributed

 Non-deterministic computation

Lean Core Concepts – A Starter

41

 Optimization
 The human element

 Why the human element matters
 Perception
 Cognition
 Interaction
 Social dynamics

Lean Core Concepts – A Starter

42

 Abstraction mechanisms
 Combinatorics
 Distributed processing
 Exploration of data-intensive subjects
 Machine learning
 Modeling
 Numerical Methods

Techniques – Examples (1/2)

43

 Programming
 Proof techniques
 Scientific method
 Simulation
 Symbol manipulation
 System design

Techniques – Examples (2/2)

44

NRC – A Framework for Science
Education

45

NRC – A Framework for Science
Education

46

